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Abstract. Android is targeted the most by malware coders as the num-
ber of Android users is increasing. Although there are many Android anti-
malware solutions available in the market, almost all of them are based
on malware signatures, and more advanced solutions based on machine
learning techniques are not deemed to be practical for the limited com-
putational resources of mobile devices. In this paper we aim to show not
only that the computational resources of consumer mobile devices allow
deploying an efficient anti-malware solution based on machine learning
techniques, but also that such a tool provides an effective defense against
novel malware, for which signatures are not yet available. To this end, we
first propose the extraction of a set of lightweight yet effective features
from Android applications. Then, we embed these features in a vector
space, and use a pre-trained machine learning model on the device for
detecting malicious applications. We show that without resorting to any
signatures, and relying only on a training phase involving a reasonable
set of samples, the proposed system outperforms many commercial anti-
malware products, as well as providing slightly better performances than
the most effective commercial products.

Keywords: Android, Malware Detection, Machine Learning, On-Device, Ten-
sorFlow, Mobile Security, Classification

1 Introduction

Nowadays, mobile devices are ubiquitous tools for everyday life. Among them,
Android devices dominated the global smartphone market, with nearly 90% of
the market share in the second quarter of 2016 [25]. The majority of the security
issues affecting Android systems can be attributed to third party applications
(app) rather than to the Android OS itself. Based on F-secure reports on mo-
bile threats [35], researchers found 277 new malware families, among which 275
specifically targeting Android devices. Also other recent reports clearly show
that the malware infection rate of Android mobile devices is soaring. In partic-
ular, a report from McAfee [30] reported a significant growth of mobile malware
in the wild. We believe that this huge amount of mobile malware needs to be
timely detected, possibly by smart tools running on the device, because it has
been shown that malware can bypass offline security checks, and live in the wild
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for a while. As a matter of fact, to the best of our knowledge, even the most
recent versions of Android anti-malware products are still not intelligent enough
to catch most of the novel malware.

The success of machine learning approaches for malware detection and clas-
sification [5, 8, 41, 36, 26], as well as the advance in machine learning software for
the execution in mobile environments, motivated us to empower Android devices
with a machine-learning anti-malware engine. Although modern mobile devices
come to the market with a huge amount of computational power, the develop-
ment of any Android anti-malware product should consider its efficiency on the
device to avoid battery drain, in particular when machine learning techniques
are employed, as they are known to be computational demanding. On the other
hand, we observe that an intelligent Android anti-malware product doesn’t need
to be unnecessarily complex, as it has been shown that Android malware exe-
cutes simpler tasks than the desktop counterparts [7]. All the aforementioned
reasons motivate the proposal for a machine learning solution to be deployed on
mobile devices to detect potential malicious software.

1.1 On-Device Advanced Security

Although there are many offline systems proposed for mobile malware detection,
mostly based on machine learning approaches (see Section 5), there are many
reasons for a user to have an intelligent security tool capable of identifying
potential malware on the device.

(i) The Google Play store is not totally free of malware. There has been many
reports that have shown that malware could pass the Google security checks, and
remain accessible to users for sometime on the Play store until someone flags it
as inappropriate. For instance, the Check Point security firm reported a zero-day
mobile ransomware found in Google Play in January 2017, which was dubbed as
a Charger application, and was downloaded by more than a million users [31].
Another report from the same vendor cites the case of new variants of the famous
Android malware family HummingBad [33]. We vet these samples in Section 3.2.

(ii) Third-party app stores are popular among mobile users, because they
usually offer applications at great discounts. Moreover, the Google Play store has
restricted access in some countries, so people have to download their required
applications from third-party app stores. Nevertheless, security checks on the
third-party stores are not as effective as those available on the Google Play
store. Therefore, third-party markets are a good source of propagation for mobile
malware. Many malware samples have been found on these stores during the
past years, that were downloaded by millions of users. In addition, quite often
users can be dodged by fake tempting titles like free games when browsing the
web, so that applications are downloaded and installed directly on devices from
untrusted websites. Another source of infection is phishing SMS messages that
contain links to malicious applications. Recent reports by Lookout and Google
[27, 24] show how a targeted attack malware, namely Pegasus, which is suspected
to infect devices via a phishing attack, could remain undetected for a few years.
We vet these samples in Section 3.2.
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(iii) One of the main concerns for any ‘computing’ device in the industry,
is to make sure that the device a user buys is free of malware. Mobile devices
make no exception, and securing the ‘supply chain’ is paramount difficult, for the
number of people and companies involved in the supply chain of the components.
There is a recent report that shows how some malware were added to Android
devices somewhere along the supply chain, before the user received the phone
[32]. We vet these samples in Section 3.2.

(iv) To the best of our knowledge, almost all of the Android anti-malware
products are mostly signature-based, which lets both malware variants of known
families, and zero-day threats to devices. There are claims by a few Android anti-
malware vendors that they use machine learning approaches, even if no detail is
available on the mechanisms that are actually implemented on the device. We
analyze this issue in more details in Section 3.2.

All of the above observations show that an anti-malware solution based on
machine-learning approaches, either completely, or as a complement to signa-
tures, can reduce the vulnerability of Android devices against novel malware.

1.2 Contribution

Accordingly, in this paper we introduce IntelliAV1, which is a practical in-
telligent anti-malware solution for Android devices based on the open-source
and multi-platform TensorFlow library. It is worth to mention that this paper
does not aim to propose yet another learning-based system for Android mal-
ware detection, but by leveraging on the existing literature, and on previous
works by the authors, we would like to test the feasibility of having an on-device
intelligent anti-malware tool to tackle the deficiencies of existing Android anti-
malware products, mainly based on pattern matching techniques. To the best of
our knowledge, the performances of learning-based malware detection systems
for Android have been only tested off-device, i.e., with computational power and
memory space well beyond the capabilities of mobile devices. More specifically,
the two main contributions of IntelliAV are as follows:

(i) We propose a machine-learning model based on lightweight and effective
features extracted on a substantial set of applications. The model is carefully
constructed to be both effective and efficient by wisely selecting the features,
the model, and by tuning the parameters as well as being precisely validated
to be practical for the capabilities of Android devices.

(ii) We show how the proposed model can be embedded in the IntelliAV appli-
cation, and easily deployed on Android devices to detect new and unseen mal-
ware. Performance of IntelliAV has been evaluated by cross-validation, and
achieved 92% detection rate that is comparable to other off-device learning-
based Android malware detection relying on a relatively small set of fea-
tures. Moreover, IntelliAV has been tested on a set of unseen malware,
and achieved 72% detection rate that is higher than the top 5 commercial
Android anti-malware products.

1 http://www.intelliav.com
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Fig. 1: Overview of IntelliAV.

The rest of the paper is organized as follows:
First, we reveal the detail of IntelliAV by motivating the choice of features and
the procedure followed to construct the model (§2). We then present the exper-
imental setup and results (§3). After that, we briefly mention the limitations of
IntelliAV (§4) and review the related works on Android malware detection (§5).
Finally, we conclude our paper discussing future directions of IntelliAV (§6).

2 System Design

The architecture of the proposed IntelliAV system is depicted in Figure 1,
and its design consists of two main phases, namely offline training the model,
and then its operation on the device to detect potential malware samples. As a
first phase, a classification model is built offline, by resorting to a conventional
computing environment. It is not necessary to perform the training phase on the
device, because it has to be performed on a substantial set of samples whenever
needed to take into account the evolution of malware. The number of times the
model needs to be updated should be quite small, as reports showed that just
the 4% of the total number of Android malware is actually new malware [10]. To
perform the training phase we gathered a relatively large number of applications
(§3.1). Then, a carefully selected set of characteristics (features) is extracted
from the applications to learn a discriminant function allowing the distinction
between malicious and benign behaviors (§2.1). Next, the extracted features are
passed to the model construction step in which a classification function is learnt
by associating each feature to the type of applications it has been extracted
from, i.e., malware or goodware (§2.2). Finally, as the second phase, the model
is embedded in the IntelliAV Android application that will provide a risk score
for each application on the device (§2.3).
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2.1 Feature Extraction

The feature extraction step is the core phase for any learning-based system.
Various kinds of features have been proposed for Android malware detection by
the security community, such as permissions, APIs, API dependencies, Intents,
statistical features, etc. (see Section5 for a detailed discussion on the issue of
feature extraction for Android malware detection). However, some sets of fea-
tures related to basic Android behaviors, like permissions, APIs, and Intents,
usually allow achieving reasonable detection results, with the aim to alert for
the presence of probably harmful applications [8, 36]. Extracting this set of fea-
tures is also feasible on mobile devices because they do not need deep static
analysis, thus requiring a limited computational effort. Therefore, with the aim
of extracting a set of efficient and effective features for IntelliAV, we resorted
to the following four sets of features: permissions, Intent Filters, statistical fea-
tures based on the ‘manifest ’ of Android applications, and the APIs, which
are extracted from the dex code. Therefore, to construct the feature vector, we
considered all the permissions and intent-filters that are used by the samples
included in the training set. In addition, four statistical features from appli-
cation’s components such as the total number of activities, services, broadcast
receivers, and content providers are added to the feature vector as they can re-
veal the amount of abilities each application has. For instance, the number of
activities in many malware categories is usually fewer than the number of ac-
tivities available in benign applications, except for the case of malware that is
built by repackaging benign applications. Moreover, we manually selected a set
of 179 APIs as features and included in the feature vector. The selected APIs are
those that reveal some particular characteristics of application that are known
to be peculiar to either goodware or malware. For instance, the invoke API
from the java.lang.reflect.Method class shows whether an application uses
reflection or not. Note that permissions and APIs are coded as binary features,
which means that their value is either one or zero depending on the feature being
or not present in the application. By contrast, intent-filters are integer-valued
features, as they represent the number of times an intent-filters is declared in
the manifest. Considering this count for intent-filter features makes them more
meaningful rather than simply considering their presence or not in the applica-
tion. Similarly, the application’s components are represented as integer valued
features, as we count the number of components for each different type (e.g.,
activities, services, etc.). On the other hand, if we considered the number of per-
missions, we would have ended up with useless information, as each permission
needs to be declared just once in the manifest. The same reasoning motivates
the use of binary feature to represent API usage. The main reason is that al-
though it is possible to get the count of the usage of an API in an application,
the procedure would increase the processing time without producing more use-
ful information, so that we ignored it. In total, the feature vector contains 3955
features. To avoid overfitting, and make IntelliAV faster on the mobile device,
we decided to reduce the number of feature by selecting the 1000 meaningful
features thorough a feature selection procedure (see Section 2.2). The final set
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Table 1: Features used in IntelliAV.
Category Number of Features Type

Meta-Data
Permissions 322 Binary
Intent Filters 503 Count
Statistical 4 Count

Dex Code
APIs 171 Binary

consists of 322 features related to permissions, 503 features related to Intent
filters, 4 statistical features from components (e.g., count of activities), and 171
features related to API usage (see Table 1).

2.2 Model Construction

To discriminate malware from benign applications, we need to rely on binary
classification algorithms. Over the past years, a large number of classification
techniques have been proposed by the scientific community, and the choice of
the most appropriate classifier for a given task is often guided by previous ex-
perience in different domains, as well as by trial-and-error procedures. However,
among all of the existing classifiers, Random Forest classifier [14] have shown
high performances in a variety of tasks [19]. Random Forests algorithm is an
ensemble learning method in which a number of decision trees are constructed
at training time by randomly selecting the features used by each decision tree,
and it outputs the class of an instance at testing time based on the collective
decision of the ensemble. As far as the Random forest model is an ensemble clas-
sifier, it often achieves better results than a single classifier. The main reason
of achieving good results by Random Forests is that ensemble methods reduce
the variance in performances of a number of decision trees, which in turn are
complex models with low bias. So, the final model exhibits low bias, and low
variance, which makes the model more robust against both the underfitting and
overfitting problems [13].

To be able to train our model offline, as well as to test it on Android devices,
we built IntelliAV on top of TensorFlow [2]. More specifically, we employ an
implementation of Random Forests in TensorFlow, called TensorForest [16]. Ten-
sorFlow is an open source library for machine learning, which was released by
Google in November 2015. To the best of our knowledge, IntelliAV is the first
anti-malware tool that has proposed employing TensorFlow. The TensorFlow
model is highly portable as it supports the vast majority of platforms such as
Linux, Mac OS, Windows, and mobile computing platforms including Android
and iOS. TensorFlow computations are expressed as data flow graphs. Nodes in
the graph represent mathematical operations, while the graph edges represent
the multidimensional data arrays (tensors) communicating between them.

As mentioned in the previous subsection, to simplify the learning task and
reduce the risk of the so-called overfitting problem, i.e., to avoid that the model
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fits the training set but exhibits a low generalization capability with respect to
novel unknown samples, we exploited feature selection that reduced the feature
set size by removing irrelevant and noisy features . In particular, as done in [4],
we computed the so-called mean decrease impurity score for each feature, and
retained those features which have been assigned the highest scores. Note that
the mean decrease impurity technique is often referred to as the Gini impurity,
or information gain criterion.

2.3 On-Device Testing

As we mentioned before, TensorFlow eases the task of using machine learning
models on mobile devices. So, we embedded in IntelliAV the trained model
obtained according to the procedure described in Section 2.2. The size of the
TensorFlow models depends on the complexity of the model. For instance, if the
number of trees in TensorForest increases, consequently the size of the model
increases as well. The size of IntelliAV model that we obtained according to the
above procedure and that we transferred to the device, is about 14.1MB. Having
said that, when it is embedded into the apk, the model is compressed and the
total size of the model becomes just 3.3MB. Whenever an application needs to be
tested, first, IntelliAV extracts the features from the application on the device,
then it loads the model, and finally it feeds the model by the extracted features
to get the application’s risk score. The model provides a likelihood value between
0 and 1, denoting the degree of maliciousness of the application, that we scale to
a percentage that we called risk score, to make it more understandable for the
end user. We empirically provide the following guideline for interpreting the risk
score. If the risk score is lower than 40%, the risk is low and we suggest to consider
the application as being benign. If the risk score is between 40% and 50%, then
the application should be removed if the user isn’t sure about the trustworthiness
of the application. Finally, the application has to be removed if the risk score
is higher than 50%. These thresholds have been set after testing the system
on a set containing different applications. We deployed IntelliAV so that two
main abilities are provided, as shown in figure 2. IntelliAV can scan all of the
installed applications on the device, and verify their risk scores (Quick Scan). In
addition, when a user downloads an apk, it can be analyzed by IntelliAV before
installation to check the related risk score, and take the appropriate decision
(Custom Scan). To access the contents of an application’s package on the external
storage, IntelliAV needs the READ EXTERNAL STORAGE permission. To access
the contents of the packages of installed applications, IntelliAV needs to read
base.apk in a sub-directory with a name corresponding to the package name,
which is located in /data/app/ directory. As far as the permission of base.apk
file is -rw-r--r--, which means every user can read the content of this file,
IntelliAV doesn’t need neither any permission, nor a rooted device to evaluate
the installed applications.
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(a) Scan installed applications (b) Scan an APK

Fig. 2: IntelliAV abilities.

3 Experimental Analysis

In this section, we address the following research questions:

– Is IntelliAV able to detect new and unseen malware (§3.2)?
– Are the performances of IntelliAV comparable to the ones of popular mo-

bile anti-malware products, although IntelliAV is completely based on ma-
chine learning techniques (§3.2)?

– Which is the overhead of IntelliAV on real devices (§3.3)?

Before addressing these questions, we discuss the data used, and the experimental
settings of our evaluation (§3.1).

3.1 Experimental Setup

To evaluate IntelliAV, we have collected 19,722 applications, divided into 10,058
benign and 9,664 malicious applications from VirusTotal[39]. When gathering
malicious applications, we considered their diversity, by including samples be-
longing to different categories, such as Adware, Ransomware [6, 28], GCM mal-
ware [3], etc. All of the gathered samples have been first seen by VirusTotal
between January 2011 and December 2016. The whole process of feature extrac-
tion and model construction was carried out on a laptop with a 2 GHz quad-core
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processor and 8GB of memory. Two metrics that are used for evaluating the per-
formance of our approach are the False Positive Rate (FPR) and the True Pos-
itive Rate (TPR). FPR is the percentage of goodware samples misclassified as
badware, while TPR is the fraction of correctly-detected badware samples (also
known as detection rate). A Receiver-Operating-Characteristic (ROC) curve re-
ports TPR against FPR for all possible model’s decision thresholds.

3.2 Results

To better understand the effectiveness of IntelliAV, we evaluate it in following
scenarios.

Cross Validation One might fit a model on the training set very well, so that
the model will perfectly classify all of the samples that are used during the
training phase. However, this might not provide the model with the general-
ization capability, and that’s why we evaluated the model by a cross-validation
procedure to find the best tuned parameters to be used for constructing the
final model as a trade-off between correct detection and generalization capabil-
ity. Consequently, we evaluated IntelliAV on the set of applications described
in Section 3.1 through a 5-fold cross validation, to provide statistically-sound
results. In this validation technique, samples are divided into 5 groups, called
folds, with almost equal sizes. The prediction model is built using 4 folds, and
then it is tested on the final remaining fold. The procedure is repeated 5 times
on different folds to be sure that each data point is evaluated exactly once.
We repeated the procedure by running the Random Forest algorithm multiple
times to obtain the most appropriate parameters. The ROC of the best fitted
model is shown in Figure 3. The values of FPR and TPR are respectively 4.2%
and 92.5% which is quite acceptable although the set of considered features is
relatively small, namely 1000 features.

Evaluation on the training set To verify the effectiveness of the tuned pa-
rameters based on the cross-validation procedure explained in Section 3.2, we
tested the model on all the samples used for training. Table 2 shows the results
on the training set. It shows that IntelliAV misclassified just a few training
samples. This shows how the model is carefully fitted on the training set, so
that is able to correctly classify almost all of the training samples with very high
accuracy, while it avoids being overfitted, and thus can detect unseen malware
with a high accuracy as well (see the following).

Evaluation on new Malware We then tested the system on a set made up of
2311 malware samples, and 2898 benign applications, that have been first seen by
VirusTotal between January and March of 2017. We considered an application
as being malicious when it was labeled as malware by at least 5 of the tools used
by VirusTotal. This set of test samples contains randomly selected applications
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Fig. 3: ROC curve of TensorForest (5-fold cross validation). FPR and TPR are
respectively 4.2% and 92.5%.

Table 2: Training on the set of samples explained in Section 3.1 and testing on
the same set. GT refers to the Ground-truth of samples.

Train Test

#Samples GT (#Samples)
Classified as

Malicious Benign

19,722

Malicious (9,664) 9,640 24
(TPR = 99.75%)

Benign (10,058) 7 10,051
(FPR = 0.07%)

that were newer than the samples in the training set, and thus they were not
part of the training set.

Test results are shown in Table 3. The detection rate on the test set is 71.96%,
which is quite good if compared with the performances of other Android anti-
malware solutions that are available in the market, as shown in Section 3.2.
Moreover, the false positive rate is around 7.52%, which is acceptable if we con-
sider that an individual user typically installs a few dozen applications, and thus
it might receive a false alert from time to time. This casual alert allows the user
that the application has some characteristics similar to badware, and so it can
be used only if the source is trusted. It is also worth noting that our classification
of false positives is related to the classification provided by VirusTotal at the
time of writing. It is not unlikely that some of these applications might turn out
to be classified as malware by other anti-malware tools in the near future, as we
have already noticed during the experiments. However, due to the small time
frame, we haven’t the possibility to collect enough examples to provide reliable
statistics, as the samples used for the test phase are quite recent. We expect in
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Table 3: Training on the set of samples described in Section 3.1, and testing on
new samples in 2017. GT refers to the Ground-truth of samples.

Train Test

#Samples GT (#Samples)
Classified as

Malicious Benign

19,722

Malicious (2311) 1,663 648
(TPR = 71.96%)

Benign (2898) 218 2,680
(FPR = 7.52%)

a future work to show how many applications were correctly predicted as being
malicious before their signatures were created. However, our experience suggests
that even if the application is benign but labeled as being potentially risky by
IntelliAV, then the user might look for less risky alternatives applications in
Google Play [37]. In fact, we believe that it is better that people is aware of some
applications that might be potentially harmful, even if it turns out not to be so,
rather than missing some real threats.

Challenging Modern AV vendors Based on the recent reports by Virustotal
[39], there is an increase in the number of anti-malware developers that resort to
machine learning approaches for malware detection. However, the main focus of
these products appears to be on desktop malware, especially Windows PE mal-
ware. Based on the available public information, there are just a few evidences of
two anti-malware developers that use machine learning approaches for Android
malware detection, namely Symantec[18] and TrustLook [38]. Their products
are installed by more than 10 million users. While it is not clear to us how
these products use machine learning, we considered them as two candidates for
comparison with IntelliAV. To provide a sound comparison, in addition to the
Symantec and Trustlook products, we selected three other Android anti-malware
products, i.e., AVG, Avast, and Qihoo 360, that are the most popular among
Android users as they have been installed more than 100 million times.2 We
compared the performances of IntelliAV on the test dataset (see Section 3.2)
with the ones attained by these five popular Android anti-malware As shown
in Figure 4, IntelliAV performs slightly better than two of the products used
for comparison, while it outperforms the other three. As we gathered the la-
bel assigned by anti-malware products to the test samples at most two months
after they are first seen in VirusTotal, the comparison could be more interest-
ing if we had the label given to samples at the time they are first seen in the
wild. As an additional check, we performed a comparison in detection perfor-
mance by considering a set of very recent malware reported by four vendors,
namely Check Point, Fortinet, Lookout, and Google (see Table 4). The good
performances of IntelliAV compared to the ones of other products, shows that

2 http://www.androidrank.org/
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Fig. 4: Comparison between the detection rate of IntelliAV with top five Android
anti-malware. We didn’t put the name of vendors as we don’t aim to rank other
anti-malware products.

the selected lightweight features and training procedure allows attaining very
good performances, especially if we consider that 21 of the considered samples
were first seen before 2017, so it is expected that they can be detected by anti-
malware tools either by signatures, or by the generalization capability provided
by their machine learning engines. If we have a close look at the two misclassi-
fied samples by IntelliAV (Table 4), we can see that the associated risk scores
are quite close to the decision threshold that we set at training time. The main
reasons for the misclassification of these two samples can be related to the use
of the runtime.exec API to run some shell commands, and to the presence of
native-code that is used to hide some of their malicious behaviors.

3.3 IntelliAV Overhead on Device

To better understand the efficiency of IntelliAV, we show the time consump-
tion for feature extraction as well as classification of some medium/large-sized
applications on three devices with different technical specifications. The three
mobile devices used for the reported experiments are a Samsung Galaxy S6 Edge
(released in April, 2015), a Huawei P8 Lite (released in May, 2015), and an LG
D280 L65 (released in June, 2014), which respectively have 3GB, 2GB, and 1GB
of RAM. In addition, we computed the time required on the Android Emulator
that is dispatched along with Android Studio. The time is simply computed by
specifying a timer before starting the feature extraction procedure, that stops
when the features from both the manifest and the dex code are extracted. For
classification, the reported time refers to the interval between the feature vector
is passed to the model, to the production of the risk score. The time required to
load the model is negligible, and so we are not reporting it for the sake of clarity.
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Table 4: Point to point comparison of IntelliAV and three anti-malware ven-
dors on some recent and well-known malware reported by Check Point, Fortinet,
Lookout, and Google from January to April of 2017. These samples were evalu-
ated on an Android emulator. The time column refers to the required time for
performing both feature extraction and classification on the emulator.

IntelliAV 2017 check
# MD5 Size Unseen time(s) Risk Score AV5 AV1 AV3 VT 1st check

Reported malware by Checkpoint [32, 31, 33]
1 60806c69e0f4643609dcdf127c8e7ef5 66 KB ✓ 0.38 83% (✓) (✓) (✓) (✓) 2016-01 (02/56)
2 fcbb243294bb87b039f113352a8db158 12.4 MB ✓ 0.40 37% (✗) (✗) (✓) (✗) 2016-03 (19/55)
3 4e91ff9ac7e3e349b5b9fe36fb505cb4 48 KB ✓ 0.37 93% (✓) (✓) (✓) (✓) 2016-03 (13/57)
4 944850ee0b7fc774c055a2233478bb0f 842 KB ✓ 0.51 98% (✓) (✗) (✗) (✗) 2014-02 (00/48)
5 629da296cba945662e436bbe10a5cdaa 3.7 MB ✓ 0.69 92% (✓) (✓) (✓) (✗) 2014-07 (13/51)
6 1aac52b7d55f4c1c03c85ed067bf69d9 3.5 MB ✓ 0.75 94% (✓) (✓) (✓) (✓) 2013-11 (23/47)
7 379ec59048488fdb74376c4ffa00d1be 2.2 MB ✓ 0.57 79% (✓) (✓) (✓) (✓) 2015-09 (26/56)
8 d5f5480a7b29ffd51c718b63d1ffa165 9.1 MB ✓ 0.82 89% (✓) (✗) (✓) (✗) 2015-12 (03/55)
9 4d904a24f8f4c52726eb340b329731dd 13.2 MB ✓ 0.95 72% (✓) (✗) (✓) (✗) 2014-08 (11/51)
10 59b62f8bc982b31d5e0411c74dbe0897 2.5 MB ✓ 0.45 83% (✓) (✓) (✓) (✓) 2016-01 (31/55)
11 9ed38abb335f0101f55ad20bde8468dc 8.1 MB ✓ 0.77 67% (✓) (✗) (✓) (✗) 2016-02 (16/55)
12 4a3a7b03c0d0460ed8c5beff5c20683c 575 KB ✓ 0.42 68% (✓) (✓) (✓) (✓) 2017-03 (00/55)
13 660638f5212ef61891090200c354a6d5 32.7 MB ✓ 1.13 96% (✓) (✓) (✓) (✗) 2016-07 (13/55)
14 f48122e9f4333ba3bb77fac869043420 349 KB ✓ 0.40 81% (✓) (✓) (✓) (✗) 2015-09 (04/57)
15 0e987ba8da76f93e8e541150d08e2045 12.8 MB ✓ 0.98 88% (✓) (✗) (✓) (✗) 2017-03 (07/60)
16 51c328fccf1a8b4925054136ccdb1cda 874 KB ✓ 0.44 83% (✓) (✗) (✗) (✓) 2014-08 (05/53)
17 3f188b9aa8f739ee0ed572992a21b118 1.57 MB ✓ 0.48 89% (✓) (✓) (✓) (✓) 2014-04 (24/51)
18 7fff1e78089eb387b6adfa595385b2c9 13.4 MB ✓ 0.52 63% (✓) (✓) (✓) (✓) 2015-03 (02/57)

19 2b83bd1d97eb911e9d53765edb5ea79e 2.3 MB ✓ 0.43 77% (✓) (✗) (✗) (✓) 2017-01 (16/58)

20 48ff097022ea7886b53f80edf2972033 1.3 MB ✓ 0.47 63% (✓) (✗) (✗) (✓) 2017-03 (28/59)
21 a3836485ecac78f576e1753269350824 14.6 MB ✓ 0.84 38% (✗) (✗) (✗) (✗) 2016-12 (14/57)
22 a4e75471dbf0bb0d3ec26d854cb7fe12 14.1 MB ✓ 0.72 62% (✓) (✗) (✗) (✓) 2016-12 (10/56)
23 7253e0a13d2d1db1547e9984a4ce7abd 1.3 MB ✓ 0.57 63% (✓) (✗) (✗) (✗) 2017-03 (26/59)

Reported malware by Fortinet [22, 23, 20, 21]
24 193058ae838161ee4735a9172ebc25ec 1.4 MB ✓ 0.56 89% (✓) (✗) (✓) (✗) 2017-01 (05/24)

25 f479f2a29354a8b889cb529a2ee2c1b4 1.1 MB ✓ 0.35 61% (✓) (✗) (✗) (✓) 2017-03 (12/59)

26 cad94ac28640c771b1d2de5e786dc352 776 KB ✓ 0.37 96% (✓) (✗) (✓) (✓) 2016-11 (20/56)

27 40507254b8156de817f02c0ed111e99f 0.2 MB ✓ 0.37 83% (✓) (✓) (✓) (✓) 2016-11 (08/57)

Reported malware by Lookout and Google [27, 24]
28 cc9517aafb58279091ac17533293edc1 57 KB ✓ 0.63 89% (✓) (✗) (✗) (✗) 2016-02 (00/53)
29 7c3ad8fec33465fed6563bbfabb5b13d 252 KB ✓ 0.37 82% (✓) (✗) (✗) (✓) 2017-04 (03/60)
30 3a69bfbe5bc83c4df938177e05cd7c7c 19 KB ✓ 0.36 81% (✓) (✗) (✗) (✗) 2017-04 (01/60)

28
30

12
30

19
30

16
30
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Table 5: Overhead of IntelliAV on different devices for very large applications.
F.E. refers to feature extraction time and C. refers to classification time. The
number in parenthesis shows the RAM size of the device.

Galaxy S6 Edge Huawei P8 Lite LG D280 L65 Emulator
Marshmallow (3GB) Lollipop (2GB) KitKat (1GB) Marshmallow (1.5GB)

App APK Size (MB) F.E. (s) C. (s) F.E. (s) C. (s) F.E. (s) C. (s) F.E. (s) C. (s)

Google Trips 8.19 0.67 0.003 0.82 0.005 3.86 0.012 0.43 0.001
LinkedIn Pulse 12.9 1.28 0.003 1.14 0.005 4.40 0.012 0.55 0.001
Stack Exchange 8.15 1.27 0.004 1.27 0.006 5.13 0.014 0.60 0.001

Telegram 12.41 1.36 0.005 1.74 0.007 5.52 0.016 0.69 0.002
WhatsApp 27.97 2.29 0.006 3.22 0.008 12.91 0.018 1.10 0.002
SoundCloud 33.14 2.67 0.006 2.84 0.008 11.83 0.018 1.14 0.002

Spotify 34.65 2.51 0.006 3.03 0.008 13.67 0.018 1.22 0.002
Twitter 31.77 4.53 0.004 5.95 0.006 24.46 0.016 2.26 0.002
LinkedIn 40.39 4.67 0.004 4.69 0.006 16.73 0.016 2.40 0.001
Airbnb 54.34 8.24 0.006 8.79 0.008 35.71 0.018 4.23 0.002

Messenger 59.43 5.85 0.011 7.94 0.013 19.13 0.028 3.35 0.004
Uber 37.26 6.66 0.004 7.64 0.006 43.88 0.016 4.29 0.002

Average 30.05 3.50 0.005 4.08 0.007 16.43 0.016 1.86 0.002

As shown in Table 5, the time required to analyze even large applications is less
than 10 seconds, which makes IntelliAV practical and reasonable as the num-
ber of installed applications on each device is not too large. The classification
part is performed in native code, that provides a fast execution. As expected,
it can be noted that the largest fraction of the time required by IntelliAV is
spent for feature extraction, especially for the extraction of the API features.
This figure is even worse in the case an application is made up of multiple dex
files, because the extraction of API features is much slower. For example, the
Uber app is made up of 10 dex files, so that searching for a specific API requires
much more time compared to applications having just one dex file.

4 Limitations

As far as IntelliAV is based on static analysis, it inherits some of the well-
known limitations of static analysis approaches. For instance, we didn’t address
reflection and dynamic code loading techniques that are used to hide the mali-
cious code. Moreover, in the proposed implementation, IntelliAV doesn’t han-
dle those malware samples that use JavaScript to perform an attack. However,
the most common evasion techniques are based on obfuscation of names, and
the use of downloaders that download the malicious payload at run-time. The
reported test results show that IntelliAV is robust against these common obfus-
cation techniques as it doesn’t rely on features extracted from strings or names
of classes or methods. In addition, as far as IntelliAV runs on the device, it can
track all downloaded and installed apps, scanning them on the fly. Consequently,
it can be more robust compared to off-device systems. In addition, we are aware
that the system can be a victim of evasion techniques against the learning ap-
proach, such as mimicry attacks that let an attacker inject some data to the app
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so that its features resembles the ones of benign apps [12]. Consequently, more
methodological and experimental analysis will be needed to make a quantita-
tive evaluation of the robustness of IntelliAV in an adversarial environment,
to provide the system with the required hardening. Nonetheless, we believe that
the good performances of the proposed system is a good starting point for fur-
ther development. Moreover, employing the multiple classifier system approach,
considering a larger number of semantic features, as well as performing a fine
grained classifier parameter tuning, can provide a degree of robustness against
adversarial attacks against the machine learning engine.

5 Related works

At present, a large number of papers addressed the topic of detecting Android
malware by proposing different systems. The proposed approaches can be di-
vided into two main categories, namely offline malware detection, and on-device
malware detection. While a complete overview is outside of the scope of this
paper, and we suggest the interested reader to resort to one of the good survey
that have been recently published (e.g., the recent taxonomy proposed in [34]),
we provide here some of the more closely related papers that rely on static anal-
ysis technique. We omit reviewing the malware classification systems based on
dynamic analysis [17, 5, 15] as they have their own benefits and pitfalls. More-
over, as we are dealing with an on-device tool, it is not officially possible that a
process access system calls of other process without root privileges, which makes
the dynamic analysis approaches almost impractical on the end user device.

Offline Malware Detection. Usually, offline testing has no hard computa-
tional constraints, thanks to the availability of computational power compared
to the one available on mobile devices, thus allowing for sophisticated applica-
tion analysis. Hence, a number of approaches have been proposed to construct
complex models capable of detecting malware with a very high accuracy. Some
of the prominent approaches that focus on building a model and offline testing
of Android applications by static analysis techniques are briefly summarized.
MudFlow [11], AppAudit [40], and DroidSIFT [42] rely on information flow anal-
ysis[9], while DroidMiner [41], and MaMaDroid [29] use API sequences to detect
malware. The use of complex features such as information flows and API se-
quences, makes these approach more difficult to be carried out on the device.
Lighter approaches have been proposed, such as Drebin [8], DroidAPIMiner [1],
and DroidSieve [36] that make use of meta-data as well as syntactic features,
and that allow for their porting to on-device applications.

On-Device Malware Detection. Based on the best of our knowledge, there
are a few approaches in the research community that used machine learning for
on-device malware detection, and none of them is publicly available for perfor-
mance comparison. One that of the most cited research works on this topic is
Drebin, and while the paper shows some screenshots of the UI, the application
itself is not available. Among the commercial Android anti-malware tools, two
of them claim to use machine learning techniques, as evaluated and reported
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in Section 3.2, but the real use of machine learning by these tools is blurred.
Finally, Qualcomm recently announced the development of a machine learning
tool for on-device mobile phone security, but the details of the system, as well
as its performances are not available [26].

As an overall comparison with the previous approaches, we believe that
IntelliAV provides a first practical example of an on-device anti-malware solu-
tion for Android systems, completely based on machine learning techniques, that
can move a step toward having an advanced security tool on mobile devices.

6 Conclusions and future work

In this paper, we introduced a practical learning-based anti-malware tool for
Android systems on top of TensorFlow, in which both the efficiency and the
effectiveness are considered. We showed that through the careful selection of a
set of lightweight features, and a solid training phase comprising both a robust
classification model, and a representative set of training samples, an efficient
and effective tool can be deployed on Android mobile device. Our tool will be
freely available so that it can help the end user to provide easy protection on
the device, as well as allowing researchers to better explore the idea of having
intelligent security systems on mobile devices. As a future plan, we aim to address
the limitations of IntelliAV, to improve its robustness against attacks on the
machine learning engine, while keeping the efficiency intact.
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