A. Adams, J. Baek, and M. Davis, Fast High-Dimensional Filtering Using the Permutohedral Lattice, Computer Graphics Forum, vol.1, issue.2, 2010.
DOI : 10.1109/CGI.2004.1309200

URL : http://graphics.stanford.edu/papers/permutohedral/permutohedral.pdf

M. Aubry, S. Paris, S. W. , H. Kautz, and F. Durand, Fast Local Laplacian Filters, ACM Transactions on Graphics, vol.33, issue.5, 2014.
DOI : 10.1145/2070781.2024208

URL : https://hal.archives-ouvertes.fr/hal-01063419

T. Jonathan, A. Barron, Y. Adams, C. Shih, and . Hernández, Fast bilateral-space stereo for synthetic defocus, CVPR, 2015.

T. Jonathan, B. Barron, and . Poole, The Fast Bilateral Solver, ECCV, 2016.

A. Bousseau, S. Paris, and F. Durand, User-assisted intrinsic images, 2009.
DOI : 10.1145/1661412.1618476

URL : https://hal.archives-ouvertes.fr/inria-00413588

V. Bychkovsky, S. Paris, E. Chan, and F. Durand, Learning Photographic Global Tonal Adjustment with a Database of Input, Output Image Pairs. CVPR, 2011.

J. Chen, A. Adams, N. Wadhwa, W. Samuel, and . Hasinoff, Bilateral guided upsampling, ACM Transactions on Graphics, vol.35, issue.6, 2016.
DOI : 10.1109/ICCV.2011.6126492

URL : http://dl.acm.org/ft_gateway.cfm?id=2982423&type=pdf

J. Chen, S. Paris, and F. Durand, Real-time edge-aware image processing with the bilateral grid, 2007.
DOI : 10.1145/1275808.1276506

C. Dong, C. C. Loy, K. He, and X. Tang, Learning a Deep Convolutional Network for Image Super-Resolution, ECCV, 2014.
DOI : 10.1007/978-3-319-10593-2_13

URL : http://www.eecs.qmul.ac.uk/~ccloy/files/eccv_2014_deepresolution.pdf

D. Eigen, C. Puhrsch, and R. Fergus, Depth map prediction from a single image using a multi-scale deep network, NIPS, 2014.

Z. Farbman, R. Fattal, and D. Lischinski, Convolution pyramids, ACM TOG, 2011.
DOI : 10.1145/2070781.2024209

M. Gharbi, Y. Shih, G. Chaurasia, J. Ragan-kelley, S. Paris et al., Transform recipes for efficient cloud photo enhancement, ACM Transactions on Graphics, vol.34, issue.6, 2015.
DOI : 10.1109/CVPR.2003.1211494

W. Samuel, D. Hasinoff, R. Sharlet, A. Geiss, J. T. Adams et al., Burst photography for high dynamic range and low-light imaging on mobile cameras, 2016.

K. He and J. Sun, Fast Guided Filter, CoRR, 2015.

K. He, J. Sun, and X. Tang, Guided image filtering, TPAMI, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/ICCV.2015.123

J. Hegarty, J. Brunhaver, Z. Devito, J. Ragan-kelley, N. Cohen et al., Darkroom, ACM Transactions on Graphics, vol.33, issue.4, 2014.
DOI : 10.1145/2228360.2228472

S. Hwang, A. Kapoor, and S. B. Kang, Context-Based Automatic Local Image Enhancement, ECCV, 2012.
DOI : 10.1007/978-3-642-33718-5_41

URL : http://www.research.microsoft.com/%7Eakapoor/papers/eccv2012_final.pdf

S. Iizuka, E. Simo-serra, and H. Ishikawa, Let there be color!, ACM Transactions on Graphics, vol.35, issue.4, 2016.
DOI : 10.1145/2897824.2925974

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy et al., FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2017.179

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, ICML, 2015.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros, Image-to-Image Translation with Conditional Adversarial Networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2017.632

M. Jaderberg and K. Simonyan, Andrew Zisserman, and others. 2015. Spatial transformer networks, Advances in Neural Information Processing Systems, pp.2017-2025

V. Jain and E. Learned-miller, FDDB: A Benchmark for Face Detection in Unconstrained Settings, 2010.

V. Jampani, M. Kiefel, and P. V. Gehler, Learning Sparse High Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural Networks. CVPR, 2016.
DOI : 10.1109/cvpr.2016.482

L. Kaufman, D. Lischinski, and M. Werman, Content-Aware Automatic Photo Enhancement, Computer Graphics Forum, vol.29, issue.6, 2012.
DOI : 10.1145/1882261.1866172

URL : http://www.cs.huji.ac.il/labs/cglab/projects/cape/cape-cgf-2012.pdf

D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR, 2015.

J. Kopf, F. Michael, D. Cohen, M. Lischinski, and . Uyttendaele, Joint bilateral upsampling, 2007.
DOI : 10.1145/1239451.1239547

URL : https://kops.uni-konstanz.de/bitstream/123456789/5563/1/Joint_Bilateral_Upsampling.pdf

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM, vol.60, issue.6, 2012.
DOI : 10.1162/neco.2009.10-08-881

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

A. Levin, D. Lischinski, and Y. Weiss, A closed-form solution to natural image matting, TPAMI, 2008.
DOI : 10.1109/tpami.2007.1177

S. Liu, J. Pan, and M. Yang, Learning Recursive Filters for Low-Level Vision via a Hybrid Neural Network, ECCV, vol.30, issue.4, 2016.
DOI : 10.1109/ICCV.2011.6126278

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298965

URL : http://arxiv.org/pdf/1411.4038

R. Teja-mullapudi, A. Adams, D. Sharlet, J. Ragan-kelley, and K. Fatahalian, Automatically scheduling halide image processing pipelines, ACM Transactions on Graphics, vol.35, issue.4, 2016.
DOI : 10.1145/2776880.2792710

S. Paris and F. Durand, A fast approximation of the bilateral filter using a signal processing approach, ECCV, 2006.

S. Paris, W. Samuel, J. Hasinoff, and . Kautz, Local Laplacian filters: edgeaware image processing with a Laplacian pyramid, 2011.
DOI : 10.1145/1964921.1964963

J. Ragan-kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe et al., Decoupling algorithms from schedules for easy optimization of image processing pipelines, ACM Transactions on Graphics, vol.31, issue.4, 2012.
DOI : 10.1145/2185520.2185528

O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015.
DOI : 10.1007/978-3-319-24574-4_28

URL : http://arxiv.org/pdf/1505.04597

Y. Shih, S. Paris, F. Durand, T. William, and . Freeman, Data-driven hallucination of different times of day from a single outdoor photo, ACM Transactions on Graphics, vol.32, issue.6, 2013.
DOI : 10.1145/2508363.2508419

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), 1998.
DOI : 10.1109/ICCV.1998.710815

L. Xu, J. Ren, Q. Yan, R. Liao, and J. Jia, Deep Edge-Aware Filters, ICML, 2015.

Z. Yan, H. Zhang, B. Wang, S. Paris, and Y. Yu, Automatic Photo Adjustment Using Deep Neural Networks, ACM Transactions on Graphics, vol.35, issue.2, 2016.
DOI : 10.1109/ICCV.2013.10

URL : http://arxiv.org/pdf/1412.7725

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, CoRR, 2015.

L. Yuan and J. Sun, High quality image reconstruction from RAW and JPEG image pair, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126492

URL : http://research.microsoft.com/en-us/um/people/luyuan/paper/RawJpegPair_ICCV2011.pdf

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising, IEEE Transactions on Image Processing, vol.26, issue.7, 2016.
DOI : 10.1109/TIP.2017.2662206