Skip to Main content Skip to Navigation
Conference papers

Modeling Golf Player Skill Using Machine Learning

Abstract : In this study we apply machine learning techniques to Modeling Golf Player Skill using a dataset consisting of 277 golfers. The dataset includes 28 quantitative metrics, related to the club head at impact and ball flight, captured using a Doppler-radar. For modeling, cost-sensitive decision trees and random forest are used to discern between less skilled players and very good ones, i.e., Hackers and Pros. The results show that both random forest and decision trees achieve high predictive accuracy, with regards to true positive rate, accuracy and area under the ROC-curve. A detailed interpretation of the decision trees shows that they concur with modern swing theory, e.g., consistency is very important, while face angle, club path and dynamic loft are the most important evaluated swing factors, when discerning between Hackers and Pros. Most of the Hackers could be identified by a rather large deviation in one of these values compared to the Pros. Hackers, which had less variation in these aspects of the swing, could instead be identified by a steeper swing plane and a lower club speed. The importance of the swing plane is an interesting finding, since it was not expected and is not easy to explain.
Complete list of metadata

Cited literature [13 references]  Display  Hide  Download
Contributor : Hal Ifip Connect in order to contact the contributor
Submitted on : Monday, January 8, 2018 - 9:49:12 AM
Last modification on : Wednesday, March 28, 2018 - 4:35:04 PM


Files produced by the author(s)


Distributed under a Creative Commons Attribution 4.0 International License



Rikard König, Ulf Johansson, Maria Riveiro, Peter Brattberg. Modeling Golf Player Skill Using Machine Learning. 1st International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE), Aug 2017, Reggio, Italy. pp.275-294, ⟨10.1007/978-3-319-66808-6_19⟩. ⟨hal-01677125⟩



Record views


Files downloads