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Abstract. Inspired by the advancements of representation learning for
natural language processing, learning continuous feature representations
of nodes in networks has recently gained attention. Similar to word em-
beddings, node embeddings have been shown to capture certain seman-
tics of the network structure. Combining both research directions into
a joint representation learning of network structure and document con-
tent seems a promising direction to increase the quality of the learned
representations. However, research is typically focused on either word or
network embeddings and few approaches that learn a joint representa-
tion have been proposed. We present an overview of that field, starting
at word representations, moving over document and network node rep-
resentations to joint representations. We make the connections between
the different models explicit and introduce a novel model for learning a
joint representation. We present different methods for the novel model
and compare the presented approaches in an evaluation. This paper ex-
plains how the different models recently proposed in the literature relate
to each other and compares their performance.

Keywords: Representation Learning, Network Embeddings, Document
Embeddings

1 Introduction

Recently, there has been an uptake of the representation learning methods from
the domain of natural language processing to network structures. Network repre-
sentation learning addresses the sparsity issue commonly faced by machine learn-
ing applications in networks by representing nodes in a unified low-dimensional
space. These node representations have been shown to retain certain proper-
ties of the network structure, such as homophily or structural equivalence [3].
However, in most networks additional information beyond the network struc-
ture is associated with a vertex, such as textual content or meta data. Consider
for example a paper citation network as depicted in figure 1. In this network,
the additional information associated with a node is textual information, i.e.,
the document content. Even further, each node is a vertex in the graph and a
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Fig. 1. Paper citation network with textual information (document content) and
link information (citations)

document at once. Both types, the network node and the document, can be rep-
resented as real-valued vectors with fixed length, so called embeddings. These
embeddings can then be utilized as input features for subsequent tasks like node
classification or link prediction see e.g. [11, 3]. The goal of node (or document)
classification in the citation network is to assign a particular category to a doc-
ument (node), in order to organize a document collection. Link prediction in the
context of a paper citation network refers to identifying relevant papers, which
have not been cited in the paper at hand. Reasons for relevant papers not being
cited are for example space constraints or authors publishing at the same time
and hence not knowing about each others work.

For the citation network in figure 1, embeddings can be obtained by different
means: Based on the textual document content, embeddings can be obtained via
the Paragraph Vector (PV) [7] approach. An alternative way is to use the network
or link information, for example with Spectral Clustering [12]. In this paper,
we focus on node embeddings, like Deepwalk [9], LINE [11] or Node2Vec [3],
that build on the representation learning techniques from the natural language
processing domain. Only few approaches have been proposed that combine both
modalities, link and text information. To the best of our knowledge, TADW [13]
and Paper2Vec [2] are the only methods that combine both modalities using
representation learning.

In this paper, we first provide background information about word and doc-
ument embeddings and their adaption to graph structures. From this, we derive
a novel baseline approach for a joint embedding of textual content and network
structure. The assumption for the joint embeddings is that they retain informa-
tion from both modalities (textual content and network structure). We assume
these joint embeddings to be richer in expressiveness than representations trained
on either text or network alone and hence provide a higher quality representation
for subsequent tasks like node classification or link prediction. Then we review
related work and present an evaluation of the different approaches (text only,
graph only and combined). We conclude with an outlook on future work.
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2 Background

In this section, we present models that use shallow neural networks to create
the vector representations. We start with word embeddings, followed by their
extension to document embeddings and their adaptation to graph structures.
The common principle for all these models is the distributional hypothesis “you
shall know a word by the company it keeps” [1], which states that words in
similar contexts tend to have similar meanings [4]. That is, similar words (or
nodes) tend to appear in similar word (node) neighborhoods.

2.1 Word Embeddings

The approach to compute continuous vector representations of words proposed
by Mikolov et al. [7] became famous as Word2Vec. A sliding window is moved
across a sentence, in order to define the context for a word. This process is illus-
trated in figure 2. The words, considered as context are defined by the window

Fig. 2. Illustration of word embedding sliding window with window size 2

size, which is the maximum distance between the word under consideration and
a context word. In our example, the window size is 2, i.e., 2 words to the left of
w(t), the word under consideration, and 2 words to the right are considered as
context: The context words for fox are quick, brown, jumped, over.

Mikolov et al. proposed two model architectures to compute the embeddings:
The continuous bag-of-words (CBOW) model, illustrated in figure 3a and the
continuous skip-gram (SG) model, illustrated in figure 3b. While CBOW tries
to predict a word, given the context, SG tries to predict the context, given
a word. Both models use a three-layer neural network, with linear activation
in the hidden layer and a softmax in the output layer. The input in the SG
model is a one-hot-coding and similarly in the CBOW model, a k-hot-coding
activating the k inputs of the words in context. The output of the hidden layer
in the CBOW model are the averaged weights between the activated inputs
and the hidden layer. That is, only the weights of the k activated inputs are
considered. Similarly, in the SG model, only the weights from the input word
are considered. No averaging is needed in this case and hence, the output of the
hidden layer is just a copy of the weights between the active input and the hidden
layer. Furthermore, the SG model is trained by pairs of word and context word.
The training pairs within the context window of our example from figure 2 are:
(fox,quick), (fox,brown), (fox,jumped) and (fox,over). As an optimization step,
Mikolov et al. suggest to give less weight to more distant context words, since
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(a) continuous bag-of-words (CBOW) (b) skip gram (SG)

Fig. 3. Illustration of the two model architectures of Word2Vec (CBOW and SG) with
the sliding window context from the example sentence in figure 2. The projection
corresponds to the weights between input and hidden layer, i.e., the word embeddings.

more distant words are usually less related to the current word. This is achieved
by not always sampling pairs from the complete window, but sampling the pairs
from a randomly smaller window. The final embedding vector of a word is given
by the weights between its corresponding input neuron and the hidden layer.

2.2 Document Embeddings

With Paragraph Vector [5], Quoc and Mikolov extended the Word2Vec approach
to sentences and documents (also known as Doc2Vec). Therefore, they extended
the two architectures presented in the previous section with an additional para-
graph identifier, yielding the distributed memory (PV-DM) model, illustrated
in figure 4a and the distributed bag-of-words (PV-DBOW) model, illustrated in
figure 4b.

While PV-DM extends the CBOW model, PV-DBOW corresponds to the
SG model. In PV-DM, a sliding window is moved across the paragraph (or
document), similar to sliding a window across the sentences in Word2Vec. In
contrast to Word2Vec, an additional paragraph identifier is added to the context.
This paragraph identifier can be thought of as another word, which acts as a
memory that remembers what is missing from the current context – or the
topic of the paragraph. Therefore, it got named distributed memory. PV-DBOW
uses the paragraph identifier to predict the context words. Here, context words
are the words contained in the paragraph. The model is trained by pairs of
(<paragraph id>, <word in paragraph>). In the figure, we illustrated only four
context words, i.e., four training pairs. Of course, during training, all of the
words in a paragraph are to be considered.

It is to note that the paragraph identifier is just a symbolic token, which
carries no semantic meaning in itself. However, the embedding of this identifier,
i.e. the weights between the corresponding input neuron and the hidden layer
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(a) distributed memory (PV-DM) (b) distributed bag-of-words (PV-
DBOW)

Fig. 4. Illustration of the two model architectures (PV-DM and PV-DBOW) of para-
graph vector (Doc2Vec). The left part (PV-DM) shows the sliding window context
from figure 2. PV-DBOW (right part) does not use a sliding window, instead all words
from the sentence are considered as context.

(indicated as “projection” in the figure), does: After training the neural net-
work, documents with similar content should have a similar representation in
the embedding space, i.e., their weight vectors (projections) should be similar.

2.3 Graph Embeddings

With Deepwalk [9], Perozzi et al. adapt the Word2Vec approach for learning
vector representations of vertices in a network. Therefore, they sample random
walks for each node in the network and apply the skip gram (SG) model on
the sampled walks. Those random walks can be thought of as the equivalent of
sentences in the Word2Vec approach, with nodes resembling words. Accordingly,
a sliding window is moved across the sampled walks to define the context. The
analogies between nodes as words and walks as sentences apply only on the
conceptual level. The actual input to the Deepwalk algorithm is in fact a graph.
In our case, it is a citation network, as illustrated in figure 1, in which nodes
correspond to papers and edges are given by the citations.

The sliding window across a walk is illustrated in figure 5. The figure is the
graph equivalent to figure 2, the sliding window across a sentence. The random
walk was sampled from the graph in figure 1. Perozzie et al. applied the SG model

Fig. 5. Illustration of graph embedding sliding window with window size 2
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to train the vector representations, i.e., the current node predicts the nodes in
the context. Alternatively, the CBOW model can also be applied to train the
vectors, i.e., the nodes in the context predict the current node. We refer to the
skip gram (SG) model on graphs as DW-SG and to the continuous bag-of-words
(CBOW) model on graphs as DW-CBOW.

With Node2Vec [3] an extension to Deepwalk has been proposed, that allows
to guide the walks in their exploration of the network. That is, the sampling
procedure can be parametrized, such that the walks are biased towards the local
neighborhood or tend to move further away (resembling breadth-first or depth-
first search in the most extreme cases). The parameters, introduced to guide
the walk are p and q. The parameter p controls the tendency to re-visit already
visited nodes and q controls, whether the walk tends to move further away from
the original node. In the evaluation, we used Node2Vec with a parameter setting
that resembles the random walk sampling of Deepwalk (p = 1, q = 1). We refer
to it as N2V. Typically, the SG model is used to train vector representations
of nodes and we are also using that model, that is, we use N2V and N2V-SG
synonymously.

3 Combining link and text information

In this section, we present a novel model to learn combined embeddings for docu-
ments/nodes, fusing link and text information. We first show, how the Paragraph
Vector approach (PV-DM and PV-DBOW as presented in section 2.2 document
embeddings) can be adapted to graph structures and then, how it can be ex-
tended to include textual information.

3.1 Paragraph Vector on Graphs

In Deepwalk, the Word2Vec approach is adapted to learn node representations.
As a pre-requisite for our model, we show how the Paragraph Vector approach
can also be adapted to represent nodes. Therefore, we assign the start node of
each random walk as the paragraph identifier and treat the rest of the walk
as paragraph content. That means, we sample a sub-graph around the starting
node and learn an embedding vector for this sub-graph. If the walk length is
chosen equal or larger than the network diameter, the random walks may cover
the whole network. That is, the sampled sub-graph may not be a real sub-graph,
but contain all nodes from the original graph.

On graphs, PV-DBOW is similar to DW-SG, if the walk length of PV-DBOW
equals the window size of DW-SG. In this case, both models have the same
context radius. In PV-DBOW, the walk length defines the maximum distance
between the start node and nodes on the sampled walks. The random walks
cannot contain nodes, that are further away from the start node than the walk
length. Similarly, in DW-SG, the window size defines the maximum distance
between the node under consideration and nodes to be considered as context.
As those are sampled with random walks without jump probabilities, nodes
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that require more steps than the window size to be reached, are outside the
context. It is to note, that while Deepwalk also has the walk length parameter,
this parameter can be chosen to be larger, as the context radius is constrained
afterwards by the window size.

3.2 Fusing link and text information

We now have means to apply the Paragraph Vector model on both modalities,
text and link information. This leads us to a combined model, by simply sharing
the paragraph identifier between the text and the graph model. This is possible,
as the paragraph identifier is just a symbolic identifier of the document or sub-
graph respectively. We illustrate the combined model in figure 6. The illustrated
model corresponds to the PV-DM approach, hence we refer to this architecture
as text graph distributed memory (TG-DM). The left part of the figure is com-

Fig. 6. Illustration of text graph distributed memory (TG-DM) model. The paragraph
vector d is shared between the text (left part) and the network model (right part),
acting as distributed memory for both of them at the same time.

pletely equivalent to PV-DM applied to textual content (cf. figure 4a), while
the right part is equivalent to PV-DM for a sampled sub-graph (i.e. the set of
walks with the same start node). These two models are combined via the shared
weights of the paragraph identifier. This paragraph identifier is just a symbolic
identifier, hence the ‘2” can be thought of as a document id and at the same
time as a node id.

The combination of text and link information with the PV-DBOW approach
is achieved in the exact same fashion, by sharing the paragraph identifier. Hence
we refer to the combination via PV-DBOW as text graph distributed bag-of-
words (TG-DBOW). The term words in this case also includes network nodes,
because walks are considered as sentences in a document. We investigated differ-
ent methods to train the TG-DBOW model, namely: TG-MIX, TG-SPLIT and
TG-SUM, which we present in the following.
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TG-DBOW uses the skip gram architecture and hence, the training consists
of a paragraph identifier and context words and nodes. The simplest method is
then to use the architecture of PV-DBOW and treat the context nodes from the
sampled random walks as words in the document. Again, the paragraph identifier
is just a symbolic token, hence we can use the same identifier for the node and
document. We call this method TG-MIX, which is depicted in figure 7.

paragraph id

Fig. 7. TG-MIX

Another way to learn a combined embedding via TG-DBOW is to sepa-
rate the output layers for nodes and words. We call this approach TG-SPLIT,
depicted in figure 8. In this case, we alternate between showing the network
paragraph identifier and context word pairs, and paragraph identifier and con-
text node pairs. While the weights for the paragraph identifier are shared, the
prediction of a context word or node is separated by using two separate softmax
layers. These separate softmax layers are indicated with the two separate error
measures E1 and E2 in the figure.

paragraph id

Fig. 8. TG-SPLIT

The the third method, which we call TG-SUM, is depicted in figure 9. Here,
we train the network by providing triples of paragraph identifier, context word
and context node. That is, for a given paragraph identifier, the network simul-
taneously has to predict the context word and the context node. In contrast to
TG-SPLIT, where in each alternating step the error to be propagated back is
either E1 or E2, the error in TG-SUM is the sum of both errors (E1 + E2) in
every step. In preliminary experiments, TG-SPLIT outperformed TG-MIX and
TG-SUM, hence we included only TG-SPLIT in the evaluation.
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paragraph id

Fig. 9. TG-SUM

4 Related Work

In this section, we present two closely related approaches: TADW - Text As-
sociated Deepwalk [13] and Paper2Vec [2]. To the best of our knowledge, these
are the only two approaches that build upon the representation learning tech-
niques from the natural language processing domain and combine text and link
information into a single embedding.

4.1 Paper2Vec

With Paper2Vec, Ganguly and Pudi [2] do not propose a completely new model,
but rather combine and extend existing models in a clever way. Paper2Vec is
modeled around a citation network, i.e., the data for this approach needs to have
at least a similar structure (documents with textual content, that are connected
via links). Their contribution to improve the learned representations is two-
fold: First, they enrich the citation graph with artificial edges, based on the
similarity of documents and second, they initialize the node embeddings with
the paragraph vector representations obtained from the documents.

The intuition behind the enrichment of the citation graph with artificial
edges is that those are links, which should actually be there, but are omitted
because of the following potential reasons: Authors may not be fully aware of
all the current work in the field and hence, might miss to cite some papers.
Also, space constraints limit the amount of citable papers and trivially, two
papers might appear at the same time and therefore the authors may not know
about each others work. Adding artificial edges between similar documents can
then be considered as adding the missing links. To this end, the authors first
compute an embedding for each paper with the PV-DM approach. Then, they
add artificial links between each document and its k nearest neighbors, based on
their similarity in the document embedding space.

To create the final embeddings, Paper2Vec applies the Deepwalk algorithm on
the enriched graph that contains both, the original and artificial edges. Instead
of randomly initializing the vector representations of the nodes in this graph, the
authors initialize them with the document embeddings learned in the previous
step. This raises the interesting question, whether this initialization avoids start
configurations, that would result in a local optimum or whether the initialization
preserves information from the document content, that cannot be learned via the
network structure.
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4.2 TADW

As a first important step of the TADW approach, Yang et al. [13] showed that
Deepwalk factorizes a matrix of transition probabilities, similar to Word2Vec
factorizing a matrix of co-occurrences. More precisely, each entry in the matrix
that gets factorized with Deepwalk is the logarithm of the average probability
that vertex vi randomly walks to vertex vj in a fixed number of steps. Similarly,
depending on the network architecture, an entry in the matrix that gets fac-
torized by Word2Vec is the logarithm of the weighted co-occurrence between a
(word,context word)-pair [8] or the Shifted Positive Pointwise Mutual Informa-
tion (SPMI) of the pair [6]. The matrix factorization of Deepwalk is illustrated
in figure 10. The vertex representation of Deepwalk, i.e., the node embeddings,

Fig. 10. Matrix factorization of Deepwalk.

is given by the matrix W . The second step of TADW is then to incorporate text
information. Instead of factorizing M into a product of two matrices, TADW
factorizes M into a product of three matrices, where the third factor is a matrix
of text features. This process is illustrated in figure 11. The text feature matrix T

Fig. 11. Matrix factorization of Text Associated Deepwalk (TADW).

is a low-dimensional representation of the tf-idf matrix of the document contents,
obtained via singular value decomposition. The matrices W and H are obtained
by alternately optimizing them. The final vector representation is obtained by
concatenating W and H × T , resulting in a 2d-dimensional embedding.
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5 Evaluation

We evaluated1 the aforementioned models on a node classification task on the
CORA-ML dataset2. This dataset contains 2708 scientific publications from the
machine learning domain. Each paper is assigned to one of seven classes (e.g.
neural networks or reinforcement learning). The citation network of these pub-
lications consists of 5429 links. Each document in the dataset is described as a
binary vector of 1433 dimensions, indicating the presence of the corresponding
word. The document contents are short texts, generated from title, containing 18
words on average. On this dataset, node classification is equivalent to document
classification. A label is assigned to a node or document respectively, while both
represent the same thing (a document is at the same time a node in the citation
network).

For a quick reference, we list the evaluated approaches again with a short
description. The text-only models are colored green, the network-only models
orange and the joint models blue.

PV-DBOW The distributed bag-of-words model of paragraph vector [5]. Doc-
ument embeddings are trained by predicting the context, i.e., the words in
the corresponding document.

PV-DM The distributed memory model of paragraph vector [5]. Predicts a
word from the context words together with a paragraph identifier. The para-
graph identifier acts as a memory for the context and is the document em-
bedding.

DW-SG Deepwalk with the skip gram model [9]. Node embeddings are trained
by predicting the context, i.e., the neighboring nodes on a sampled random
walk.

N2V According to the authors, with parameters (p=1,q=1), N2V resembles
DeepWalk [3]. We used it as an alternative to DW-SG in the evaluation.

CC Naive baseline concatenation of document (PV-DBOW) and node embed-
dings (N2V).

TG-DM The paragraph vector model with distributed memory combining link
and text information.

TG-SPLIT The paragraph vector model with the skip gram split approach,
i.e. two separate output layers in the corresponding neural network.

P2V The Paper2Vec approach, adding artificial links and initializing node with
document embeddings [2].

TADW Text associated deepwalk, factorizing the matrix of transition proba-
bilities into three matrices [13].

We learned the vector representations on the whole dataset. Then we trained
a support vector machine (SVM) on different portions of the data to predict the
class in a supervised fashion, with the vector representations as input features.

1 evaluation scripts are available at https://github.com/schloett/tg-split
2 http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
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Table 1. Results overview, with averaged accuracy over all training portions.

text-only network-only joint
PV-DM PV-DBOW N2V CC TG-DM TG-SPLIT P2V

53.5 65.4 83.4 84.8 54.7 83.1 78.7

We opted for an SVM as it was also used in the related work for the node clas-
sification task [2, 13]. The training portions were varied in 10% steps from 10%
to 90%. We averaged the accuracy over 20 random splits for each percentage.
An overview with the average accuracy across all training portions is given in
table 1. We were not able to run the Matlab implementation of TADW, due
to issues with the mex-file, therefore, we had to exclude TADW from this com-
parison. The detailed results with averaged accuracy over the random splits for
every percentage is given in table 2. We explored different hyper-parameter set-
tings with Bayesian Optimization [10], but did not find a major improvement.
Therefore, we decided to stick to similar parameters as reported in the related
work. We set the dimension of all the trained vector representations to 100. For
the models including network information, we sampled 10 walks with a length
of 40 for each node. We chose a window size of 5 and for models with negative
sampling, we set the amount of samples to 10. As TG-SPLIT performed bet-
ter than TG-SUM and TG-MIX in preliminary experiments, we only included
TG-SPLIT in the evaluation.

Beyond the results from our evaluation, the detailed table 2 contains the
results reported in the original papers of TADW and Paper2Vec for comparison.
The column “source” indicates the paper, from which the results were copied
and the corresponding rows are colored with a light gray background. Both
papers reported accuracy scores only up to a training percentage of 50%. It is to
note, that the document contents used for evaluation in Paper2Vec differ from
the original CORA-ML dataset. In Paper2Vec, the authors used the full text of
the documents, while the original dataset contains less information (18 words
per document on average). This explains the rather large difference in the text-
only baselines3 and also has an influence on the other methods, that take the
document content into account. Hence the results are not directly comparable.
Further, the evaluation was carried out on random splits of the data (20 splits
in our experiments, 10 splits in Paper2Vec and TADW). The actual splits are of
course not the same, but the differences in the averaged results are less significant
than the aforementioned differences in the data.

As can be seen from the table, the approach for combining link and text
information presented in section 3 does not outperform the naive baseline of
concatenating node and document embeddings. Also, its performance is close
to the performance of node embeddings alone and inferior to TADW. With our
model showing no improvement over the concatenated baseline, we assume that it

3 Even though the tf-idf dimensions are the same (1433) they contain different infor-
mation. For tf-idf in Paper2Vec, the authors “kept the maximum features (sorted by
df value) as 1433”.
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Table 2. Detailed results, with averaged accuracy over random splits for every training
percentage. Light gray rows indicate results reported in the paper corresponding to
source. The use of full text documents in the evaluation data is indicated by *. Text-only
approaches are colored green (upper part), network-only are colored orange (middle
part) and combined approaches are colored blue (lower part) and further separated by
two lines.

model SVM training ratio

source (dimensions) 10% 20% 30% 40% 50% 60% 70% 80% 90%

PV-DM (100) 43.3 48.9 51.8 53.7 54.9 56.2 56.7 57.7 58.3

PV-DBOW (100) 57.9 62.3 64.4 65.7 66.7 67.2 67.7 68.3 68.6

p2v* PV-DM (100) 76.8 81.1 82.8 83.5 84.4 n.a. n.a. n.a. n.a.

tf-idf (1433) 37.9 47.8 55.6 61.6 65.2 68.4 70.7 72.0 73.4

p2v* tf-idf (1433) 78.5 82.8 84.7 86.0 86.9 n.a. n.a. n.a. n.a.

tadw tf-idf (200) 58.3 67.4 71.1 73.3 74.0 n.a. n.a. n.a. n.a.

N2V (100) 77.2 80.7 82.5 83.6 84.5 84.8 85.3 85.8 85.9

tadw DW-SG (100) 76.4 78.0 79.5 80.5 81.0 n.a. n.a. n.a. n.a.

p2v* DW-SG (100) 76.0 80.7 82.7 84.3 85.3 n.a. n.a. n.a. n.a.

P2V (100) 75.3 77.1 78.2 78.8 79.3 79.8 80.0 80.2 79.9

p2v* P2V (100) 83.4 86.5 87.5 88.3 88.9 n.a. n.a. n.a. n.a.

TG-DM (100) 43.5 48.3 51.8 54.1 56.1 57.7 59.1 60.5 61.5

TG-SPLIT (100) 73.4 79.7 82.3 83.9 84.9 85.5 85.9 86.1 86.3

CC (200) 78.4 82.0 83.7 84.9 85.8 86.4 86.8 87.3 87.6

p2v* CC (200) 80.6 83.8 85.1 86.4 87.1 n.a. n.a. n.a. n.a.

tadw CC (300) 76.5 80.4 82.3 83.3 84.1 n.a. n.a. n.a. n.a.

p2v* TADW (160) 82.4 85.0 85.6 86.0 86.7 n.a. n.a. n.a. n.a.

tadw TADW (200) 82.4 85.0 85.6 86.0 86.7 n.a. n.a. n.a. n.a.
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is not able of making use of text information to complement link information and
vice versa: Intuitively, we aim for similar embeddings of papers that have either
similar content, similar citations or both. That is, papers with similar content
should have a similar representation in the embedding space, regardless of their
link structure (accordingly for papers with similar citations). This similarity
criterion does not seem to be reflected in the embeddings, potentially because the
optimization objective during learning the embeddings is to predict the context
(or to predict from the context), not the class label.

We were not able to reproduce the high accuracy reported by Paper2Vec,
which we account in particular to the differences in the dataset used for eval-
uation: Paper2Vec used the full text of the document, while the documents in
the original CORA-ML dataset, which we used are short texts (18 words on
average). Also, we may not have found the optimal set of hyper-parameters for
the P2V approach. The accuracies of P2V are even lower than N2V. This may
be caused by the lower quality document embeddings (cf. PV-DM vs. p2v* PV-
DM), as those are used to add artificial links to the graph. It seems that more
noisy links are added, lowering the performance of the node embeddings trained
on the enriched network.

Summarizing the results, the novel baseline TG-SPLIT does not improve over
the naive baseline of simply concatenating the node and document embeddings.
In fact, its performance is comparable to the network-only model N2V. This
indicates that the joint representation TG-SPLIT cannot make use of the mutual
benefit, that we expected from incorporating network structure and document
content.

6 Summary and Future Work

In this paper, we presented an overview on representation learning for combined
network and text information, based on recent representation learning models
from the natural language domain. Therefore, we gave a summary of the most
prominent word embedding model and its extension to documents. We also sum-
marized approaches, that adapt the word embeddings for network learning. We
showed how document embeddings can be adapted to graph structures and in-
troduced a novel baseline for a combined learning. We evaluated the presented
models on a paper citation network. Results show, that the introduced base-
line TG-SPLIT does not improve over the naive baseline of concatenating node
and document embeddings and is comparable to the network-only model N2V.
That is, TG-SPLIT does not seem to be able to connect network structure to
document content for a mutual benefit.

In future work, we aim to investigate the question raised in section 4.1 on
whether the initialization of node embeddings with document embeddings avoids
local optima or transfers information from the document content to the node
representation (or whether it is a combination of both and how the influence of
each is). We further aim to investigate other neural network architectures for
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the combined learning, in order to find a bridge between the text and the link
information, similarly to TADW.
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