G. Antipov, M. Baccouche, S. Berrani, and J. Dugelay, Apparent age estimation from face images combining general and childrenspecialized deep learning models, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2016.
DOI : 10.1109/cvprw.2016.105

URL : https://hal.archives-ouvertes.fr/hal-01380587

A. Bastanfard, M. Nik, and M. Dehshibi, Iranian Face Database with age, pose and expression, 2007 International Conference on Machine Vision, pp.50-55, 2007.
DOI : 10.1109/ICMV.2007.4469272

D. M. Burt and D. I. Perrett, Perception of Age in Adult Caucasian Male Faces: Computer Graphic Manipulation of Shape and Colour Information, Proceedings of the Royal Society B: Biological Sciences, vol.259, issue.1355, pp.137-143, 1355.
DOI : 10.1098/rspb.1995.0021

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, p.27, 2011.
DOI : 10.1145/1961189.1961199

K. Chen, S. Gong, T. Xiang, and C. C. Loy, Cumulative Attribute Space for Age and Crowd Density Estimation, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2467-2474, 2013.
DOI : 10.1109/CVPR.2013.319

E. Eidinger, R. Enbar, and T. Hassner, Age and gender estimation of unfiltered faces. Information Forensics and Security, IEEE Transactions on, vol.9, issue.12, pp.2170-2179, 2014.

S. Escalera, J. Fabian, P. Pardo, X. Bar, J. Gonzlez et al., ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp.243-251, 2015.
DOI : 10.1109/ICCVW.2015.40

URL : https://hal.archives-ouvertes.fr/hal-01381160

S. Escalera, M. Torres-torres, B. Martinez, X. Baro, H. Jair-escalante et al., Chalearn looking at people and faces of the world: Face analysis workshop and challenge 2016, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381152

Y. Fu, G. Guo, and T. Huang, Age synthesis and estimation via faces: A survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.32, issue.11, pp.1955-1976, 2010.

Y. Fu and T. Huang, Human age estimation with regression on discriminative aging manifold. Multimedia, IEEE Transactions on, vol.10, issue.4, pp.578-584, 2008.
DOI : 10.1109/tmm.2008.921847

A. Gallagher and T. Chen, Understanding images of groups of people, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206828

X. Geng, C. Yin, and Z. Zhou, Facial Age Estimation by Learning from Label Distributions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.10, pp.2401-2412, 2013.
DOI : 10.1109/TPAMI.2013.51

H. Han, C. Otto, and A. K. Jain, Age estimation from face images: Human vs. machine performance, 2013 International Conference on Biometrics (ICB), pp.1-8, 2013.
DOI : 10.1109/ICB.2013.6613022

URL : http://biometrics.cse.msu.edu/Publications/Face/HanOttoJain_AgeEstimationFaceImages_HumanvsMachinePerformance_ICB13.pdf

Z. Huo, X. Yang, C. Xing, Y. Zhou, P. Hou et al., Deep age distribution learning for apparent age estimation Human age estimation using multi-class svm, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops Ubiquitous Robots and Ambient Intelligence (URAI), 2015 12th International Conference on, pp.370-372, 2015.

Z. Kuang, C. Huang, and W. Zhang, Deeply Learned Rich Coding for Cross-Dataset Facial Age Estimation, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), 2015.
DOI : 10.1109/ICCVW.2015.52

A. Lanitis, FG-NET Aging Data Base, 2002.

A. Lanitis, C. Taylor, and T. Cootes, Toward automatic simulation of aging effects on face images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.4, pp.442-455, 2002.
DOI : 10.1109/34.993553

G. Levi and T. Hassner, Age and gender classification using convolutional neural networks, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015.
DOI : 10.1109/CVPRW.2015.7301352

C. Li, Q. Liu, J. Liu, and H. Lu, Learning ordinal discriminative features for age estimation, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp.2570-2577, 2012.

T. Liu, Z. Lei, J. Wan, and S. Z. Li, DFDnet: Discriminant Face Descriptor Network for Facial Age Estimation, Chinese Conference on Biometric Recognition, pp.649-658, 2015.
DOI : 10.1007/978-3-319-25417-3_76

X. Liu, S. Li, M. Kan, J. Zhang, S. Wu et al., AgeNet: Deeply Learned Regressor and Classifier for Robust Apparent Age Estimation, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), 2015.
DOI : 10.1109/ICCVW.2015.42

M. Mathias, R. Benenson, M. Pedersoli, and L. Van-gool, Face Detection without Bells and Whistles, Computer Vision?ECCV 2014, pp.720-735, 2014.
DOI : 10.1007/978-3-319-10593-2_47

M. Minear and D. C. Park, A lifespan database of adult facial stimuli, Behavior Research Methods, Instruments, & Computers, vol.14, issue.4, pp.630-633, 2004.
DOI : 10.1037/0012-1649.14.4.443

B. Ni, Z. Song, and S. Yan, Web image mining towards universal age estimator, Proceedings of the seventeen ACM international conference on Multimedia, MM '09, pp.85-94, 2009.
DOI : 10.1145/1631272.1631287

URL : http://www.lv-nus.org/papers/2009/2009_mm_age.pdf

O. M. Parkhi, A. Vedaldi, and A. Zisserman, Deep Face Recognition, Procedings of the British Machine Vision Conference 2015, 2015.
DOI : 10.5244/C.29.41

P. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, The FERET database and evaluation procedure for face-recognition algorithms, Image and Vision Computing, vol.16, issue.5, pp.295-306, 1998.
DOI : 10.1016/S0262-8856(97)00070-X

P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang et al., Overview of the Face Recognition Grand Challenge, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.947-954, 2005.
DOI : 10.1109/CVPR.2005.268

N. Ramanathan, R. Chellappa, and S. Biswas, Computational methods for modeling facial aging: A survey, Journal of Visual Languages & Computing, vol.20, issue.3, pp.131-144, 2009.
DOI : 10.1016/j.jvlc.2009.01.011

K. Ricanek and T. Tesafaye, MORPH: A Longitudinal Image Database of Normal Adult Age-Progression, 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp.341-345, 2006.
DOI : 10.1109/FGR.2006.78

R. Rothe, R. Timofte, and L. Van-gool, DEX: Deep EXpectation of Apparent Age from a Single Image, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), 2015.
DOI : 10.1109/ICCVW.2015.41

R. Rothe, R. Timofte, and L. Van-gool, Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks, International Journal of Computer Vision, vol.30, issue.6, 2016.
DOI : 10.1109/ICCVW.2015.43

T. Sim, S. Baker, and M. Bsat, The CMU Pose, Illumination, and Expression (PIE) database, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, pp.46-51, 2002.
DOI : 10.1109/AFGR.2002.1004130

URL : http://www.ri.cmu.edu/pub_files/pub3/sim_terence_2002_1/sim_terence_2002_1.ps.gz

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition. CoRR, abs, 1409.

. Softopia-japan-foundation, Human and Object Interaction Processing (HOIP) Face Database

P. Thukral, K. Mitra, and R. Chellappa, A hierarchical approach for human age estimation, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1529-1532, 2012.
DOI : 10.1109/ICASSP.2012.6288182

K. Ueki, T. Hayashida, and T. Kobayashi, Subspace-based Age-group Classification Using Facial Images under Various Lighting Conditions, 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp.43-48, 2006.
DOI : 10.1109/FGR.2006.102

M. Uricar, R. Timofte, R. Rothe, J. Matas, and L. Van-gool, Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2016.
DOI : 10.1109/CVPRW.2016.96

J. Zhang, S. Shan, M. Kan, and X. Chen, Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment, pp.1-16, 2014.
DOI : 10.1007/978-3-319-10605-2_1

Y. Zhu, Y. Li, G. Mu, and G. Guo, A Study on Apparent Age Estimation, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), 2015.
DOI : 10.1109/ICCVW.2015.43

. Fig, Sensitivity map for apparent, real, and residual age estimation. The predicted age of each model is shown below the images and differences shown where applicable. Best zoomed on screen. GT Apparent DEX Real DEX Residual DEX Real: 49, pp.37-46