A. , S. Dobson, A. Hosseini, P. Hudson, P. Pascual et al., Seasonality and the dynamics of infectious diseases, Ecology letters, vol.9, issue.4, pp.467-484, 2006.

N. Baca¨erbaca¨, . M. Baca¨er, and . Gomes, On the Final Size of Epidemics with Seasonality, Bulletin of Mathematical Biology, vol.20, issue.8, pp.1954-1966, 2009.
DOI : 10.3934/mbe.2007.4.159

B. Baca¨er, N. Guernaoui, and S. , The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol, vol.53, p.421436, 2006.

F. Brauer and C. Castillo-chavez, Mathematical models in population biology and epidemiology, 2001.

B. , N. Tatem, A. J. Ferrari, M. J. Grais, R. F. Djibo et al., Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery, Science, issue.6061, pp.334-1424, 2011.

C. Braga, C. F. Luna, C. M. Martelli, W. Viera, M. T. Souza et al., T: MARQUES, Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Acta Tropica, vol.113, issue.3, 2010.

C. , B. Hales, and S. , Infectious diseases, climate influences, and nonstationarity, PLoS Med, vol.3, issue.8, p.328, 2006.

D. , J. Plotkin, J. B. Levin, S. A. Earn, and D. J. , Dynamical resonance can account for seasonality of influenza epidemics, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol.101, issue.48, pp.16915-16916, 2004.

E. , L. For, . Industrial, . Applied, P. Philadelphia et al., Mathematical Models in Biology Seasonality of infectious diseases, ANNU. REV. PUBLIC HEALTH, vol.28, pp.127-143, 2005.

H. H. , A. R. Andreasen-v, . Bansal-s, A. D. De, . Dye-c et al., Modeling infectious disease dynamics in the complex landscape of global health, SCIENCE, issue.6227, pp.347-4339, 2015.

J. , K. E. Patel, N. G. Levy, M. A. Storeygard, A. Balk et al., Global trends in emerging infectious diseases, NATURE, vol.451, pp.990-993, 2008.

K. G. And and . L. Stone, Attack rates of seasonal epidemics, MATHEMATICAL BIO- SCIENCES, vol.235, pp.56-65, 2012.

K. Wo, M. A. The, . So-ciety, . Of, . London-a: et al., A contribution to the mathematical theory of epidemics. 1); A contribution to the mathematical theory of epidemics, PROC. R. SOC. EDINB.IMPRESSED AT BULL. MATH. BIOL. PROCEEDINGS OF THE ROYAL SOCIETY, vol.115, issue.53772, pp.700-721, 1927.

M. , P. P. King, A. A. Yunus, M. Faruque, A. S. Pascual et al., Differential and enhanced response to climate forcing in diarrheal disease due to rotavirus across a megacity of the developing world, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, 2016.

F. Mazenc, M. Malisoff, and O. Bernard, A Simplified Design for Strict Lyapunov Functions Under Matrosov Conditions, IEEE Transactions on Automatic Control, vol.54, issue.1, pp.177-183, 2009.
DOI : 10.1109/TAC.2008.2008353

URL : https://hal.archives-ouvertes.fr/hal-00858530

M. , C. J. Bjørnstad, O. N. Grenfell, B. T. Andreasen, and V. , Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen, PROCEED- INGS OF THE ROYAL SOCIETY OF LONDON B: BIOLOGICAL SCIENCES, pp.276-4111, 1676.

P. , L. Equations, . Dynamical, and . Systems, DIFFERENTIAL, TEXTS IN APPLIED MATHEMATICS, vol.7, 1991.

P. , V. E. Viboud, C. Alonso, W. J. Wilcox, T. Metcalf et al., Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States, PLOS PATHOG, vol.11, issue.1, p.1004591, 2015.

J. Ponciano and C. Ma, First Principles Modeling of Nonlinear Incidence Rates in Seasonal Epidemics, PLoS Computational Biology, vol.3, issue.2, p.1001079, 2011.
DOI : 10.1371/journal.pcbi.1001079.s002

S. , L. Coombs, D. And, and S. Boatto, SIR-Network model and its application to Dengue fever, SIAM J. APPL. MATH, vol.75, issue.6, pp.2581-2609, 2015.

S. , L. Olinky, R. Huppert, and A. , Seasonal dynamics of recurrent epidemics, pp.533-536, 2007.

T. Guerrero, A. Coppe, R. Ufrj, and M. De-janeiro, 2013) Modelo SIR em rede e com parâmetro de infeçinfeç?infeção que depende periódicamente do tempo

W. and W. Q. Zhao-x, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, J. DYN. DIFF. EQUATIONS, vol.20, p.699717, 2008.