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Synchronization of stochastic mean eld networks of
Hodgkin-Huxley neurons with noisy channels.
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Abstract

In this work we are interested in a mathematical model of the collective behavior of a fully
connected network of nitely many neurons, when their number and when time go to in nity. We
assume that every neuron follows a stochastic version of the Hodgkin-Huxley model, and that pairs
of neurons interact through both electrical and chemical synapses, the global connectivity being of
mean eld type. When the leak conductance is strictly positive, we prove that if the initial voltages are
uniformly bounded and the electrical interaction between neurons is strong enough, then, uniformly
in the number of neurons, the whole system synchronizes exponentially fast as time goes to in nity,
up to some error controlled by (and vanishing with) the channels noise level. Moreover, we prove
that if the random initial condition is exchangeable, on every bounded time interval the propagation
of chaos property for this system holds (regardless of the interaction intensities). Combining these
results, we deduce that the nonlinear McKean-Vlasov equation describing an in nite network of such
neurons concentrates, as time goes to in nity, around the dynamics of a single Hodgkin-Huxley
neuron with chemical neurotransmitter channels. Our results are illustrated and complemented with
numerical simulations.

Key words:  Hodgkin-Huxley neurons, synchronization of neuron networks, mean- eld limits,
propagation of chaos, stochastic differential equations.

AMS Subiject classi cation: 60H99, 60K35, 82C22, 82C32, 92B20, 92B25.

1 Introduction

The dynamics of a neuron's voltage is the result of the passage of ions through its membrane. This
ion ux takes place through speci c proteins which act as gated channels. According to the Hodgkin-
Huxley model of a nerve neuron [29], the coupled behavior of the voltage of the neuraith the
proportionang, h; andn; of open channels of the different ions involved in this process (respectively
activation Sodium channels, deactivation Sodium channels and activation Potassium channels), can
be described by the following system of ordinary differential equations:

Z t

Vt = VO+ F(Vs,ms,ns,hs)ds
2’ (11

Xt x(Vs)(1 Xs) x(Vs)Xs ds

1

X
o

+

where, here and in the sequelgenerically represents ting; n; h componentsandl : R [0; 1]* !
R, de ned by

F(Vimnih)= 1 gkn* (V' k) gnam®h(V Vaa) (V' W), (1.2)
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represents the effect on the voltage of the ionic channels and of an external dufsssumed
constant for simplicity). The rate functiong and y, originally considered in [29], have some
generic form given in (2.3) and (2.4) below; see also Figure 2 and Tables 1 and 2 for their shape and
for biologically meaningful values of the parameters. We refer the reader to Ermentrout and Terman
[17] for a concise discussion on the Hodgkin-Huxley (HH in the sequel) model and its deduction, as
well as for general background on mathematical models.

From a mathematical point of view, system (1.1) de nes a rich dynamical system, the proper-
ties of which has been extensively studied. As an example of its various possible behaviors, Figure
3 below illustrates different possible responses of system (1.1) to the value of the input turrent
(no oscillations, oscillations of various types, damping) all other parameters of the model being
xed. See e.g. [17] and Izhikevich [31], and references therein for detailed accounts on dynamical
properties of (1.1) and related neuron models. Lower dimensional dynamics have also been pro-
posed as simpler alternatives to (1.1), the most important ones being the FitzHugh-Nagumo model
(FitzHugh [19], Nagumo et al. [42]) and the Morris-Lecar model (Morris and Lecar [41]). These are
able to reproduce some of the dynamical features of the HH system (1.1) and are easier to study from
the mathematical point of view, but they are less realistic regarding some of its relevant features.

A different approach to model the electric activity of neurons are integrate-and- re models, in-
troduced in Lapicque [36]. In these models the electric potential evolves according to some ordinary
differential equation until it reaches a certain xed threshold; the neuron then emits a potential spike
and the voltage is reset to some reference value, from which its evolution restarts following the same
dynamics. We refer the reader to Burkitt [12], [13] for a review of this class of models.

In the last decade, there has been an increasing interest of the mathematical and computational
neuroscience communities in understanding the role of stochasticity in neurons' dynamics, as well
as in mathematical models for it. We refer the reader to Goldwyn et al. [25] and to Goldwyn and
Shea-Brown [26] for a discussion on different ways in which randomness might be introduced in
the HH model, their biological interpretation and their pertinence. See also [17, Chapter 10] for
general background on this issue. Classically, random models arise in the form of nite Markov
chains describing a discrete number of open gates which approximate the ion channel dynamics, or
by directly introducing Gaussian additive or multiplicative white noise (that is, a Brownian motion
or a stochastic integral with respect to it) in the voltage or ion channels dynamics in (1.1). More
recently, hybrid (also called piecewise deterministic) Markov processes have also been proposed as
microscopic counterparts of the HH or other deterministic models. In this setting, the channel vari-
ables are replaced by discrete continuous time processes whose jump rates depend on the voltage,
while keeping a continuous description for the latter, see Austin [2], Pakdaman et al. [44] and refer-
ences therein. We also refer the reader to Bossy et al. [10], Danger eld et al. [15], Wainrib [51] and
Sacerdote and Giraudo [48] for further discussion on stochastic models in this context, the latter one
in the case of integrate-and- re models.

In the present work we consider stochastic versions of the HH model (1.1) which arise as diffusive
scaling limits of hybrid models of the type studied in [2] and [44]. More precisely, we are interested
in networks ofN such neurons in mean eld interaction, which can be described by a system of
stochastic differential equations of the form:

Zt
v = v+ Fv;m;n®;h0)ds
0
Z, 1 X ) ) 1 X ) )
N JE(VS(I) Vs(J )) N JChyéJ ) (Vs(l) Viev)ds;
0 =1 j=1
zZ, : zZ, :

x = x() + X b (V{V; x{)ds + X (VI xdwXt: x = m;n; h;y:

Here,(W* :i = 1:::::N;x = m;n;h;y) are one dimensional Brownian motions and the in-
teraction between neurons account for the effect of electrical and chemical synapses (the biological
interpretation of the interactions terms and in particular of the variaBiéss given in next sec-
tion). We refer to equation (2.1) below for the explicit form of the system we will consider, and for
Hypothesis 2.1 for our assumptions on its coef cients.

The collective behavior of neurons, and the way it emerges from their individual features and
synaptic activity, is indeed a central question in neuroscience. In particular, considerable efforts have
been devoted to understanding synchronization of neurons, an ubiquitous phenomenon seemingly



related to the generation of rhythms (such as the respiratory one or the heartbeat) but also to more
complex neurologic functionalities. For instance, at the brain level, synchronization has been con-
nected to memory formation, see Axmacher et al. [3], but also to disorders such as epileptic seizures,
see Jiruska et al. [32]. Since the neuroscience literature on this topic is huge, it is not our intention
to thoroughly comment on it here, and we refer the reader to [17, Chapters 8,9], [31, Chapter 10] for
further discussion on biological roles of neuron synchronization, and mathematical approaches to it.
For a broad perspective on synchronization, we also refer the reader to Pikovsky et al. [47].

In this paper we are interested in synchronization due to a strong enough coupling between
neurons. This phenomenon differs from synchronization owed to common noise addressed e.g. in
Marella and Ermentrout [38] (where uncoupled oscillators subject to a common noise are observed
to get synchronized) or in Pikovsky [46] (where synchronization results from the action of a random
forcing term). In our case, noise is unshared by the interacting neurons and does therefore not con-
tribute to their synchronization; indeed, it actually prevents the perfect asymptotic synchronization of
the network. (This phenomenon might be compared to noise-induced deviations from stable cycles
in noisy oscillators, see [5, 6] for a large deviations approach to that problem.) Moreover, we will
understand and quantify synchronization in terms of the empirical variance of the system of neurons
and of its dissipation, an approach which does not rely on the stability properties of individual neuron
dynamics nor, in particular, on the existence of some oscillatory limiting behavior.

In the case of interacting oscillators, a central mathematical tool is phase reduction. Introduced
by Kuramoto [35], it is based on the idea that stable periodic solutions of a nonlinear oscillator can
be parametrized by its phase in the limit cycle. Kuramoto's model has proved useful to understand
synchronization mechanisms of simple coupled oscillators (see [17] and [31] ), or for ensembles
of population of neurons with intrinsic and extrinsic noise (see Bressloff and Ming Lai [11] and
the references therein), or even in the limiting case of in nite oscillators with noise and mean eld
interaction (see Bertini et al. [7] and the discussion in [51, Chapter 4]). However, to our knowledge,
applications of these ideas to networks of HH-type neurons have so far been restricted to small
deterministic networks and “weak coupling” regimes (see e.g. Hansel and Mato [27] and Hansel
et al. [28] ). We refer the reader to Ostojic et al. [43] for synchronization results in the case of
integrate-and- re networks.

A related question is the asymptotic behavior of networks when the number of neurons tends
to in nity. In that sense, networks dfl neurons in mean eld interaction, in which every neuron
experiences a pairwise interaction of strength-ofd@t with each other, provide a mathematically
tractable (though not completely realistic) framework to address this question. Indeed, in a mean
eld network, the evolutions of nitely many neurons are expected to become independ@ht as
goes to in nity, a property known as propagation of chaos. In the case of exchangeable particles,
this is equivalent to the convergence of the dynamics of the empirical law of the system to some
deterministic ow of probability laws, typically described by a nonlinear McKean-Vlasov partial
differential equation (also termed “mean eld” equation in this context); see Méléard [39], Sznitman
[49] for background on propagation of chaos. We refer the reader to e.g. Faugeras et al. [18] for
formal derivations of mean eld equations for multi type population networks of integrate-and- re
neurons, and respectively to Delarue et al. [16] and Perthame and Salort [45] for probabilistic and
PDE approaches to the global solvability of that equation (which can in principle have explosive
solutions) when the interaction is small. See also Fournier and Lécherbach [21] for further recent
results on propagation of chaos for integrate and re models. The propagation of chaos for mean eld
networks of neurons described by stochastic differential equations, including stochastic, multi type
HH and FitzHugh-Nagumo networks, has been addressed in Baladron et al. [4], and then rigorously
established in Bossy et al. [10]. We also refer the reader to Mischler et al. [40] for the mean eld
description of a network of FitzHugh-Nagumo neurons.

In this present work, we establish that, under strong enough electrical connectivity of the network
(i.e. large enouglig), theN neurons get synchronized, up to an error proportional to the channels'
noise level 2, at an exponential rate which is independeritiofMoreover, we exhibit a deterministic
single-neuron dynamics which is “mimicked”, as time goes to in nity, by every neuron of the system
(2.1), over short enough moving time-windows, up to an error that vanishes wigndN 1. As
far as we know, this is a rst mathematical result which establishes the synchronization of large
networks of neurons. We also establish the propagation of chaos for system (2.1), or its convergence
to solutions to a McKean-Valsov equation, for arbitrary parameters of the model (and for slightly
more general coef cients than in [10] in the single population case). This allows us to transfer
our synchronization results to the limiting PDE, which can be understood as the description of an



in nite network of neurons. Our theoretical results will be complemented with simulations, which in
particular point out that synchronization phenomena might also hold for small electrical connectivity
and even for pure chemical connectivifi(= 0).

The remainder of the paper is organized as follows. In Section 2, we detail the model we consider
and state precisely our main results. Section 3 is devoted to numerical experiments, both to illustrate
our theoretical statements and to explore related phenomena in mean eld settings not covered by
them (like multi-type neuron populations or chemical-only synapses). In Section 4 we a discuss
possible improvements and extensions of our results, and some open questions. The mathematical
proofs of our results are given in the Appendix sections.

2 Model and main results

We start by brie y recalling how chemical and electrical synapses in networks of neurons are mod-
eled (we follow [17, Chapter 7] which we also refer to for further background on synaptic channels).

In chemical synapses, a neurotransmitter is released to the intercellular media (technically the
synaptic cleft), from a pre-synaptic neuron to the post-synaptic one through synaptic channels, which
are voltage-gated just as ion channels are. With each pre-synaptic neuron we can thus associate a
new variabley in [0; 1] which represents its proportion of open synaptic channels at each time. The
dynamics of this variable can be modeled in a similar way as those of ion channels, that is, in terms of
certain rate functions, and y depending on the membrane potentfabf that same neuron, and on
some parameters (see (2.5)). The choice of these parameters determines the characteristic (inhibitory
or excitatory) of the chemical synapse. Hence, in a fully connected netwadyk similar neurons,
chemical synapses coming from a pre-synaptic nejirehould induce on the voltagé(!) of the
post-synaptic neuronan instantaneous variation at tirnef

Jon

N yt(j ) (Vt(i) Viev);

Whereyt(J )is the proportion of open synaptic channels of neyrahyy,  0is a constant representing
the chemical conductance of the network &g is a reference potential. The facqéris introduced
in order that the contribution of each incoming synapse to the nduhas similar weight, which
corresponds to a global interaction of mean eld type.

On the other hand, the interior of one neuron can be directly connected with another neuron's one
through an intercellular channel called gap junction, which allows the constant ow of ions between
them, as a result of their possibly different potentials. We thus may assume that pre-synaptic neuron
j contributes to the variation of the voltage of post-synaptic neutpnthe amount

J _ .
WE(VS(I) Vs(J ));

whereJg  0Ois the electrical conductance (that can be thought of as a measure of the connectivity
of the network) and the factgt appears by similar reasons as before. Connections of this type are
termed electrical synapses and are less frequent than chemical ones; on the other hand, they transmit
information faster. (See also Hormuzdi et al. [30] for a deeper discussion on electrical synapses.)

valued in(R%N , with coordinatesx () = (V,":m®;n{?: n{):y{y given fori = 1;:::;N and
t  0by the solution of the system of stochastic differential equations:
z t
V=R nd);n)ds
Z 1 X . , 1 X , .
on RV V) I (VD Ve ds: (2.2)
- -
| oz, j j z,
xV=xQ v X)) O Dds+ (v x)dw
0 0

where(W*' :i 2 N;x = m;n;h;y) are independent one dimensional Brownian motions indepen-
dent ofX g andF is de ned in (1.2). Notice that, for notational simplicity, the dependence of system
(2.1) onN is omitted. Throughout this work, we will additionally make the following assumptions
on system (2.1):



Hypothesis 2.1. 1. Forx = m;n;h andy, x and x are strictly positive, locally Lipschitz
continuous functions de ned dRr.

2. Forx = m;n;h andy, functions , : R ! R are given by
p - -
x(V;2)= (A )+ «(V)Z) (2); (2.2)

with : R! [0;1]a Lipschitz continuous function with support containefDiri] and 0.
3. One haimg);ng);hg);yg)) 2 [0;1]* a.s.

These assumptions cover, for parameggrs > 0, functions of the form

W)= fg My W= A SV V) @)
forx = m;n, and
h
W= alen [V VD W= ey @)
considered in the original HH model [29], as well as functions
) E— L J(V) = 3 (25)

Trexp( (V. Vr)'

associated with synaptic channels in [17, Chapter 7]. Diffusion coef cientde ned in terms of the
functions yx and 4 as in (2.2) have been considered in [10], and arise naturally in diffusive scaling
limits of the hybrid models studied in [44].

Observe that for functions,, , and , as above, the coef cients of system (2.1) do not satisfy

classic conditions for wellposedness. This well-posedness will be proved in Lemma A.1 below,

relying on results in [10] that ensure that under Hypothesis 2.1 the proc(efegémfi);hﬁi);yt(i))

remain in[0; 1]*. Notice that the absolute value in (2.2) can then be removed.

Synchronization

By synchronization we will understand the dissipation of the empirical variance of the network (2.1)
as time goes hy. In Figure 1 we show two extreme situations in this regard. On the left, for a small
interaction parametelg and noise 6 0 we observe a chaotic behavior resulting in an empirical
variance of constant order in time. On the right, for lalfg@nd = 0 we observe the fast emergence

of a coherent evolution implying the dissipation of the empirical variance. Our main result, Theorem
2.3 will provide a quantitative picture of this behavior with respect to noise levahd the size

of the networkN, for large enough connectivitye. Our results require the following additional
assumption:

Voltage vs Time.
80

60

Voltage [mV]

Time [ms]

(a) Small interaction parameter and noise. (b) Large interaction parameter and no noise.

Figure 1:Two typical situations of the evolution of the network (2.1).



Hypothesis 2.2. Hypothesis 2.1 holds and moreover:
4. The parameteg, in (1.2)(termed “leak conductance”) is strictly positive.
5. There exists a consta¥f"® > 0 not depending o such that

sup jVO(i)j V"™ as:
i=1

We also need to introduce notation for some empirical means, namely

1 X

VAR
t N

. N LN
v o xN= =" xO and xM = N x" forx = m:n;h;y:
i=1 i=1 i=1

Moreover, foreacN  landt; OweletO®"* it ti)= (ON;mM;bM ;BN pN):t t;
denote the solution of the ordinary differential equation
z t
N =0+ PRl el RY)  Jol (B Vieds;
z' (2.6)
B = k) + LM w) L PMRYds; x= m;n;h;y:

t1

with random initial condition

Nit, _ .
RN = XN
We are now is position to state our main result about synchronization of the system (2.1):
Theorem 2.3. Assume Hypothesis 2.2 holds and t@éél) i X (()N )) is an exchangeable random
vector.

a) Synchronization. There exist constant®? > 0, C° > Oand ° > 0 not depending on
N 1, 0 or X, and there exists a timg 0 not depending oM lor 0,
such that for eacllg > J 2 the solutionX of (2.1) satis es, for everyt to and each
i2fl;:::;Ng

0 2 o () o o ,C°
E jX¢? X{MP E jXg) Xyt e e 2 2.7
. . .y (i) . c?
In particular, limsup,;; E jX;’ XNj? 225

b) Synchronized dynamics. Assumelg > J 2. Then, there are constaito; K > 0 depend-
ing only on the parameters of the voltage dynamic§lir2) and, for each 0, constants
K ;K 9> 0depending on the coef cients {®.1)and on (increasingly) but not o , such
that for everyt; tpandeach 2f1;:::;Ng:

sup E th(i) )b:l;sz
tp t tp+ |

0 (2.8)

cY 2
Kon2 Ke ol tdy 22 (14 K )+ KOWC?

Some remarks on this result are in order:
Remark 2.4.

(i) The constantc? andty depend explicitly on the coef cients of the system, with the latter
possibly depending also 0" On the other hand, bounds fop and J2 which do not
depend on the initial data can also be obtained. The remaining constants are explicit and do
not depend on the initial condition. No constant is claimed to be optimal.

(i) The boundK g in Theorem 2.3 b) is deduced from global bounds (which we establish) on the
voltage processes and their average, and its role is only to prevent the r.h.s. from growing
arbitrarily with . The estimate becomes informativetad 1  for small enough 2 > 0,

> O0andN !, andforany > OandN if 2=0.
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(iii) Aside from the assumption that > 0, Theorem 2.3 holds regardless of the values of the
parameters of voltage dynamiEsin (1.2), and in particular if the input current is replaced
by a uniformly bounded function or (suitably measurable) process.

(iv) The exchangeability assumption can be removed at the price of adding inside the expectations
in (2.7)and(2.8)the averages over

Mean eld limit

We next address the question of the behavior of system (2.I)) &sl . We need to introduce
additional notation:

We denote byP (R [0; 1]*) the space of Borel probability measuresin [0; 1]* endowed
with the weak topology, and b,(R  [0; 1]*) its subspace of probability measures with
nite second moment, endowed with the Wasserstein distddge That is, for all {; » 2
P2(R [0;1]), .

W2( 1; 2)= inf jri raj? (dry;dro);
2( 17 2) Rs

with ( 1; ») the set of probability measures R [0; 1]*)? with rst and second marginals
equal to ; and , respectively. It is well known that the in mum is attained and tNas

de nes a complete metric oR>(R  [0; 1]*) inducing the weak topology, strengthened with

the convergence of second moments (see Villani [50] for the relevant properties of Wasserstein
metrics).

Elements oR [0; 1]* describing the state space of a single neuron's dynamics will be written
in the form(v; u) = (V; (Um; Un; Un;Uy)), With U = (Um; Un; Un; Uy) 2 [0; 1]%.
We introduce the function: ( R [0;1]) (R [0;1]*)! Rgiven by
(w;z;v;u)= F(V;Um;Uun;up)  Je(v W) Jenz(V Viev)

and, for each channel type= m;n; h;y, we de ne functionds,;a, : R [0;1]*! R by

be(viu):= x(V)(T ux) x(v)ux and

ax(v;u) =( x(VQ  ux)+ x(V)ux) (ux)
(thatis, 2(v;uy) = 2ay(v;u)).
Given 2P,(R [0;1]*) we write

z

hVi= vV (dv; duy;duy;duy;duy) 2 R;
z®

h Xi Ux (dV;; dum ; dun;dun;duy) 2 [0; 1] for x = m;n; h;y and
5

R
hi=(hYi;(h*)x=mnhy )2 R [0;1]*:
Finally, with , denoting the Dirac mass &at2 R [0; 1]*, we write
poi= 1)6 (
. X[I
Ny
for the empirical measure of system (2.1) at time 0.

) 2P2(R[0;1]) (2.9)

random vectors with (compactly supported) common Igv P (R [0; 1]*) not depending o .

a) For eachT > 0, the procesg¢ N :t 2 [0; T]) converges in law o€([0; T]; P2(R  [0; 11*)),
whenN tends tol , to a deterministic and uniquely determined ow of probability measures
(¢ :t 2 [0;T] having uniformly bounded compact support. Moreoger : t 0) in
C(R*;P2(R [0;1]%) is a global solution (in the sense of distribution) of the non linear
McKean-Vlasov Fokker Planck equation

X
@ =@ (hYihliii) .+ 2 d (a0 @b (210
x=m;n;h;y

with initial condition g.



b) There is a constar®(T) > 0 depending oV/g"®, T > 0 and on the coef cients of system
(2.1), but not onN , such that

sup E W2( N; 1) C(T)N % (2.11)
t2[0;T]
c) If additionally functions , and  are of classC?(R), (or of classC*(R) when = 0),

( ¢t 0)dgivenin part a) is the unique weak solution (f.10) with initial condition ¢
which has supports bounded uniformly in time.

Remark 2.6.

i) We have not been able to prove uniqueness of weak (measure) soluti@spn full gen-
erality. However, the global weak solution ¢2.10) given by Theorem 2.5 a) is uniquely

determined.
ii) Classically (see [39], [49]), convergence inlaw o} to { for xedt 0implies the asymp-
totic independence a¥ ! 1 of any subfamily(xt(l);:::;xt(k)) of xed sizek N of

system(2.1) (the propagation of chaos property). Somewhat counterintuitively, this is not in-
compatible with part a) of Theorem 2.3, even whére 0.

iii) Parts a) and b) of Theorem 2.5 also hold for general exchangeaglehaotic initial conditions
(X0 x Ny (that is, such that ¥ converges in law to g onP,(R  [0; 11%)), in which
case one must add a term of the fo@& W32( ); o) onthe right hand side of2.11)

iv) The rst assertion in Theorem 2.5 would be standard if the coef cien{ih) were globally
Lipschitz. Under the key Hypothesis 2.2 we will be able to reduce the proof to the Lipschitz case.
Moreover, this assumption will allow us to take full advantage of the estimates for empirical

measures of i.i.d. samples proved in Fournier and Guillin [20], from where the convergence
rate (2.11)will stem.

Equation (2.10) can be interpreted as the dynamical description of a system of in nitely many HH
neurons in mean eld interaction. Thanks to Theorem 2.5 and to the uniformNy @f the results
in Theorem 2.3, we can now nally transfer our synchronization results to this in nite dimensional

setting. Foreach; 0, dene (0™ :t t))= (Pr;m!;bl;R1:p):t t; asthe
solution of the ordinary differential equation

t
V=0 PR g bl RD) e (B Vieyds;
z' (2.12)
Bt =i + ()L ky) (SR ds; x= minihy;
ty
with deterministic initial condition
)bttll;l =h tli;
where( ¢ it 0) 2 C([0;1 );P2(R [0;1]*)) is the global weak solution of (2.10) with initial
condition ¢ given by Theorem 2.5 a). We have:

Corollary 2.7. Under the assumptions of Theorem 2.5 and for the same constants as in Theorem 2.3,
whenevedg > J 2 we have:

a) Foreveryt to,
0

0
W3( +; hi) W 2( to; hloi)e (t to) 4 275

- (2.13)

In particular, limsupy;,  W3( ¢ h i) 2C% .
b) Foreveryt; tgand 0 we have:
co
sup  W3( t; )btu:l) Kon2 Kge ot to)+ 27'0 1+ K ):

tp t tp+

We next present some numerical simulations which illustrate the validity of our theoretical results
(at least from a qualitative point of view) and moreover we explore the behavior of system (2.1)
when several neurons subpopulations are considered and when only chemical interaction is present.
Furthermore, in view of the numerical experiments, we discuss some of the limitations and possible
extensions of our theoretical results.



3 Numerical Experiments

Inspired in Bossy et al. [9], we have implemented numerical simulations of system (2.1) by means of
an Exponential Projective Euler Scheme (EPES) which we next describe.
For a given time horizom > 0 and a natural numbévl , we consider the time grifity =

the system we consider independent random variables, uniformly distribufed 6@ 100] [0; 11*.
Given the value of the systemtat, the value forl?t(k'fl is computed as the exact solution to the ODE

z

. ) t ) . . .
90 =90 + t FORO;m;b{);R{)ds
k
Ze g N X
1 . . 1 . .
Cn 000 T 3al R0 Ve ds:
j:l j=l

which is indeed a linear ODE siné¢eis linear inV. To computd@ﬁik)+1 we rst solve the SDE

Zt

xV =m0 xO) (B)xds
z

+ (09 My dWX ; x = min;h;y;

te Pt
tk

which corresponds to an Ornstein-Uhlenbeck process, soxﬁﬁgt can be exactly simulated. How-

ever, since conditionally oh(;) ;j kthelaw ofxfik{l is Gaussiant xfik{1 2 [0; 1]g happens with
positive probability, so we are led to de rté'k)1 by projectingxﬁik{1 onto[0; 1], that is:
8 :
oz 0 x{ 2(1 50
B, = x x, 200

1; xﬁik)ﬂ 2 (@Q;+1):

In Appendix E we prove the convergencelid-norm of the EPES applied to (2.1). We also
provide the rate of convergence whichli2 as for the classical Euler scheme.

In our simulations we have used as cut-off function (see Hypothesis 2.1-2)
(

0:1exp % u2 (0;1)

(W= 0 u2(0;1);

whereas, the speci c values of the constants we have used are given in Table 1, and the rate functions
x and y are given in Table 2 and shown in Figure 2. Although our results hold irrespectively of the

value of input current, we have taken in all simulatiois= 25, in which case a noiseless single

neuron with the chosen parameters has a limiting regime of sustained oscillations, see Figure 3.

gna | 120 mS=cn] | gk | 36 [mS=cm®] | g. | 0:3 [mS=cm’]
Vra 50 [mV] Vi 77Mmv] | Vi 54:4 [mV]

Table 1:Values for the constants in the function for Taken from [17, p.23]

3.1 Numerical experiments illustrating our theoretical results

Our rst numerical experiments illustrate the results of part a) in Theorem 2.3. In Figure 4 we show
one trajectory of the system (2.1) under purely electrical interaction, for different sizes of the network
and levels of noise. The rst row shows the trajectories of a netwofloofeurons for =0, =0:5

and = 1. From the second to the fourth row, the trajectories of networkd6f 1000and 10000
neurons, respectively, are shown. The scale of all plots is the same. We observe that the qualitative
behavior in terms of is the same for all rows: as expected, the noiseless network ultimately reaches
perfect synchronization, whereas for 0 the trajectories of the neurons lie in a band whose width

9



Channel type «(V) x(V)

. o 0:1(V +40) V +65
Sodium (Na) Activation Channefa o V + 20 4exp 18
P 10
. L ) V +65 1
Sodium (Na) Deactivation Channdis| 0:07 exp 20 e vV 35
P 10
Potassium (K) Activation Channets 0:04(V +55) 0:125exp Vv +65
1 ex V +55 80
P 10
Neurotransmitter Channeys > 0:18

l+exp( 0:2(V 2:0))

Table 2:Rate functions for the dynamics of the channels. Taken from [17, p.23] for the Sodium and Potassium channels, and
from page [17, pp.160,163] for the neurotransmitter channel.

(a) Activation Sodium Channels. (b) Deactivation Sodium Channels.

(c) Activation Potassium Channels. (d) Synaptic Channels.

Figure 2:Charateristic plot of rate functions and .

increases with , as predicted by Theorem 2.3, a). Moreover, the speed at which synchronizations
takes place does not depend on the size of the network nor on the level of noise.

In our second experiment, we estimate the expected value of the empirical variance of a network
of various sizes and for different levels of noise. More precisely we estimate the mean of

X
V_i
St_N

2

X
! ;X =m;n;h:

. 2
Vt(l) VAR N
i=1 i=1

xt) xt

over50000Monte Carlo replica for each value of2 f 0:1; 0:5; 1gandN 2 f 10; 100 1000 1000Q

(we nowuse =0:linstead of =0 since inthe latter case the obtained plot quickly becomes at).
The computation of the empirical variance for each time step and replica was done using the corrected
two-phase algorithm to avoidatastrophic cancellationésee [14]). The results of this experiment
appear in Figure 5, where a different variable is presented in each row, from top to bottom: voltage

10



(@1 =o0. (b)1 =10.

(c)1 =100. (d) 1 =200.

Figure 3:Reponses of the model (1.1) depending on the input curremt oscillations it = 0 (a); large amplitude and low
frequency oscillations if = 10 (b); small amplitude and high frequency oscillations$ i 100 (c); damped oscillations if
I =200 (d).

(V), Sodium activation channelm), Potassium channels)and Sodium deactivation channeg.(

Each column corresponds to a different level of noise, increasing frer@:1 on the left,to =0:5

in the middle and to = 1 on the right. In each sub gure we show the dissipation of the expected
value of the empirical variance for networks ¥ 100, 1000and 10000neurons. Just as for one
trajectory of the system, we observe again a quick synchronization, now measured in terms of the
average dispersion over many trajectories, at speed which does not depend on the noise or the size of
the network, with the heights of the peaks increasing witNotice that double peaks are expected
from Figure 5 already: even a small dispersion of the phase among different neurons can induce a
high dispersion of their voltages and channels right before and after a potential spike is emitted. This
dispersion increases with, but tends to stabilize &8¢ becomes large (notice that the red and green
lines in Figure 5 are indistinguishable), consistently with Theorem 2.5.

From this last observation, it is also interesting to point out that the maximum variance over time-
windows of xed length > 0 which drift to in nity cannot decrease for every possible value pof
unless 2 = 0. Indeed, in the noisy case the voltage of signi cantly many neurons can in principle
differ from the voltage of the underlying one-neuron dynamics, over time-windows larger than its
period, by as much as the whole asymptotic range of the voltages dynamics. Thus, albeit not sharp,
the estimates in part b) of Theorem 2.3 and Corollary 2.7 are qualitatively correct.

11



(@N =10, =0. (b)N =10, =035, ()N =10, =1.

(d)N =100, =0. (e)N =100, =05 (N =100, =1.
()N =1000, =0. (h)N =1000, =035, () N =1000, =1.
() N = 10000, =0. (k)N =10000, =0:5. () N =10000, =1.

Figure 4:Synchronization of a network under pure electrical interaction for different network/Nizes noise levels .
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@V, =0:1 (b)V, =0:5. @V, =1.

(d)m, =0:1 (e)m, =0:5. Hm, =1.
(gn, =0:1 (h)n, =0:5. @n, =1.
@)h =0:1 (k) h, =0:5. Mh, =1.

Figure 5: Dissipation of the empirical variance for different level of noise. First row: expected empirical variance of the
voltage; second to fourth rows: expected empirical variance of the Sodium activation champélse(Potassium channels)(
and the Sodium deactivation channdi} (espectivelyJch = 0 andJe = 1 in all simulations.
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3.2 Beyond Theorem 2.3

We next carry out two type of experiments in situations not covered by our theoretical results on
synchronization. In the rst one we study the behavior of a more realistic network with several
subpopulations of neurons. The dynamics of itk neuron in the subpopulation of type2 P,
with P denoting the set of subpopulations, is given by
z t
v =v@P+  F v mind:h()ds

z
tX g X M v 1 X i)y (0 :
Ni JE (Vs Vs ) Ni ‘]Chys (Vs Vrev )d51
0 Hp j=1 2P j=1
x = x4 i VAN xIy L ovix(ds
Z t

+ LV xDydwE s x = mymhy; t 0;
0

whereN is the number of neurons in subpopulationWe notice that in this case the electric and
chemical conductivity parameters §R§ j Pj matrices. Propagation of chaos for such systems as

N !'1 was proved in [10] (though under slightly more stringent assumptions on the coef cients).
In Figure 6 we show one trajectory of a network1dfO neurons with two subpopulations, each of
them with50 neurons. On the left (plot (a)), we consider the two subpopulations with different levels
of noise and different input current for each of them (diffeféit meanwhile the electrical conduc-
tance matrixJ  is homogeneous, with all the components equdl.t®e observe that the whole
network gets synchronized. We believe that Theorem 2.3 can be easily extended to this case (or,
more generally, whemf . ,p Jz is big enough). In the middle (plot (b)), we observe that, if in
addition to considering different subpopulations, the matgxs not homogeneous (taking in some
entries strictly smaller values than the largest vdlyehen synchronization can be observed in each
subpopulation but not globally. More precisely, in these examples the two populations synchronize
out-of-phase. Finally, on the right (plot (c)), we observe no evidence of synchronization when neu-
rons in one population with sanfreare electrically connected with two small but different values for

Je. This is in line with our theoretical result that thresholds the synchronization of the dynamics for
a big enoughinf . ,p J¢ , evenif Theorem 2.3 gives only a suf cient condition da

According to Kopell and Ermentrout [34], “a small amount of electrical conductance can increase
the degree of synchronization far more that a much larger increase in inhibitory conductance”. This
is consistent with what we have observed in our numerical experiments. The effect of the electrical
interaction is stronger and faster than the effect of the chemical interaction. Therefore to appreciate
the effect of the chemical synapses, the second type of experiment we have performed concerns only
chemical synapses, that i = 0. In Figure 7 we show one trajectory of a networkl®0 neurons
interacting through inhibitory chemical synapses (in this case, we chégse 75 according
to [17, p.163]). We observe an anti-phase synchronization that persists in time (see in plot (a) the
transition to the stationary regime in plot (b)), in which two clusters of simultaneously ring neurons
emerge. We note that the relative sizes of the two clusters is random and might change from one
simulation to another one.

On the other hand, Figure 8 shows one trajectory of a netwotk@heurons interacting through
excitatory chemical synapses (whh, = 0, see [17, p.161]). Some kind of synchronization, similar
to the case of purely electrical synapses (see e.g. Figure 6(a)), emerges also here, although the shape
of the oscillations is different and the frequency of the spikes is smaller.
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(a) Populations are different, the inter- (b) Populations are different, the inter- () Populations are equal, the interac-
action is homogeneous. action is heterogeneous. tion is heterogeneous.

Figure 6:Trajectories for network of00 neuron with two subpopulations.

(a) Voltage of100neurons at the beginning of the simulation. (b) Voltage of100 neurons afte®00[ms].

Figure 7:Trajectories for network of00 neuron with inhibitory chemical synapses

(a) Voltage of100neurons at the beginning of the simulation. (b) Voltage of100 neurons afte®00[ms].

Figure 8:Trajectory of a network 0100 neurons with excitatory chemical synapses
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4 Concluding remarks and open problems

The numerical experiments presented in Section 3.1 show that, from a quantitative point of view,
our theoretical results should still allow for considerable improvements. Indeed, our simulations
indicate that the actual global bounds on the voltage, the critical interaction strength above which
synchronization happens and the asymptotic discrepancy from synchronization are much smaller than
suggested from rough estimates of the bounds in our theoretical results and their proofs. In turn, the
actual exponential synchronization rate seems to be much higher. Also, our theoretical results treat
the values of the voltage and channels variables jointly, although they are of considerably different
orders of magnitude (i.e. channel variables and variances are negligible compared to the voltages
ones). The numerical experiments show in turn that the theoretically described behavior happens at
each variable's scale.

We must also emphasize that the anti- or out-of-phase- synchronization responses put in evidence
in the numerical experiments presented in Section 3.2 are not well captured by the empirical variance
criteria proposed in our Theorem 2.3. In those cases, a natural, though challenging strategy would
be to extend the phase reduction approach and results developed e.g. in [28] and [27] for nite
deterministic networks of HH neurons in order to obtain rigorous synchronization results, regardless
of the network size, and then in the mean eld limit. Another interesting but also challenging question
is studying the existence of stationary measures for the McKean-Vlasov limit equation in relation
with some characteristic behavior of the system and its possible synchronization regimes, in the vein
of recent works of Bertini et al. [8], Giacomin et al. [24] and Lu¢on and Poquet [37]. These questions
are left for future works.

A Basic properties of the model(2.1)

We start establishing three basic facts about the system of stochastic differential equations (2.1): its
(strong) global well-posedness, the fact that the open channels proportion processes stay (as required)
in [0; 1] and, nally, and explicit global bound for the voltage processes in terms of a bound for the
initial values.

Lemma A.1. Assume Hypothesis 2.1. Then, strong existence and pathwise uniqueness holds for
system(2.1). Moreover, a.s. foralt  Oand evenyi = 1;:::;N we havem";n{’; h{";y{y 2
[0; 11*. In particular, the absolute value i2.2) can be removed.

Proof. It is enough to prove the result for deterministic initial data so we assume this is the case.
TakeM > 0 xed, and forj = 1;3;4de ne truncation functiong,, onR by

_ E Xl x2[ M;M]
ph)=. M x2(M;1)
(M) x2(1 ; M):

Let X (M) = (X @M oo X (NMO)y with X M) = (M) (M- g (5M ) g BV (M) =
1;:::; N be de ned by
N N 2 . 4 . . 1 X . .
Vt(I’M ) = VO(I’M ) 4 i Fu (VS(I:M );mg;M );n(sl;M );h(SIJM )) il JE(Vs(l;M ) VS(J;M ))
j=1
iX\I Jenbt ( (kM ))( 1 (V(i;M )) Viev)ds;
N chPw (Ys Pw (Vs rev) OS;
. . z,
XM = XM+ xRl (@ Pl M) (b (R )pl (<M )
Z t

o ()M )Wt x = minshy;
0

(A1)
where

Fu (viminih) =1 gepy (M)(Py (V) Vi) gnaPy (M)py (h)(P (V) Via) Gu(v W): (A2)
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Is is immediate that the drift coef cients in system (A.1) are Lipschitz continuous. This is less clear
in the case of the diffusion coef cients, so we check this point next. Notice that

poMa P Wl (DU Sw = max (W) ) < 1

whereas, thanks to point 2) in Hypothesis 2.1,

1 — H . .

(Vu)ran - x(pM MA@ W+ x(pw (MU v = Ll ]f x(V); x(v)g> O
Therefore, one can nd a bounded Lipschitz continuous funagionR ! R, such thaty(s) =
on( wm =2;2Sy ) and rewrite the diffusion coef cients in (A.1) as

(P (V)W) = gx( «(oy (M@ )+ (P (V))U)) (u):

It is then easily seen thaty(py (V);u)  x(py (VO;u9)  Cm(u  ug + jv  v9) for some
Cwm > 0in each of the three casés; u% 2 [0; 1], (u; u9 2 ([0; 1]°)¢ and(u;u% 2 [0;1] [0;1]°
for anyv;v°2 R. Thus, global pathwise well-posedness for system (A.1) holds.

Thanks to the second assumption in point 4) of Hypothesis 2.1 and the fack (at) = 0 for
(viu)2 R (0;1)¢and[ x(V)( u) x(MWullli1 .gq(u) 1p;a y(uw] Ofor(viu) 2 R?,
we can more apply Proposition 3.3 in [10] to get tk&t™ ); :::; x(NM ) are con ned in[0; 1] for all
time (notice that the proof of that result still works if Hypothe5|s 2.1 i) therein thia¢ compactly
supported i(0; 1) is replaced by being supported if0; 1]).

We can now use standard arguments to deduce global existence and pathwise uniqueness of a
solution to system (2.1). Indeed, setting = inf ft 0: th(M)j M g, using the global
Lipschitz character of its coef cients together with It6 calculus and Gronwall's lemma we get for
everyM?> M that a.s. for allt 0, Xt(AML = Xt(AM;) This implies that yo >  a.s. and
allows us to unambiguously de ne a proce$ssolving (2.1) on the random intervid; ), with

= SUPys o M, DY X = Xt(M) forallt 2 [0; w]. On the other hand, singp, (z)j | zj for
all z 2 R, for two constantsC;; C, > 0 not depending oM > 0 we havejFy (v; m;n; h)j
C1 + Cyjvj for every(v;m;n;h) 2 R [0;1]°. Using this control on the right hand side of the
equations fo @:M); ... V(NM ) jn (A 1) and Gronwall's lemma we get

EOXe il C();

for some constan€(t) > 0 not depending oM. This yieldsM P[ y <t] C(t), whence
P[ < 1]=0 lettingM and thert % 1 . The statement follows. O

Remark A.2. i) The arguments given in the previous proof also show that each of the functions
x is locally Lipschitz orR  [0;1].
i) The same proof also works for some extensions of our model. For instance, if independent
Brownian motions are added to each of the voltage processes.

We next show that under the additional Hypothesis 2.2, each of the voltage processes is bounded
uniformly in time and inN . Below and in all the sequel we denote
V= max  sup jV{j:
’ i=1;:5N s2 [t;l )
We also set
Rma>< .= max jl + gNaVNar + gKVKS+ gLVL + JCthevUj:
rs;u 2[0;1]
Proposition A.3. Under Hypothesis 2.2, forevely 1andt Owe have a.s.

2R max
9

VN Ve oty (L e 9

and
4Rmax

WAV VARRES +2V e At (A.3)

a
As a consequence for evely 1, there exists at least one invariant law for the solution to
(2.1), namely there exists a solutigX;t  0) to (2.1)such thatX; haslaw Y forallt Oas
soon asX has law Y . Moreover, this invariant measure is exchangeable.
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Remark A.4.

i) The boundV; on V™ is in general not optimal. For instance, "> < 2%m, one can

chooseV{"™ > gZRmax and get from the last identity i(A.5) that V& 43:"5‘* < V.
However in order to state a synchronization result that holds for a general class of initial
conditionsVp, the fact that the bound, does not depend on the electrical connectiviyand
thatV, =lim¢y; V, = 4R max does not depend on the initial condition will be crucial. See
point i) in Remark B.4 for a related discussion.

i) If point 2) of Hypothesis 2.2 does not hold, by slightly modifying the arguments of Lemma A.3
we still can get the a.s. bound

Vt(i) 4Rmax +2 !V J e gt
a N

implying a uniform inN bound forE(V,"1) if for instance all the random variabléﬁJN ,
i=1;:::;N,N 1lareequalinlaw and have nite second moment. However, we have not
been able to fully extend our results to such a framework.

iii) The same arguments also show that a bound (k) holds withV,"7 replaced by
max; = max - sup j00j:

That is, the voltages obtained with the EPE scheme are also uniformly bounded.

In the proof of Proposition A.3 and later, we will make use of the the following version of Gron-
wall's lemma (see e.g. Ambrosio et al. [1, p. 88]).

LemmaA.5. Let :[0;+1)! Rbealocallyabsolutely continuous functionamd2 Li ([0;+1 ))
be given functions satisfying, for2 R,

% 20)+2  2(t) a(t)+2b(t) (t) forL! ae:t> 0
Then for everyl > 0we have

Z, D=2 Zq
T (Mm)j 2(0)+ sup €S a(s)ds +2  eljbt)jdt
t2[0;T] 0 0
Proof of Proposition A.3.Setting
_ h i3 h iy,
R( == I + gvaVna M) h{) + geVk n{)  + g Vi + JenVeewyd s and

. h o ig h 4

AL = gya m) hD) + ge n{) 4 g+ Jonyd s
the dynamics of the potential can be written as

_ 2y

v = v+ RO ADVD 3pv® + JevN ds:
0
Therefore, we get
0y 2 (i) 2 Zt.. . L2 L2 .
Vil = vy 2 ROV AL v Je V&0 4+ 3pvNviDds:  (A4)

and
th" ) . ) 2
iVij? = jVoj? +2 ROVE AL vD JEjVsj? + NJg(VN)2ds:
0 =1
Notice that
nzo TR ava L (1112 (inz_ L., .2
(Vs )" = NZ VsV N2 (Vs )+ (V)" = WJVsJ,
i =1 iij =1
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which yields
GVt +200Vii® - 2RV
By Lemma A.5 we deduce that
z t

jVii | Voje %' +2e 9 e9%Rgjds:
0

SincejRg)j Rmax; we then get
2R max

VtN -Vi J;VLJE at 4 M(l e th) Vomaxe ot 4 (1 e th):
N N a o
which is the rst desired inequality. Using this in (A.4) yields
G200+ 39 RO + 3V v
2 Rpact e W™ M g oty HleRmax 0,
O a
Applying once again Lemma A.5, we obtain
Vt(i) Vomaxe (gu+ Jelt
z t
+2e (GtJet glotde)s R 9 +2Je + Jg 2Rmax e 95 (ds
0 a a
+2]
= yMmaxg (+Je)t L oR 9 E 1 e (G+Jde)t
0 " (o + Je) ( )
+2 Vomax 2Rmax e gLt e (gu+ Je)t
a
- 2Rmax gL+2‘]E +2 Vmax 2Rmax e oLt
o o+ Je 0 O
2Rmax Vomax e (Gu+Jet
o+ Je
4R
g':""x +2V"e %' =V, (A.5)

which implies the asserted bounds\3f™.

Let us now deduce the existence of an invariant distribution which is exchangeabl®NLet
denote the semigroup associated to the solution of (2.1), that is fode&cliR  [0; 11*)N andB
Borel setof(R  [0; 1])N,

PN (X;B)= P(X{ 2 BjXo = X):

Consider also the probability meas®R& ( ) on(R [0;1])N, de ned for any law as
z (21 !
RY()(B)= = PM(X;B)dt (dX):
(R [0;2]4)N T o

Since the voltage component is uniformly bounded in time, by (A.5), the solution to (2.1) lies in
the compact sef 45z 2vg"®; 48 +2Vg"™]  [0;1}*)N, and then for anyTv ) % 1 , and
any with compact support, the sequer(ééT“M ( );M 0)istight and has a subsequence weakly
converging to some probability measur . According to Krylov-Bogoliubov Theorem,) is
invariant forPN .

Let us now choose and exchangeable initial laviFor any measurable and bounded functign
the identity

y Z
PN (X;dy) (y) (dX)= PN OGAY)( )(y) (dX):
(R [0;1]4)N (R [0;2]4)N
for any N -permutation of the coordinates follows directly from the exchangeable structure of the
system of equations (2.1). TherefoFe'}‘M ( ) is exchangeable for arily, , and the corresponding
¥ is exchangeable as the weak limit of exchangeable measures.
O
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B Synchronization: proof of Theorem 2.3a)

In the sequel, for any locally bounded real functfoon R and eactR > 0 we will write

kf ki .r == sup jf(Vv)j:
v2[ RR]

We will repeatedly use a simple control of the increments of the funéticstated in next lemma
for convenience:
Lemma B.1. We have
(F(Viimi;nishy)  F(Vaimzinzihg)) (Vi Vo) a(V1  Vp)?
+4gkjVa  Wiing  njjiVi Vyj
+30naV2  Wnajm1 majjVi
+0naV2  Whdih:  hejjVi Vo

(B.1)
foreverym;;ni;h; 2 [0;1]andV, 2 R,i =1;2.
Proof. Since
Pyt = (Y F )X Y);
and
x3u  yev= u(®+ xy + YA y)+ YU v);
we get

F(Vi;menghy)  F(Vamaing hp) = (gknt + gvamihs + g )i Vo)
a(V2 VK)(n + n3)(ny+ ny)(np ny)
Ona(V2 Vaahi(m?+ mimz + m3)(my  my)
ona(V2 Vagm3(hy  hy)
and the asserted bound follows. O

The following result is the core of the proof of Theorem 2.3:

Proposition B.2. For eachV > 0, there are constanty: > Oand > 0 not depending ol nor
on such that for eacde > J ¢ and any solutiorX of (2.1)satisfyingvg'® V , one has

: : : . 2C.
Eix{" xP2 e xy xPi e t+ 27 8t 0
foralli;j 2f1;:::;Ng, where
X
C;= kx_xkl;V <1:
X=m;n;hyy

Proof. Let us write V; = Vt(i) Vt(j) and Xx; = xgi) xgj). Thanks to the bound (B.1), we have

Zt
( V2= Vo)’+2  [FOVmnl0 a0y F VI m)nd) hd))] Veds
0
Zt
(2Ie+2JchyN)( Vs)2ds
0 Zt
( Vo)2+  8giV)  Viji nsji Vsj+60naVd)  Vaai msji Vejds
0
Zt Zt
+  20naV) Va) hsjj Vsjds (gL +2Je +2Jcry )( Vs)2ds
0 0
Zt
( VO)2+  "m( ms)®+"n( ng)®+ "n( hs)’ds
0
Zt 2 2 2
29 +2Jg + 2 Jchyl 95"“*‘ 16.5.MK '\f“a ( Vs)?ds;
0 m n
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where we have used Young's inequaligh ", a? + % for x = m;n;h;y, with", > 0to be
chosen later, and where we have set

Mpa = max jv Vna, Mg = max jv Vj:
Na gNavz[ @, ]J Nal K gsz[ W ]J KJ

On the other hand, for the channel types m;n; h;y, we have
Z¢ h _ _ _ i
E(x)® =E(x)° +2 E @ x)(xM) <) xs ds
0
Z¢ h , , i
2 ExPvE®) xv1)) xs ds
0 .
Z¢ h . . i
2 E (V) + (VD) (xs)? ds

0
Zi n

|
+ B ZvEAxIN+ Zvi;x()) ds:
0

By our assumptions, for all 0 we have frok = i;j ,

x2S W) ke
Using Young's inequality in the same way as before yields
" #
5 ) Z (L +L )? )
E ( x) E( x)°+ E ———( V)" ds
0 X
Zt
(2 x "x) E ( Xs)2 ds+2t %k x _ xKiwv
0

wherel; denotes the Lipschitz constant pnV ;V ] of a locally Lipschitz functiorf , and where

= T Wg> 0

Adding up, we get
_ _ h o
E X x@P o Ex§ x§pP
Z: h 2 2 2 2
Mg, +(L +L 1eMg+(L + L
E 29 +2Je Na (..m n) s (.. : .)

0 m n
5 .
M,ﬁa+(|_"h+Lh)2 (LytLy) ( VS)ZIds
h y

Z Z

@m 2'w) E( mg)?ds (2, 2m) E ( ng?ds
z) z,”°

@2hn 2%) E(h)*ds 2y ") E( y)®ds

0 0

+2t 2C. :
De ne now as the optimal value of the problem
. max, (J, m;ni " y) s
s ms ns hoy y

where

(J"m:"ns"n"y) =

min  2g. +2J

m n h
)

n Zmi2a 22y w2y Ty
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Notice that s strictly positive since( J;"m;"n;"n;"y) can be made so by taking small enough
"x > 0forx = m;n;h;y and then large enough > 0. CallingJg the smallest > 0 such that
(J;"m;"n;"n"y) 2 argmax |, it follows that for everyde > J ¢,

E jx{ xIp Eﬂxg’ Xé”JZi ZtijS) X0 +2t *C;
0
Applying Lemma A.5, we obtain
e O X0 e e xPp s @ Dpee T
and the desired result. O

The next result removes the dependance of the previous one on the Youadl the price of
ensuring exponentially fast synchronization only from some time insgant O on. It will then be
easy to deduce part a) of Theorem 2.3.

Theorem B.3. There are constant3? > Oand ° > 0not dependingolN 1, on O noron
the initial data, andy 0 not depending oiN 1 noron 0, such that for eaclig > J E the
solutionX of (2.1)satis es, for everyt  to,

_ . , 2C°
E X xPP B XY x@P e (e 250 i 211:Ng;
where X
c? = K «

x=m;n;h;y

Xk]_ Rmax < 1
T

Proof. Fix ¢ 2 (0;1), taketo  Osuch thaRVj"®e 9t 0% and, conditionally on the sigma-
eld generated by(Xs : s to) apply Proposition B.2 to the shifted proce€8:= ( X+, :t  0)
with V. =V, 4+ ()R o S%. The proof is then achieved taking expectation in the
obtained mequallty O

We can now nish the proof of Theorem 2.3. a). Here and in the sequel we den&¢ bydS
the empirical variance of voltages ardype channels at timig respectively:

1 X

2
V _ .
sy = =

. 2 1 X .
v yN and Sf = N xM XN
i=1 i=1

Proof of Theorem 2.3. a)Applying in the conclusion of Theorem B.3 the elementary identity

R (i )%= (x M2 forevery 1;::1; N 2R;

1 0 1
X X .
E@sY + SA EQ@sY + SpAhe (e 2

x=mn;n;h;y X=mn;n;h;y

in the general case. If, additionally, exchangeability of the initial condition is assumed, the path law
of system (2.1) is exchangeable, by pathwise uniqueness. The asserted inequality follows.
O

Remark B.4.

i) Theorems 2.3 and B.3 show that, for large enoudgh synchronization of the netwoi.1)
always occurs, as long as the initial voltayg is bounded, but regardless of its actual values.
More precisely, the timg > 0 which depends ok§"®, on Rmax and on some arbitrary choice
of the parametery > 0, but not onJg, is one possmle time after which we can grant that
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the voltage trajectories stay in some xed interval not dependiny@nThen, aftetty and if
Je was chosen large enough, synchronization occurs at least at the exponentia® natéch
depends on coef cients of the systé?rl) but no longer on the initial data. In turn, for large
enoughJg, Proposition B.2 ensures synchronization fregt= O on but only ifV"®*is small
enough.

i) Notice that the function in the proof of Proposition B.2 (and hence the constantherein)
increases when its parametér decreases, where&. decreases whevi does. Therefore,
letting o ! O(ortyp ! 1 ) vyields the best (by this approach) bounds for tinesup in
Theorem 2.3. Moreover, the largest possible exponential rate 0 and the smallest possible
interaction strength)? 0 that can be obtained (but not necessarily attained) in Theorems
2.3 and B.3 by our approach are andJg corresponding t&/ = %Lma*. These choices are
certainly not optimal in general.

C Synchronized dynamics: proof of Theorem 2.3)

Our next goal is to prove part b) of Theorem 2.3.

Remark C.1. Proceeding in a similar way as in the proof of Proposition A.3 one checks that the
procesg2.6)satis es 31%j3 + 20,j%j3  2Rmai%j; which now yields, forany  t,

2R max

iV e ot 4
O

(1 e gu(t tl)):

Applying onV;N = ¥, the rstbound in Lemma A.3 we get thij Vi"@e 9t + %{“EX for every
t ti. Thus,ifty 0is chosen as in Theorem B.3, we deduce that
(
- - V, 5R
max sup jVsj; sup j%j @ = max.
s2[t1;1 ) s2[t1;1 ) 2 29

(C.1)

We rst prove

Proposition C.2. Letty be as in Theorem B.3 and> 0. There are constant&;. ;K,. > 0
increasingly depending on> 0, but not depending oN nor on the initial condition, such that for

eacht; tg,
|
. 0 2co 2
E  sup jxMt RNj? (Vip)2+4 e e i Ky o+ Ky —CO

0
ty t oty N

(C.2)

Proof. For notational simplicity we write in the pro®®N := Y\ * . Notice that the average process
satis es the dynamics
Zy 1 X 4 R
VARV N FOVA,m@n:h()y  JcyN (VN Viey)ds
1 i=1
X 2y X2

N X{\ll + = X(VS(J))(]_ xg)) x(Vs(J))XgJ) + N x(Vs(J);XgJ))dWSX" :
. i t

Xt

Therefore, after some manipulations, we get that

2 Zt"]_)(" #2
vhoob = N FOVE,m8nh(y  Fov;mlndshY)  ds
t i=1
Zinh

+ @ 20cyN)VN B2 4236, Ve (YN )V BN)ds

t1
1+ 1o+ I3:
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By Jensen's inequality and the bound (C.1) we have

Ztlx\] h (1) (i) () w(i) N.N. N Ni2
Il . ﬁ F(Vs ;ms ;ns ;hs ) F(Vs ;ms;ns;hs) dS
1 i=1
Zy 1 X h _ _ _ _ 2
N 4 ge(n{)*+ gna(mN3h + g0 (VD V) ds
t1 i=1
Ze g h ' _ , A iy
oy 4 gua(VY Wa)hl) (M2 + mOmd +(m¥)2 (m{? ml) ds
t1 i=1
Zy g h ' , , i)
N A Vo (n)7+(ndh? nd 4l (n) nd) ds
1 i=1
Zegw h _ i)
o A a(V Va(mi)hd hY) ds
‘1Zt i=1

KE  sY+ s+ SP+ sShds;
ta
with K explicitly depending OISUP, 5 | SR max; 5F max) maxfiv. - Wnai;jV  Vkjd, gk andgna. Mean-
g ' 29
while, using (B.1) we get ] ]
Z t
I 200 (VY W2 +agY Vi (WY BM)Z+(nd bl)?
t1

+30v 0 Wha (V& 02+ (ml ml)?

+ oW Vaa (VY BN)Z+ (RN RY)2 ds
Zt
K& t(sz V24 (nd b2+ (md )2+ (Y BY)ds;

with K2 also depending on those quantities angjonBy similar arguments, we get
z t
la K (W 02y s
t1

for someK;’; depending o, and ONSUP, 5 57 max; 57 max] V. Vied. We thus get:
=

29|
Zt Zt
2
vN 9 K SY+8M+8SM+8!ds+ Ky jxN 0Nj2ds

t1 t1

for some expliciK'y a.s., from where

z z
2 t t
E sup VN W K E SY+SM+SM+S!dstky E sup jx\  0Nj? ds:
ty st t1 t1 t1 u s
(C.3)
On the other hand, for type channels we get
1 X Z . . S
x'om = (V@ xE) (DX xS+ (W )xg ds

J

+ v xY) kY B ')+ (8N)RY ds
ty
1 X Zt ) ) .
+ ﬁ X(VS(])’XgJ))dWSXvJ
j=1
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Fort 2 (t1;t; + ) we deduce:

Z, W
1 ) ) ) . 2
o B 3 5 (I X)X (VD xS+ G (Ve)xg ds
t1 j=1
Z, 2
+3 (VA X)X L@ B+ K (B)RY ds
0
|
R o 2
+3 = X(VS(J);Xg'))dWSX;J
N i=1 U
The previous yields,
E sup (xY ®Y)2
t; s t
2 3
Zt 1)(\1 j j j j N N N N 2
3 EBAG W X)X (D )+ (xg Sds
ty j:l
Z, 2
3 E (D@ xd) < (WOxg <@ v+ < (BY)ky  ds
1,3
1)(" ZS ) ) . 2
+3E4 sup — (VI x@yawyd 5
t1 st N i=1 t1
=i+ 1o+ I3

Denoting byL+.r a Lipschitz constant of a functidnon[ R;R] and using standard arguments, we

get that 2
t
I Kx (Lz SRmax T L2 + .5Rmax) E Sé/ + S;( ds

Xvizgl_ X XVT ts

and that
Zi h i
o Ky (L% smpe ¥ L2, snpe)  E (V& 0N+ (x) &))? ds
X129 X X729, ty

forallt 2 (t1;t; + ). By Doob's inequality, we moreover obtain
" 4
1 X Zy ) :
s 3 4E 2(vi);x0)yds

2
N i=1 L

12 2

K x

_ Xkl ;%:
Summarizing, for the-type channel we have shown that forta (t;;t; + ),

Z t
E sup (xY¥ ®M)2 K, E SY+ S+ sup jXN  BNj? ds+

t; s t t1 t1 u s

12 2

K x

X kl : S;QTax
(C.4)

for some constants > 0. Putting together (C.3) and (C.4) we get fortall (t1;t; + ) and some
constant¥<,; K, > 0,

0 1
Z e X 12 2
E sup jxY N2 @+ K, E@sY + SYA ds+ c?
ti st t x=minhyy
z t
+(1+ )Kz E sup jXN N2 ds;
ty t1 u s
from where, using Gronwall's inequality, we deduce:
0 0 1 1
z ti+ X 12 2
E sup jXN N2 )@k 1+ ) E@sY + S{Ads+ =% A
LERNL t X=m;n;hyy
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We can now use Theorem 2.3 to bound the integral on the r.h.s. K\ith= ef2(* K (1+ )
andK ;. =12ef2(* ) we get, for allt;  to, that

0 1
iy N N ;2 Y, X x A 1 0 Oty to)
E sup X RN E@Sto+ S, A 51 e e tOYKy,
tg t ti1+ — he
x=m;n;h;y
2¢0 2
+ — K. + Ky —CO
0 1; 2N |
2 Oty to) 2c? . § 0
M) +4 e PO+ 5 Ky + Ky WC;
sinceSY (V). O

Proof of Theorem 2.3. b)Notice on hand that, for ea¢h t;, we always have the bounds

2

5Rmax +4-

XD RN 28V 42i8 VN2+4 4V )P+4 Koi=4 ;
L

thanks to (C.1) and that, %. On the other hand, combining Proposition C.2 with Theorem
2.3. a) we get for every2 Jt;;t; + ]that

!
0

: . CO 2
E jx® ®uNiZ 2 Kl ot w4 27'0 1+ K1 )+ Ko WC?
. 2
withK§ = S8==  +4. The statement follows. O

D Propagation of Chaos and synchronization for the McKean-
Vlasov limit: proofs of Theorem 2.5 and Corollary 2.7

We rst address the asymptotic behavior of the ow of empirical measures (2.9) Whéd  and
the proof of Theorem 2.5. In particular, we will prove the propagation of chaos property for system
(2.1). Following the classic pathwise approach developed in [49] and [39], we rst establish:

Theorem D.1. Under the assumptions of Theorem 2.5, we have:

a) LetW*;x = m;n; h;y be independent standard Brownian motions &% mg; no; ho; yo)
an independent random vector with lawy. There is existence and uniqueness, pathwise and
in law, of a solution® = (% ;m;\8;;B;;%;t 0) to the nonlinear stochastic differential
equation (in the sense of McKean) with valueRin [0; 1]*:

z t z t z t
%= Vo+ F(%; ms Bs Rs)ds Je(¥  E[%])ds JenEls1(%s  Vieds:
0 0 0
VA t Z t
B = Xg+ (%)L By  «(%)eds+ x (%5 B )AWZ; x = m;n;h;y
0 0
(D.1)
suchthatforalt 0,j%j 4Rmacd +2Vy"®e 9! almost surely.

b) (¢ := law(Xy) :t 0)is a weak solution globally de ned i€((0;+1 [;P2(R  [0; 1]*))
of the McKean-Vlasov equati¢.10)

c) For eachT > 0, let2® = (¢;@;0;80: ey t2[0;T] ,i =1;:::;N bein-
dependent copies of the nonlinear procédsl) each of them driven by the same Brownian
motions(W*' ; x = m;n;h;y) and with same initial conditionX " = X%{ as theN -
particle systen{2.1). Then, there is a consta@(T) > O such that for ever\N 1and
i2f1;:::;Ng,

e sup ix ePp S0
ot T N
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Proof. The statements a), b) and c) would be standard if the coef cients in eachNf doenponents

of (2.1) were replaced by globally Lipschitz functionsf’ andX {’, see Theorems 2.2 and 2.3

in [39]. In particular, with functionp), andFy de ned for xed M > 0 as in Lemma A.1, for
anyT > O there is existence and unigueness, pathwise and in law, of a solution to the nonlinear
stochastic differential equation ¢@ T1:

Z, z

t
€M =Vo+  Fy(8M;m);el;BM)ds Je(8M  E€M)ds
Zt 0 0
JonElpy (2P (") Vie)ds;
°z., (D.2)
B = Xo+ . (P (8@ P (BY')) < (PR (9" )Py (Y )ds
z t
o (9" )AWS; x = minchyy:
0
Moreover, letting€(™ ) = (@M ), @M ). g(tM ). gIM ). oiM Dy ¢ 2 10 T] i = 120N

ned in (A.1), we obtain that

Cwm (T)

E sup jXt(i;M) )et(i:M )jz
0ot T N

We notice now that, by Proposition A.3, fof > 0 large enough the syste(X (D ;:::; X (N))
is also a solution to the system of equations (A.1). Pathwise uniqueness of the latter yields for all
suchM > Othat(X @ ;:::; X (N))y = (X @M). - X (NM )y on [0; T, from where

. (i iM ) Cm (T
E sup jx7 M) Cu (1) (D.3)

0t T N
foreveryN 1andi 2f1;:::;Ng. Furthermore, for ani1 °> 0
N . 2Cw (T
P sup g'M) MO+ P sup xX'™) MO + 7'\""(2 )
ot T ot T N

TakingM %=1, lettingN ! 1 and ther" I O we deduce thabﬁ“M ) 1las. for everyt 2 [0:T]
andi 2 N. In a similar waye{™ ) 0andjv"™’j v/ hold a.s. for every 2 [0;T] and

i 2 N. This implies that foM > 0 large enough but xed, a solution to (D.2) also solves (D.1), and
proves the existence partin a).

We show now that any solution have uniform in time bounded compact support, from which
uniqueness in part a) will immediately follow. We shall rst consider a soluidn g™ ; o ; f'; @)
of (D.1) with explosion time , and we will show that it coincides witt®™ ; mM ; aM ;BM ;M ; t
0) foraM big enough. FoM > 1,wedene y =infft 0:maxfj Uij;jq"j;iqj;idj; id jg
Mg. Then we observe that the coef cients of (D.1) appliedth; q™;qf';¢;q/;0 t M)
coincide with the truncated coef cients of (D.2) and thanks to the uniqueness property for (D.2) we
conclude that almost surely

(Ui a0, = (Y mM e AV e ),
In particular, we observe that. | 2 [0;1]for x = m;n;h;y, and that y =infft 0 :jUj
M gfor M > 1. Moreover the second order moméiftJz ., 1is uniformly bounded iM , since
Z tl\ M Z tl\ M
Uk, = Vg +2 UsF (Us; o' o s of)ds 2 JeUs(Us  E[Us]ds
0 0
Z ia

M

2 JChE[oé/]Us(Us Viev)ds;
0
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from where, it is easy to show that
z t
E(UZ ) Ci+Cp E(UZ )
0

and therefore, thanks to Gronwall's inequality
E(U&A ) Caie™:

On the other han&(UZ | ) = E(UZ1 , > )+ M?P( v t) and then we can conclude for all

t OandallM 1 .
C,ec2t
P(w 1)

Since v % , we conclude that for atl P( t) = 0, from where it follows that is almost surely
in nite.

Now, since(Uy; g™; o ;df'; @) has no explosion, we apply Proposition 3.3 in [10] to get that
almost surelyg® 2 [0; 1] for anyt > 0. Using this, we derive a more precise bound for the second
order moment:

Zt
pP—P ——
E(U?) E(V@)+2 . E(R2) E(U2) g.E(UZ)ds;

where as in the proof of Proposition A.3,

Rs Rmax:= max jl + gV + gkVka+ gnaVnab+ JenVieS:
a;b;c2[0;1]

Applying one more time Lemma A.5 we conclude

q q
E(U?) E(Vd)e at 4 72Rmax

(1 e 9y:

Thus, the second moment of any solution of (D.1) is uniformly bounded in time. Moreover, since the
initial conditionVy is bounded, proceeding exactly as in the proof of Proposition A.3 we obtain that
AR max

jUi +2V¥e ot

with the same boun#y"® for V. In conclusion, solutions of (D.1) are non explosive, even more
they are uniformly bounded in time. ChoosiNy > 4Rya=g +2Vy"® we get y = 1 almost
surely, and forany O,

Ui @) = (8 m e AV gt ),

Hence equation (D.1) has a unique solution.
Part b) derives from a direct and easy application of the Ito's formula to compute
Z

ELOR)= 0 (W

foraCl testfunction , thanks to the fact that the Lebesgue integrals on the right hand side of the
Ité formula will be all bounded, since the supports of the Ifws: t  0) are contained in some
compact set, and by continuity of coef cients.

Part c) is immediate taking large enoulghin (D.3).

We are now in position to prove

Proof of of Theorem 2.5a) We writeG; := C([0; T];R [0;1]*). Part c) of Theorem D.1 implies
that for eachil > Oandk 1 the convergence La@X @ ;::: X () | Kwith = Law(X®)
holds on the spacgt asN ! 1 . By Proposition 2.2. in [49] or Proposition 4.2. in [39], this implies
that the empirical measure

N .— 1 X

= x (D) ZP(CT),
N i=1
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with P(Gr) denoting the space of probability measures@nendowed with the weak topology,
converges in law to the (deterministic) probability measureThe rst assertion of the theorem
follows then from the fact that the mapping associating with P (G;) its ow (  :t 2 [0;T]) 2
C([0;T];P(R [0;1]*) of one-dimensional time-marginals laws is continuous, together with part b)
of Theorem D.1 (notice thaZ ([0; T]; P(R  [0;1]*)) can be replaced b@([0; T];P2(R  [0;1]%))
since all the random measures involved have a common compact support).

b) We observe rstthat foreach 0one has
EWZ( s 0 2B WE( ) +2E WE(=s )

where~) is the empirical measure Bf any random i.i.d. sample of the lagonstructed in the same
probability as N . Taking~N := Ni iN=1 () With )@t('), i =1;:::;N the processes de ned in
part c) of Theorem D.1 we get for every [0; T] that

C(T)
N

E WS {5 ) 27— +2E Wi o) ¢

R
On the other hand, we hageip, o.11( jzj° (dz))¥¥9 < 1 foreachq 1, using for instance the
bound obtained at the end of the proof of Theorem D.1. We can therefore apply Theorem 1 in [20]
with p = 2, d = 5 and a sufciently largeq > 2, to get thatE W2(~N; ) CN 255, The
second assertion thus follows.

¢) In order to prove uniqueness for the McKean-Vlasov equation (2.10), we adapt to our setting
a generic argument going back at least to Gartner [23]. Assume for a while that for each compactly
supportedg 2 P (R [0;1]*) and( , :t 2 [0;T]) 2 C([0; T];P2(R  [0; 1]*)) the linear Fokker-
Planck equation

X
@c=@ (R OVith Viii) . + 2d. ) @by (4

Xx=m;n;h;y

has at most one weak solution with supports bounded unifornty2ifi0; T]. By similar arguments
as in Lemma A.1, strong well-posedness holds for the stochastic differential equation:
Z t Z t Z t
Vi =V, + F (Vs ;mg;ng; hy)ds Je(Vs h(¢)Vi)ds Jonh( )Y i1(Ve  Viey)ds;
0 0 0
Zy Z,
Xt = X0+ X(Vs )(1 Xs) X(VS )Xst+ X(Vs ;Xs)dst; X = m;n;h;y;
0 0

(D.5)

with (V ; mg; ng; hy; yp) independent of the Brownian motioig* and with law ¢. Moreover, one
can check thax, 2 [0;1] a.s. for allt 2 [0; T] and that the procegd®, :t 2 [0;T]) is bounded.
It follows using Itd's formula that a unique weak solution to equation (D.4) with uniformly bounded
supports does exist, and is given by = law(V, ;m.;n;;h;;y,) forallt 2 [0;T]. Now, any
solution( ¢ : t 2 [0;T]) in C([0; T;P(R [0;1]*)) of (2.10) with uniformly bounded supports
also solves the linear equation (D.4) with :t 2 [0;T]) = ( ¢ :t 2 [0; T]). This yields, for all
t 2 [0;T], that ; = law(V; ;m;;n,;h;;Yy, ), for the process de ned as in (D.5), with = ¢ for
all s 2 [0; T]. In other words, this process solves the nonlinear stochastic differential equation (D.1).
From Theorem D.1 we conclude th@at; : t 2 [0;T]) = (law(Xy) : t 2 [0;T]), that is, there is
uniqueness of solutions @([0; T];P(R  [0; 1]*)) of (2.10) having uniformly bounded support.

Hence, in order to conclude the proof of Theorem 2.5 it is enough to show that, given functions
;2 C(0;T];R) and ¢ 2 Po(R [0;1]*) there is at most one solutigh; : t 2 [0;T]) 2
C([0;T];P(R [0; 1]*) with support bounded uniformly if0; T], to the distribution formulation
of equation (D.4)

z z Z.,z
(tv;u) t(dv;du) = (0;v;u) o(dv;du) (s sv;u)@ (siv;u)
0

X
+ @+ %zax@xuxw@x (siv;u)  s(dv;du)ds
X=m;n;h;y

(D.6)
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for all t 2 [0; T] and for an extended class of test functio2 CL%%([0; T] R [0;1]). Let 2
and 2 denote compactly supported functions coinciding witrand » on some compactsit R
containing the supports of the measurgsfor t 2 [0; T], and de ne 2, & and in terms of them
in a similar way as x, ax andb, were de ned in terms of, and . For a givert > 0, consider the
following Cauchy problem ifR® : for all (s;v;u) 2 [0;t) R R#,
X
@ ( s sviV@+ 5 ‘ad., + 5@, fusviu)=0;
X=m;n;hyy (D.7)

fe(tbviu)= (v;u):

By the Feynman-Kac formula (see e.g. Karatzas and Shreve [33]), if a sdlutbC,([0;t] R®)\
Chl2([0;t) R R exists, then it is given by

fe(siviu) = E( (X)) (D.8)

where(X VY = (Vi;me;ne;hesye) o r 2 [s;t]) is the unique (pathwise and in law) solution in
[s; t] of the stochastic differential equation:
zZ, Z, Z,
v+ F(V;m;n;h)d Je(V )ds Jeh (V' Vieyd;
Z, s Z, s
Uy + Svya x) dvi)xd + v i x )dW*; x = m;n;h;y:

S S

Ve

Xr

Moreover, forv chosen in some xed compact set, this solution is bounded independerdly2 of
[0;t], and one hag, 2 [0;1] for all r 2 [s;t]. Hence, under the assumption that 0, x and
« are of classC?(R), one can moreover prove, following the lines of Friedman [22, p.124], that
the functionf, de ned by (D.8) actually is of clas€.""%([0;t) R R*) and solves the Cauchy
problem (D.7). Putting = f in (D.6) yields

Z Z

(v;u) ((dv;du)y= E( (X)) o(dv;du)

forall 2 C3(R®), which uniquely determines : Notice that when = 0, the required regularity
for and forf turns fromC%%2 to C1'1! and the Feymann Kac formula in the argument can be
replaced by the characteristics formula. The proof of part c) is complete.

d) This is immediate from parts b) and d) of Theorem D.1 . O

Proof of Corollary 2.7. Recall rst that, for anyZ 2P,(R [0;1) andw2 R [0;1]*), one has
W5 w)=  jz wj? (d2):
Moreover, forevery t; andN  1it holds by exchangeability that:
EX{ RENPZ = E WIS gun)
Therefore, it is enough to prove that, for any 0O,

sup E W3( ¢ p:l:l) W2 )bttliN) to

tp t tpt

asN 'l . Givent t;andN 1, let N(dz;dZ%) be a coupling between, and N . Then, for
some constan® > 0 not depending oh t; noronN 1, we have

h [
W3 ) W (Y pun) = N(dzid2) jz Ry 7 j 20 Rp ™2
z
C iz 2§ M(dz;d)+ Ryt R

since the supports of, and } and the processe@f“l and)bf“” are uniformly bounded ih  t;
andN . The latter property also allows us to write the dynamics in (2.6) and (2.12) using globally
Lipschitz coef cients. Thanks to Gronwall's lemma this yields the estimates
z
sup R RN cplist eiNj=cihih Nij C  jz 29 ) (dz;dD)

tg t t1+
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R R =
for some constar@ > OnotdependingoN . Since jz 29 N (dz;d?) jz 292 N(dz;dd) =2
by taking the above couplings to be optimal Wk, we get the estimate

sup E W3( q; pui ) W 20N, pr ) C® sup E¥2 W M)

ty t tp+ tp t tp+

for someC®%> 0. We conclude thanks to Theorem 2.5. O

E Strong Convergence Rate Result for the Exponential Projec-
tive Euler Scheme (EPES)

The main object of this section is to prove the convergence of the numerical scheme presented in
Section 3 to the model (2.1) and establish the following rate of convergence

Proposition E.1. Asumme Hypothesis 2.2, ifx) = O(x(1 X)), then there exists a consta@t

depending on the parameters of the system, but independent siich that forany = 1;:::; N
) 2 X h i
E v 90 " 4 E x" #"2 ct
x=m;n;hy

We decompose the proof of this proposition in several preliminary results.
The next result follows from the uniform bound f&t(') (see iii) in Remark A.4) and some
standard arguments on local approximation of SDEs, so we omit the proof.

Lemma E.2. Under Hypothesis 2.2, there exists a const@niepending on the parameters of the
system, but independent of such that

2 2

sup E 90 9@ C t
i N

0 c t sup E xM x®

()

Next we establish a the key step in the convergence of the scheme, namely that, with extremely
high probability, the processd&s) andx(") coincide.

Lemma E.3. Asumme Hypothesis 2.2, iffx) = O(x(1 x)), then there exists a constaft
depending on the parameters of the system, but independent sfich that

X .
~ sup P xV 201 exp %

x=m;n;hyy

Remark E.4. It is not dif cult to see that

) X 2 . . 2
R I AT
S | .

n . I ]
sup E 2(x1)2+1 P x{" 2[0;1] K exp %
=1;::N

j
Notice that the RHS above tends to zero faster than any powet when t! 0.

Proof of Lemma E.3We rst notice that conditional td= (), x() corresponds to an Ornstein-
Uhlenbeck process, therefore its law is Gaussian with known conditional mean and conditional vari-
ance given by

N . .
Ew x’ =8exp  («+ )00 )
<(P4)) i
m)(t‘p((it))) exp  (x+ x)(‘p((t)))(t ®t
i 209 () . ) .
Var gy X0 = A OROL e o0 ymO) )

2(+ )P
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Observe that the conditional variance is strictly positiveif (t), b('()t) 60 andb('()t) 6 1. Since

for b('()t) =0 orb('()t) =1 the diffusions coef cient vanish, and in that case the solution to the ODE

for x() remains in0; 1] almost surely, we can restrict ourselves to the dnﬁ%g 2 (0;1).
Using the inequality for Gaussian concentration, condition& tg), we have

° (i) h o n o " ° h o2 !
. Xt E (t) Xt E t) Xt E ) Xt
P ) 0 =P Bl —r i Zo0b ik
var x var x var @) X
Since fort small enough
1oexp 20+ QP @) 20+ QPN )
andt (1) t, we can bound the conditional variance, and then it follows
h (i)i2 1
E X
M) 1 (t)y ~t
P (t) Xi 0 fexp%)
(1) . (i)
2 HUATR
h
On the other hand () x(') is a weighted mean between to quantitiefdirl], therefore
h (
E x(') ORD L
v O (v 009
X X (t)
hence
0 o 1
2
(i) 1 (Vo)
P X 0 Zexp@ A 1( ho)
R 2 My 2000 - g0 i LGN
Cxt 0700 2Ot ey
) 2 1
1 % ig’(I()t)
+ —exp @, )
2 (ON0) i xRy
B0y U e — i
(E.1)

To bound the rst exponential in the right-hand side of the last inequality, we notice that since
the procesé?m is uniformly bounded and is bounded, we can easily exhibit a const@at> 0
independent of such that

2(\9((0
(xt )20 200

Ci:

i) (l)
(t)’b (I)
For the second term in the right-hand side of (E.1), sifce (x)? is bounded from below i0; 1),

there exist<, > 0, such that
2

b(l)

- Cy
(1) (I) ’
2(‘9 (t)’b (t)

from which we conclude

i ci~C
Px{" 0 exp ! n 2
An analogous computation shows
i c~C
Px" 1 exp ! n 2
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The last preliminary step in the proof of Proposition E.1 is the following
Lemma E.5. Under hypotheses of Proposition E.1, consider
. 2 X h o
uty=€e v 90 " + E jx" xMj2
x=m;n;hyy
Then there exists a consta@tdepending on the parameters of the system, but independertt of
such that I

u(t) u( (1)+ C t? & (E.2)

Proof. Thanks to the boundedness of the processes, drift and diffusion coef cients, thatrid «,
behave like Lipschitz functions, just as in the proof of Lemma A.1. Then, thanks to It6 formula and

pivoting with in drift and diffusion with the poir(t@s(i) ; xg))

h (i) (i) |
E (x; xi’)?

L _
Eh(X“&) b“&>)2|+2 anh(xé‘) W) B vI) b OD0)  ds
Z¢ h , i
2 E P x) bbx0)  b(P)ix$)  ds
Zt(t) . . 4 L2 . . ' ' 2
t g E (VXY (x®) T 2B (Bx0) (0w T ds:

from where the Lipchitz property of the coef cients, Lemma E.2 to bound the terms involving the
local error and some classical arguments lead to
YA t

h i h i h i h i
E (Xg') XE'))Z E (X(I()t) X(I()t))z + C o E (X(Sl) Xg))z +E (Vs(l) vs(|))2 ds+ C tz:
t

On the other hand, for the voltage error we obtain rst the a.s. bound
z t

) 2 ) 2 , , X , :
v p® v Tec v 0P ix() 1) j2ds
® X=m;n;h
Z, N
"e (® VRO N lJVS'(I) iizds;
J:
fe () P02 4 (v 21X ) e
+C (t)JVs ST (Vs Vied) 1Jys P icds:
]:
Thanks to the exchangeability of the particles, it follows that
2 3 2 3
1 X ) 25 - PO N 1 X (i):25 _ i QM Z .
E4W. . Jyg) b (t)J 5= E yél) b (1) ’ E4W. . JVS(]) v (t)J 5= E Vs(l) v (1) ’
1= ]=
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and then, since the processes are uniformly bounded, we get that

2

E v 90
. . 2 Zt ) 2
E v 90 " Lo B v 9O T ger
(t) (t) (t) s s
Z . L2 X h i
+c B VO OP 4 E x{) &7, ds
® x=m;n;h;y
. L2 Z h i
E v ¥ +c (t)E v 9Mj2 ds+
Z . L2 X h i
+C E v bO  +c 2+ E jx{V x{j2 +C tds
® X=m;n;h;y
i 2 Z . 2 X h i
E v(('t)) ‘p(('t)) +C E v 90 " 4 E x00 x0 ds+C %
® x=m;n;h;y

We can summarize the previous computations as
z t
u(t) u( )+ C u(s)ds+ C t?;
(t)

from where we conclude thanks to Gronwall's inequality. O

Proof of Proposition E.1 .From the previous Lemma, denoting = u(tyx) we obtain the following
recurrence relationship:

Ues1  Aug+ B: upg=0; A=¢€e® & B=C t%° .

Iterating this inequality, it is easy to conclude that

k+1
AL e ! eCtin
B = 25 _c .
Ui+t A1 S Vet 17C Vet

Butwhen t! O,wehavee® ' 1 C t,andthereforei.; C t: Inserting this in (E.2),
we conclude

) 2 X h o
E \/t(l) Q(') + E jX’EI) bEI)JZ

x=m;n;hyy
. L2 X _ho L h L X .
E v 90+ E O xPR+E X &2 c t+ P xM 201 ;
X X

from where the statement follows, applying Lemma E.3.
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