Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

Abstract : Recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as the Strong Exponential Time Hypothesis. According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms. A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms with polynomial dependency in the fixed parameter (P-FPT). Applying this technique to clique-width, an important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems, distance problems and maximum matching. We give hardness results and P-FPT algorithms, using clique-width and some of its upper-bounds as parameters. We believe that our most important result is an O(k^4 · n + m)-time algorithm for computing a maximum matching where k is either the modular-width or the P4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs. Our algorithms are based on preprocessing methods using modular decomposition and split decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width.
Complete list of metadatas

Cited literature [76 references]  Display  Hide  Download

https://hal.inria.fr/hal-01676187
Contributor : David Coudert <>
Submitted on : Friday, January 5, 2018 - 1:32:12 PM
Last modification on : Monday, September 9, 2019 - 1:42:09 PM
Long-term archiving on : Thursday, May 3, 2018 - 4:00:49 PM

File

P-FPT-2018.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

David Coudert, Guillaume Ducoffe, Alexandru Popa. Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. ACM-SIAM Symposium on Discrete Algorithms, Jan 2018, New Orleans, United States. pp.20, ⟨10.1137/1.9781611975031.176⟩. ⟨hal-01676187⟩

Share

Metrics

Record views

313

Files downloads

301