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Analysis of a Model of Dormancy in Cancer as a State of
Coexistence Between Tumor and Healthy Stem Cells

W. Djema, C. Bonnet, J. Clairambault, F. Mazenc, P. Hirsch, F. Delhommeau.

Abstract—We study a mathematical model of co-
habitation of healthy and unhealthy stem cells, in
order to address some new biological concerns. In
short, we will investigate the existence and the stabil-
ity properties of a positive steady state of a model that
is well adapted to the study of dormancy of cancer
stem cells. Mathematically, we are concerned with the
analysis of a nonlinear retarded system coupled to a
nonlinear differential-difference system, in the time-
domain framework, via a Lyapunov-like method.
Key Words: Delay, Nonlinear, Exponential stability.

I. INTRODUCTION
Cells are the fundamental units that compose all living

organisms [23]. A cell that engages a division process
(also called cell-cycle, or proliferating phase) undergoes
successive transformations until dividing into two daugh-
ter cells during the so-called mitotic M-phase (which is
the last stage in the process of cell division [23]). Not all
the cells are involved in proliferation, but instead, most
of them are in a nondividing state, called quiescent or
resting phase. Until now, the regulatory mechanism that
triggers cell division and controls the committed cells, in
the series of physiological actions performed during the
cell-cycle, are not perfectly understood.

Stem cells (SCs) are undifferentiated cells which bring
together two fascinating abilities: they constantly ensure
their self-replenishment, and they are pluripotent, which
means that each SC can differentiate into one among a
wide range of specialized cells (see [23] for an overview
on the subject, and [15] for the typical case of blood
formation). Unfortunately, it happens that a pathological
population of cells, that does not necessarily, initially,
belong to the SCs family, acquires some self-renewing and
proliferating capabilities similar to those of SCs (see [10],
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[27]). These stem-like cells are very often out of control
and they can initiate (or regenerate) cancers, hence their
designation as cancer stem cells (CSCs). Very often,
CSCs are characterized by some unhealthy behaviors
such as an excessive proliferation and an abnormal loss
of differentiation faculties (this is observed, for instance,
in acute myeloid leukemia). Curiously, however, in some
rare cases CSCs do not overproliferate (i.e. cancer cells
exist but without causing an effective disease). Such
an unexpected behavior is referred to as «tumor dor-
mancy». Strong evidence that supports the existence
of tumor dormancy was established many years ago,
when some microscopic tumors were discovered during
autopsy examinations (see [25], [17], and the references
therein). Even during their dormant state, CSCs are
distinguishable through specific markers on their surfaces
(see [10] and the references therein). The most likely
explanations -retained for instance in [17]- of the fact
that a cell which expresses cancer markers can exist
in a dormancy state are: i) blood and nutrient supply
issues that prevent tumor growth (or at least delay its
clinical manifestation [24]), and, ii) vigilance of immune
system which, in some rare cases, suffices to stop tumor
development [31] (see the references in [24], [31], [17]).

Apart from the interpretation of tumor dormancy as
an observed natural human phenomenon (i.e. when CSCs
are maintained in a dormant state through the own body
capabilities), an interest is arising from a therapeutic
standpoint on how can we bring CSCs from a state
of overproliferation into a dormant one? Indeed, since
current treatments of cancer consist in delivering drugs
at their maximum doses (i.e. tolerable quantities, gen-
erally defined according to their side-effects and toxicity
thresholds) in order to totally eradicate declared tumors;
and on the other hand, knowing that non-fully eradicated
tumors will grow again, even more aggressively than the
initial ones [10], it appears that the option of maintaining
the tumor in dormancy is more promising than trying to
eradicate it [16]. At this juncture, the development of
a strong mathematical modeling framework appears as a
fundamental tool in order to apprehend tumor dormancy
as a biological mechanism, with the ultimate goal of
application in cancer therapy.

The mathematical model of interest in this paper is
a nonlinear time-delay system describing the behavior of
healthy SCs, coupled to a nonlinear differential-difference
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system describing CSCs. From a theoretical standpoint,
we know that no systematic method apply to analyze
the class of nonlinear time-delay systems that we are
interested in. In particular, using Lyapunov techniques,
the search of a suitable Lyapunov functional may some-
times become a headache. The difficulty is even increased
when the solutions are not uniformly continuous, since
invariance principles or Barbalat’s lemma cannot be
employed to prove asymptotic stability. In the light of
the above considerations, our contribution lies with the
Lyapunov-based approach that we propose in order to
address some biological concerns on CSCs dormancy.

II. A mathematical model of CSCs involving
coexistence with healthy SCs

Based on numerous studies on the modeling and the
analysis of blood cell dynamics1 (including notably the
works of Mackey et al. [29], [21], [12], and, Adimy et
al. [1], [2], and also the works of Marciniak-Czochra et
al. [22], Özbay et al. [26], Avila et al. [4], Fridman et
al. [14], Djema et al. [6], among others), we intend to
make a more general study that may cover other types
of SCs and CSCs in liquid or solid tumors. For that, we
revisit the model proposed in [7], which describes the
coexistence of healthy and mutated hematopoietic stem
cells,and is in fact valid for a wide panel of stem cells.
Thus, while retaining the original version of this system,
we slightly modify it in order to allow the existence
of tumor dormancy, that may occur for many types of
CSCs (e.g. breast cancer). More precisely, we focus on the
model illustrated in Figure 1, where healthy SCs (on the
left) are coupled to CSCs (on the right). Here CSCs are
characterized by an overproliferation ability represented
by the parameter K̃, as introduced recently in [1], and
previously envisaged in a different configuration in [4].
The initial model proposed in [7] (as well as the one
in [4]) cannot be directly used to model dormancy. To
overcome this issue we slightly modify the manner of
coupling healthy and mutated cells.

Fig. 1. Schematic representation of coupled model of healthy SCs
(on the left) and CSCs (unhealthy part on the right).

Now, we present very briefly the coupled model of
healthy SCs and CSCs. The interested reader is invited
to refer to [1] and [7] for more details. We consider that
SCs are in a resting phase (non-dividing state) or in a
proliferating phase (dividing state) as many other works

1Hematopoietic stem cells, which are at the root of
hematopoiesis, are certainly among the most well-studied types of
stem cells, in view of their great importance in the human body.

(for instance [21], [29] and [2]). The total density of rest-
ing healthy SCs at time t ≥ 0 is denoted by x(t), while
the total density of resting CSCs at time t ≥ 0 is denoted
by x̃(t). Since CSCs proliferate more than healthy SCs,
we consider that a rate K̃ ∈ (0, 1) of daughter CSCs will
return directly to the proliferating stage (i.e. we assume
that a sub-population of cells is permanently active in
the unhealthy proliferating phase [1]). This behavior is
not noticed for healthy SCs (Figure 1) where daughter
cells leave the proliferating compartment to join the
resting one, where they can stay until their death, can
differentiate or may start a new proliferating cycle. In
the unhealthy compartment, ũ(t) represents the density
of new proliferating cells at time t ≥ 0 (i.e. the density
of new proliferating cells, which start their division cycle
at time t ≥ 0). Moreover, we denote by δ (resp. δ̃) the
rate of resting cells which is lost either by differentiation
or natural cell death for healthy stem cells (resp. CSCs).
A resting cell may start a cell division cycle by entering
to the proliferating phase, during which each proliferat-
ing healthy SC (resp. CSC) may die by apoptosis rate
γ (resp. γ̃), or complete its mitosis and become two
daughter cells at the end of the proliferating phase. We
denote τ (resp. τ̃) the average time taken by a healthy cell
(resp. unhealthy) to complete its mitosis in the healthy
(resp. unhealthy) proliferating compartment. For healthy
and unhealthy cells, we assume that the passing from
the resting state to the proliferating one is controlled
by a reintroduction function (see [21], [29]). We consider
that β (resp. β̃) is the reintroduction function from the
healthy (resp. unhealthy) resting phase to the healthy
(resp. unhealthy) proliferating phase. Moreover, β and
β̃ are assumed to depend on both the total density of
resting healthy cells x and the total density of unhealthy
resting cells x̃. More precisely, we assume that β̃ and
β are nonlinear, continuous, and decreasing functions,
and that, limm→∞ β̃(m) = limm→∞ β(m) = 0. As in
[21],[29],[2], and [26] we consider the typical forms:

β̃(m) = β̃(0)
1 + b̃mñ

, β(m) = β(0)
1 + bmn

(1)

where b̃, b, β̃(0) and β(0) are strictly positive real num-
bers and ñ ≥ 2 and n ≥ 2. The model illustrated in
Figure 1 was described in [7] by an age-structured model
(see for instance [19], Chapter 5). It is a McKendrick
model ([20], [12]) composed of coupled age-structured
partial differential equations, with their corresponding
boundary and initial conditions, that we reduced using
the method of characteristics to the following delay
differential-difference system [7]:

˙̃x(t) = −
[
δ̃ + β̃(x(t) + α̃x̃(t))

]
x̃(t)

+2(1− K̃)e−γ̃τ̃ ũ(t− τ̃),
ũ(t) = β̃(x(t) + α̃x̃(t))x̃(t) + 2K̃e−γ̃τ̃ ũ(t− τ̃),
ẋ(t) = − [δ + β(αx(t) + x̃(t))]x(t)

+2e−γτβ(αx(t− τ) + x̃(t− τ))x(t− τ).

(2)



In fact, in [7] it was considered that (α, α̃) = (1, 1). This
is the simplest way of coupling healthy and unhealthy
cells, in which a homogeneous sensitivity (see [8]) of the
functions β and β̃ with respect to the total density of
healthy and unhealthy cells is assumed. In this paper, we
study a slightly more general framework by considering
the case in which (α, α̃) = (1, α̃), where α̃ > 0 is a
free parameter. We can prove that a unique piecewise
continuous solution (x̃(t), ũ(t), x(t)) exists for all t ≥ 0,
when system (2) is associated with appropriate initial
conditions (ϕx̃, ϕũ, ϕx) such that ϕx̃ ∈ C ([−τ, 0],R),
ϕx ∈ C ([−τ, 0],R) and ϕũ ∈ C ([−τ̃ , 0],R). In addition,
we can show that system (2) is positive since K̃ ∈
(0, 1). Throughout this work only positive solutions of
(2) are considered. Next, we notice that (0, 0, 0) is an
equilibrium point of the studied model. Biologically, it
means the extinction of all the healthy and unhealthy
blood cells, which is not the best expected scenario.
On the other hand, from a therapeutic standpoint, the
common approach is to eradicate unhealthy cells while
ensuring that healthy cells survive. That is exactly what
we did in [7], where we analyzed a steady state in the
form (0, 0, xe > 0). The present paper will be devoted to
the scenario where healthy and unhealthy cells survive
and coexist in a prolonged dormancy state.

III. Main results
A. Notable features of the studied model

Escape from dormancy in diseased cells: One of
the main concerns in the theoretical analysis of dormancy
is to explain how escape from tumor dormancy can
emerge [17]. It was also the motivation to introduce
the model in [1], where the authors were looking for
unbounded solutions to explain unlimited proliferation of
CSCs. Based on their results, we emphasize the fact that
unbounded solutions in CSCs compartment may occur.
Obviously, from the second equation in (2), we observe
that when 2K̃e−γ̃τ̃ > 0, we obtain, limt→+∞ ũ(t) = +∞.
A direct consequence from the the first equation in
(2) is that limt→+∞ x̃(t) = +∞ (it can be proved by
contradiction, as previously done in [1]). This situation
reflects the escape from dormancy of tumor cells (solid
tumors), or the invasion of the bone marrow by blasts
(as an example of liquid tumors).

Existence of a unique dormancy steady state D
Now, we go forward in the analysis by first discussing the
conditions that make possible the existence of dormancy.
Let D = (x̃e, ũe, xe) be a steady state of (2), then

[
δ̃ + β̃(xe + α̃x̃e)

]
x̃e = 2(1− K̃)e−γ̃τ̃ ũe,

β̃(xe + α̃x̃e)x̃e =
(
1− 2K̃e−γ̃τ̃

)
ũe,

[δ − (2e−γτ − 1)β(xe + x̃e)]xe = 0,
(3)

since (α, α̃) = (1, α̃). We want to determine necessary
and sufficient conditions for the existence of D where
xe > 0, x̃e > 0 and ũe > 0. First, since β is continuous
and decreasing from β(0) to zero, we deduce from the

third equation in (3) that

δ <
[
2e−γτ − 1

]
β(0), (4)

is a necessary condition for the existence of xe and x̃e
such that xe + x̃e > 0, and therefore it is a necessary
condition for the existence of D. Next, from the second
equation in (3), we have ũe = β̃(xe+α̃x̃e)x̃e

1−2K̃e−γ̃τ̃ . By substitut-
ing ũe in the first equation of (3), we get[

δ̃ − 2e−γ̃τ̃ − 1
1− 2K̃e−γ̃τ̃

β̃(xe + α̃x̃e)
]
x̃e = 0 (5)

The fact that β̃ is continuous and decreasing implies that

δ̃ <

[
2e−γ̃τ̃ − 1

1− 2K̃e−γ̃τ̃

]
β̃(0), (6)

is a necessary condition for the existence of xe and x̃e
such that xe + α̃x̃e > 0. Therefore it is also a necessary
condition for the existence of D.

Obviously, (4), (6) and ũe = β̃(xe+α̃x̃e)x̃e
1−2K̃e−γ̃τ̃ imply that

1 < 2e−γτ , and 2K̃e−γ̃τ̃ < 1 < 2e−γ̃τ̃ .
Now, let us focus on the case where xe > 0 and x̃e > 0.

If the conditions (4) and (6) are satisfied, then necessarily xe + α̃x̃e = β̃−1
(
δ̃ 1−2K̃e−γ̃τ̃

2e−γ̃τ̃−1

)
,

xe + x̃e = β−1
(

δ
2e−γτ−1

)
.

(7)

We deduce that
xe = 1

α̃−1
[
α̃β−1 (µ)− β̃−1 (µ̃)

]
,

x̃e = 1
α̃−1

[
β̃−1 (µ̃)− β−1 (µ)

]
,

ũe = δ̃
2e−γ̃τ̃−1 x̃e,

(8)

where, µ = δ

2e−γτ − 1 , and, µ̃ =
δ̃
(
1− 2K̃e−γ̃τ̃

)
2e−γ̃τ̃ − 1 . (9)

The case α̃ = 1: In this situation, (7) gives{
xe + x̃e = β̃−1 (µ̃) = β−1 (µ) ,
ũe = δ̃

2e−γ̃τ̃−1 x̃e.
(10)

This case corresponds to a continuum equilibrium points
that we want to avoid in this work.
The case α̃ > 1 or α̃ < 1: From (8), we deduce that a
necessary condition for the existence of D when α̃ < 1
is given by: α̃β−1 (µ) < β̃−1 (µ̃) < β−1 (µ). Similarly, a
necessary condition for the existence of D when α̃ > 1 is
β−1(µ) < β̃−1(µ̃) < α̃β−1(µ).
We summarize the above discussion as follows:
Proposition 1: If the conditions

µ < β(0), µ̃ < β̃(0), 2K̃e−γ̃τ̃ < 1 < 2e−γ̃τ̃ , (11)

and,{
α̃β−1 (µ) < β̃−1 (µ̃) < β−1 (µ) , for α̃ ∈ (0, 1),
β−1(µ) < β̃−1(µ̃) < α̃β−1(µ), for α̃ > 1,

(12)

where µ and µ̃ are defined in (9), are satisfied, then a
unique strictly positive steady state D = (x̃e, ũe, xe),



exists and is given by (8).
Remark 1: i) Uniqueness in Proposition 1 means that

a unique isolated strictly positive equilibrium point D
exists, but it is not the unique equilibrium point of the
system (2), since the origin and the points (0, 0, xe),
(x̃e, ũe, 0) are also steady states of system (2).

ii) The third condition in (11) expresses a relationship
between the fast-self renewing ability K̃, the apoptosis
rate of malignant cells γ̃ and their cell-cycle duration
τ̃ . We notice that even if K̃ is relatively important,
and knowing that it is not easy to act on K̃ by drugs
infusion, it is still possible to guarantee the existence of
dormancy by increasing τ̃ γ̃. However, the increase must
be moderate to not exceed the upper-bound γ̃τ̃ < ln(2).

B. Stability analysis of the dormancy steady state
1) A new representation of the system: We want to

investigate the stability properties of D when it exists.
Thus, we assume that the conditions given in Proposition
1 are satisfied and we perform the classical changes of
coordinates X̃ = x̃ − x̃e, Ũ = ũ − ũe, and X = x − xe.
Then, it follows from (2) that

˙̃X(t)=−
[
δ̃ + β̃

(
X(t) + α̃X̃(t) + xe + α̃x̃e

)] (
X̃(t) + x̃e

)
+2(1− K̃)e−γ̃τ̃

(
Ũ(t− τ̃) + ũe

)
,

ũ(t)=β̃
(
X(t) + α̃X̃(t) + xe + α̃x̃e

) (
X̃(t) + x̃e

)
+2K̃e−γ̃τ̃

(
Ũ(t− τ̃) + ũe

)
,

Ẋ(t)=−
[
δ + β

(
X(t) + X̃(t) + xe + x̃e

)]
(X(t) + xe)

+2e−γτβ
(
X(t− τ) + X̃(t− τ) + xe + x̃e

)
× (X(t− τ) + xe) .

To ease the analysis of the above system, we rewrite it
in a more convenient form. Observe that for all z > −e,
e > 0, where, z = X + X̃ and e = xe + x̃e, we have (with
an abuse of notation),

β(z + e) = β(e) + θz +R(z), (13)

where β is the function defined in (1), and θ = β′(e),
R(z) =

∫ e+z

e
(z + e− `)β(2)(`)d`.

Next, for all z̃ > −ẽ, ẽ > 0, where, z̃ = X + α̃X̃, and,
ẽ = xe + α̃x̃e, we get similarly to (13),

β̃ (z̃ + ẽ) = β̃(ẽ) + θ̃z̃ + R̃(z̃), (14)

where, θ̃ = β̃′(ẽ), and R̃(z̃) =
∫ ẽ+z̃

ẽ
(z̃ + ẽ − `)β̃(2)(`)d`.

Therefore, using (13)-(14), and by simplifying some
terms using (3), we get

˙̃X(t) = −a1X̃(t)− a2X(t) + a3Ũ(t− τ̃)
+F (X(t), X̃(t)),

Ũ(t) = a4X̃(t) + a2X(t) + a5Ũ(t− τ̃),
−F (X(t), X̃(t))

Ẋ(t) = −a6X(t)− a7X̃(t) + a8X(t− τ)
+a9X̃(t− τ) +G

(
Xt, X̃t

)
,

(15)

where
F (X(t), X̃(t)) =− θ̃

[
α̃X̃2(t)) +X(t)X̃(t)

]
−R̃

(
X(t) + α̃X̃(t)

) (
X̃(t) + x̃e

)
,

(16)

and,

G(Xt, X̃t)=−θ
[
X2(t) +X(t)X̃(t)

]
−R

(
X(t) + X̃(t)

)
(X(t) + xe)

+2e−γτθ
[
X2(t− τ) +X(t− τ)X̃(t− τ)

]
+2e−γτR

(
X(t− τ) + X̃(t− τ)

)
× (X(t− τ) + xe) ,

(17)

and where the constants parameters are given by

a1 = δ̃ + β̃(xe + α̃x̃e) + α̃θ̃x̃e, a2 = θ̃x̃e,

a3 = 2(1− K̃)e−γ̃τ̃ , a4 = β̃(xe + α̃x̃e) + α̃θ̃x̃e,

a5 = 2K̃e−γ̃τ̃ , a6 = δ + β (xe + x̃e) + θxe,

a7 = θxe, a8 = 2e−γτ [β (xe + x̃e) + θxe]
a9 = 2e−γτθxe.

(18)

We notice that if the trajectories of (15) converge ex-
ponentially to the origin, then the positive trajectories
of the system (2) converge exponentially to D. Now, we
state the following assertions which give sector conditions
on the nonlinear terms R, F and G (the proof is omitted
here). First, we can prove that there exist strictly positive
constants s, s̃, m and m̃ such that

|R(z)| ≤ s|z|, and |R̃(z̃)| ≤ s̃|̃z|, (19)

|R(z)| ≤ mz2, and |R̃(z̃)| ≤ m̃z̃2, (20)

for all z > −e (z and e are defined before (13)), and for
all z̃ > ẽ (z̃ and ẽ are defined before (14)). Moreover,
using (19) and (20), we can determine strictly positive
constants ci, i = {1, . . . , 6}, such that the following
quadratic upper bounds hold true:∣∣F (X, X̃)∣∣ ≤ c1Q(X) + c2Q(X̃), (21)∣∣G(Xt, X̃t)

∣∣ ≤c3Q(X(t)) + c4Q(X̃(t))
+ c5Q(X(t− τ)) + c6Q(X̃(t− τ)).

(22)

Remark 2: Comparing the present study with [7] one
notices that [7] was devoted to the study of a simpler
model than the system (15) analyzed here. Indeed, the
model in [7] can be obtained by putting α̃ = 1 and by
eliminating all the terms where x̃e is present in equations
(15), (18), (16) and (17).

2) Obtaining Decay Conditions: We want to investi-
gate the stability properties of the coupled system using
its representation as (15), (18), (16), and (17). Due to
the coordinates shifting, the trajectories of system (15)
are not positive. Therefore, we introduce the following
functional:
V
(
Xt, X̃t, Ũt

)
=Q (X(t)) + λ1Q

(
X̃(t)

)
+ λ2S (Xt)

+ λ3S
(
X̃t

)
+ λ4Y

(
Ũt
)
,

(23)



where, Q(`) = `2

2 , Y
(
Ũt
)

=
∫ t
t−τ̃ e

ρ1(`−t)Q
(
Ũ(`)

)
d`,

S
(
X̃t

)
=
∫ t
t−τ e

ρ2(`−t)Q
(
X̃(`)

)
d`, and where λ1, λ2, λ3

and λ4, ρ1, and ρ2 are positive constants to be selected.
Through lengthy calculations, we can prove that the
time-derivative of the functional V along the trajectories
of (15) is given, for almost all t ≥ 0, by:

V̇ (t) = −
[
2λ1a1 − λ3 − λ4a

2
4
]
Q(X̃(t))− ρ2λ3S

(
X̃t

)
−
[
2a6 − λ2 − λ4a

2
2
]
Q(X(t))− ρ2λ2S (Xt)

− λ4
[
e−ρ1τ̃ − a2

5
]
Q
(
Ũ(t− τ̃)

)
− ρ1λ4Y

(
Ũt
)

− λ2e
−ρ2τQ (X(t− τ))− λ3e

−ρ2τQ(X̃(t− τ))
− [a2λ1 + a7 − λ4a2a4]X(t)X̃(t) + a8X(t)X(t− τ)
+ a9X(t)X̃(t− τ) + [a3λ1 + a4a5λ4] X̃(t)Ũ(t− τ̃)
+ a2a5λ4X(t)Ũ(t− τ̃) + X̃(t)F

(
X(t), X̃(t)

)
+X(t)G

(
Xt, X̃t

)
− a5λ4F

(
X(t), X̃(t)

)
Ũ(t− τ̃)

− λ4F
(
X(t), X̃(t)

) [
a4X̃(t) + a2X(t)

]
+ λ4Q

(
F
(
X̃(t), X(t)

))
.

Recall that for any constants ν1 > 0, ν2 > 0, ν3 > 0,
ν4 > 0, and ν5 > 0, we have,

∣∣XX̃∣∣ ≤ 1
ν1
Q(X) +

ν1Q(X̃), |X(t)X(t− τ)| ≤ 1
ν2
Q(X(t)) + ν2Q(X(t −

τ)),
∣∣X(t)X̃(t− τ)

∣∣ ≤ 1
ν3
Q(X(t)) + ν3Q(X̃(t − τ)),∣∣X̃(t)Ũ(t− τ̃)

∣∣ ≤ 1
ν4
Q(X̃(t)) + ν4Q(Ũ(t − τ̃)), and∣∣X(t)Ũ(t− τ̃)

∣∣ ≤ 1
ν5
Q(X(t)) + ν5Q

(
Ũ(t− τ̃

)
. Conse-

quently, V̇ satisfies for almost all t ≥ 0,

V̇ (t) ≤− [2λ1a1 − b1]Q(X̃(t))− [2a6 − b2]Q(X(t))
−
[
λ4e
−ρ1τ̃ − b3

]
Q
(
Ũ(t− τ̃)

)
− ρ1λ4Y

(
Ũt
)

−
[
λ2e
−ρ2τ − b4

]
Q (X(t− τ))− ρ2λ2S (Xt)

−
[
λ3e
−ρ2τ − b5

]
Q(X̃(t− τ))− ρ2λ3S

(
X̃t

)
− a5λ4F

(
X(t), X̃(t)

)
Ũ(t− τ̃)

+X(t)G
(
Xt, X̃t

)
+ λ4Q

(
F
(
X̃(t), X(t)

))
− λ4F

(
X(t), X̃(t)

) [
a4X̃(t) + a2X(t)

]
,

(24)

where

b1 = λ3 + λ4a
2
4 + ν1 |a2λ1 + a7 − λ4a2a4| ,

b2 = λ2 + λ4a
2
2 + |a2λ1+a7−λ4a2a4|

ν1

+ |a8|
ν2

+ |a9|
ν3

+ |a2a5|λ4
ν5

,

b3 = λ4a
2
5 + ν4 |a3λ1 + a4a5λ4|+ ν5λ4 |a2a5| ,

b4 = ν2|a8|, and b5 = ν3|a9|.

(25)

For the sake of brevity, the detailed steps to follow in
order to obtain sufficient decay conditions (that ensure
the exponential convergence to the origin of (15)) are
omitted here (see [8] for an extended version). How-
ever, to provide guidance, we specify that λ1, . . . , λ4,
ν1, . . . , ν5, ρ1 and ρ2, are selected in order to guarantee
that the origin of system (15) is exponentially stable, for
all initial conditions belonging to the set

B=
{
(ϕX , ϕX̃ , ϕŨ) ∈ Cτ ×C̃τ ×C̃τ̃

∣∣V (ϕX , ϕX̃ , ϕŨ)< V
}

where (with an abuse of notation) we consider
the spaces of continuous functions, Cτ =

C ([−τ, 0], (−xe,+∞)), C̃τ = C ([−τ, 0], (−x̃e,+∞)),
C̃τ̃ = C ([−τ̃ , 0], (−ũe,+∞)), and a sub-level V > 0 of
the Lyapunov-like functional2 is defined. We emphasize
that the nonlinear terms where F and G are involved in
(24) are used only to determine a subset of the basin of
attraction of the studied equilibrium. More precisely, for
all initial conditions belonging to B, we can prove that
for almost all t ≥ 0,

V̇ (t) ≤ −2dV
(
Xt, X̃t, Ũt

)
, where, d > 0. (26)

We integrate (26) and we obtain for all t ≥ 0

V
(
Xt, X̃t, Ũt

)
≤ e−2dtV

(
ϕXt , ϕX̃t , ϕŨt

)
. (27)

Consequently, X2(t)+λ1X̃
2(t) ≤ 2e−2dtV (ϕX , ϕX̃ , ϕŨ ) ,

for all t ≥ 0. We conclude that the trajectories X(t) and
X̃(t) converge exponentially to the origin with a decay
rate smaller or equal to d. From the second equation
in (15), and the inequality 2K̃−γ̃τ̃ < 1, we can prove
that Ũ(t) converges exponentially to zero when X(t) and
X̃(t) converge exponentially to the origin of the shifted
system (15). The above discussion in summarized (and
reformulated for the nonshifted model (2)) -for a typical
selection of the weighting constants λi and νi- as follows:
Theorem 1: Let us assume that the system (2) admits

a strictly positive steady state D (Proposition 1 ). If

i)
(
2K̃e−γ̃τ̃

)2 + 2K̃e−γ̃τ̃ < 1,
ii) b1

4 − α̃θ̃x̃e < β̃ (xe + α̃x̃e) + δ̃,

iii) b2
2 − θxe < β(xe + x̃e) + δ,

(28)

where the constants bi and ai are defined in (25) and
(18), then all the trajectories associated with initial
conditions belonging to{

(ϕx, ϕx̃, ϕũ) ∈ C
(
[−τ, 0],R+)× C ([−τ, 0],R+)

× C
(
[−τ̃ , 0],R+) ∣∣∣ V (ϕx − xe, ϕx̃ − x̃e, ϕũ − ũe) < V

}
are exponentially attracted towards D, with a decay rate
smaller than or equal to d.

IV. Concluding discussion and perspectives
Taking into account dormancy in tumor cell popu-

lations is a new trend in cancer therapy. Mechanisms
underlying the dormancy of cancer stem cells, at stake
in the present study, were analyzed by a coupled delay
differential-difference model that describes the possible
coexistence of healthy and cancer stem cells (CSCs).
The first part of this model analysis allowed us to show
that CSC dormancy results from complex relationships
between the different biological parameters involved in
the model. Theorem 1 provides sufficient local expo-
nential stability conditions, that can be enforced in
order to suggest an efficient therapeutic guideline to
bring aggressive CSCs into a dormancy state, a realistic

2The functional V is degenerate, since V = 0 does not imply that
Ũ = 0. This is a characteristic of differential-difference systems.



therapeutic goal. Indeed, our ultimate goal is to provide
biological conditions that can be interpreted as provided
by a well-chosen combined targeted therapy leading to
control cancer as a chronic disease. For instance, in
Proposition 1, we established that D exists if and only
if 2K̃e−γ̃τ̃ < 1 < 2e−γ̃τ̃ . Satisfying this condition is
obtained by increasing the product γ̃τ̃ and decreasing
K̃, i.e., fulfilling the inequality on the left hand side
without violating the inequality on the right hand side.
Increasing γ̃τ̃ means that we extend the duration of
the cell cycle τ̃ (i.e., slowing it down: cytostatic drugs)
and/or increase the apoptosis rate γ̃ (cytotoxic drugs). In
the case of hematopoiesis, leukemic cells may be targeted
by drugs such as tyrosine kinase inhibitors quizartinib
(AC220) [32] or erlotinib [18] at moderate doses to
increase τ̃ , while cytosine arabinoside can be used to
increase the apoptosis rate γ̃. Similarly, we can consider
acting on another target, the δ and δ̃ parameters, by
increasing them to enhance the differentiation rate, that
is constantly blocked at some maturation stage in acute
leukemias. This may be achieved by using dihydroorotate
dehydrogenase inhibitors [30]. Finally, β(0) and β̃(0),
can be increased using G-CSF molecules [13]. These are
sketched principles of such a combined therapy that we
will develop further in a forthcoming study ([8]).
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