Challenges in multimodal gesture recognition

Sergio Escalera 1 Vassilis Athitsos 2 Isabelle Guyon 3
3 TAU - TAckling the Underspecified
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011-2015. We began right at the start of the Kinect T M revolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.
Type de document :
Article dans une revue
Journal of Machine Learning Research, Journal of Machine Learning Research, 2016, 17, pp.1 - 54
Liste complète des métadonnées

Littérature citée [186 références]  Voir  Masquer  Télécharger
Contributeur : Isabelle Guyon <>
Soumis le : lundi 8 janvier 2018 - 18:03:45
Dernière modification le : jeudi 7 février 2019 - 17:18:59
Document(s) archivé(s) le : samedi 5 mai 2018 - 04:02:11


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01678012, version 1


Sergio Escalera, Vassilis Athitsos, Isabelle Guyon. Challenges in multimodal gesture recognition . Journal of Machine Learning Research, Journal of Machine Learning Research, 2016, 17, pp.1 - 54. 〈hal-01678012〉



Consultations de la notice


Téléchargements de fichiers