
HAL Id: hal-01678954
https://inria.hal.science/hal-01678954

Submitted on 9 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Using Data Integration for Security Testing
Sébastien Salva, Loukmen Regainia

To cite this version:
Sébastien Salva, Loukmen Regainia. Using Data Integration for Security Testing. 29th IFIP Inter-
national Conference on Testing Software and Systems (ICTSS), Oct 2017, St. Petersburg, Russia.
pp.178-194, �10.1007/978-3-319-67549-7_11�. �hal-01678954�

https://inria.hal.science/hal-01678954
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Using Data Integration for Security Testing

Sébastien Salva1 and Loukmen Regainia2

1 LIMOS CNRS UMR 6158, Clermont Auvergne University,
sebastien.salva@uca.fr

2 LIMOS CNRS UMR 6158, Clermont Auvergne University,
loukmen.regainia@uca.fr

Abstract. The explosion of digitisation makes a plethora of security
data publicly available for developers. These numerous (often complex)
documents expose them to the difficulty of choosing the most appropri-
ate solution for securing their applications. We propose in this paper a
method based upon data acquisition and integration, which assists devel-
opers in the Threat modelling stage and in the security test case execu-
tion. The method firstly helps devise Attack Defense Trees by means of a
data-store. These trees show attacks, steps and defenses given under the
form of security patterns, which are re-usable solutions to design more se-
cure applications. These trees are then used for the test case generation.
The data-store integrates test case stubs, which make this generation
easier and developers more efficient. We evaluate our approach on 24
participants and show encouraging results on the use of data integration
in software engineering.

Keywords: Security; Security patterns; Attack Defense Trees; Test case
generation.

1 Introduction

Since a decade, it is well admitted that software security is essential and has to be
considered through all the software life cycle. Many developers, researchers and
organisations have hence made security their hobby-horse and brought several
improvements with the proposal of numerous digitised security bases and docu-
ments. These take security into consideration at different stages of the software
life cycle and are presented with different viewpoints, abstraction levels or con-
texts. This plethora of diverse documents makes difficult the choices of security
solutions and afterwards their validations. Indeed, developers cannot be experts
in any field and they clearly lack guidance for conceiving and implementing both
secure software and tests.

This work focuses on this issue and studies the possibility of using publicly
available security resources for helping developers devise more secure applica-
tions. We propose a method, which aims at assisting developers in the Threat
modelling stage and in the test case generation and execution. More precisely,
the contributions of this paper are highlighted in the following points:

– we present a security data acquisition and integration method, which ex-
tracts data from various Web and publicly accessible sources to conceive a
data-store storing relationships among attacks, security principles, security
patterns and test case parts written with the Given When Then (GWT for
short) template. The security pattern intuitively relates countermeasures to
threats and attacks in a given context [8]. These security re-usable solutions
often are presented textually or with UML schema and are characterised by
a set of structural and behavioural properties;

– from the data-store, our method helps in the generation of Attack Defense
Trees (ADTrees [3]) showing the attacker possibilities to compromise an
application and the defenses that may be put in place to prevent attacks.
We have chosen the ADTree model because it offers the advantage of being
easy to understand even for novices in security. These ADTrees are composed
of defenses given under the form of security pattern combinations;

– ADTrees serve here to the test case generation. These test cases aim to
check whether an application is vulnerable against the attacks exposed in
an ADTree and whether security pattern consequences are observed in the
application behaviour. Pattern consequences are observable events resulting
from the good contextualisation and implementation of the pattern in an
application. From an ADTree, our method extracts attack scenarios, GWT
test case stubs and related procedures composed of comments or blocks of
code, which aim at guiding the developer in the test case completion. As
ADTrees can be formalised with formal expressions, called ADTerms, we
strictly define the test case generation and execution.

Besides, we concentrated our attention on quality criteria and on education
while the design of this method. ADTrees are indeed constructed with concrete
data extracted from the CAPEC base3. ADTrees also express security pattern
combinations with respect to several criteria, i.e., Unambiguity, Navigability and
Comprehensibility, which are quality criteria proposed in [1], the last two respec-
tively related to: the ability to direct a software designer among collaborative and
related patterns; the ease to understand patterns by both a novice and expert de-
veloper. Test case stubs are also structured to ease Readability and Re-usability
and to try to increase Effectiveness.

We have generated a data-store specialised to the context of Web applica-
tions (Web sites), which is composed of 215 CAPEC attacks, 26 security patterns
and 669 test case parts. We employed this data-store to evaluate on 24 human
subjects the benefits of using the notion of data acquisition and integration in
the software life cycle. This evaluation shows encouraging results about Com-
prehensibility and Effectiveness.

The remainder of the paper is organised as follows: Section 2 presents some re-
lated work. The data integration step is shortly presented in Section 3. The next
section shows how ADTrees are generated by means of the data-store. Section 5
addresses the test case generation and execution. We present our evaluation in
Section 6 and finally conclude in Section 7.

3 https://capec.mitre.org/

2 Related Work

A plethora of papers deals with model-based security testing. Due to lack of
room, we only present some of them related to our work, which consider models
not to describe the implementation behaviour but rather to express the attacker’s
goals or the vulnerability causes of the system [6, 5, 4, 9]. Some authors focused on
trees (Attack trees, Security Activity Graphs, etc.), which express the treats or
attacks or vulnerability causes that should be prevented in systems. From these
models, test cases are then written to check whether attacks can be successfully
executed. Morais et al. introduced a security testing approach specialised for
protocols [6]. Attack scenarios are extracted from an Attack tree and are con-
verted to Attack patterns and UML specifications. From these, attack scripts
are manually written and are completed with the injection of (network) faults.
In [5], data flow diagrams are converted into Attack trees from which sequences
are extracted. These sequences are composed of events combined with param-
eters related to regular expressions allowing the generation of concrete values.
These events are then replaced with blocks of code to produce test cases. In
[4], test cases are generated from Threat trees. The latter are completed with
parameters associated to regular expressions. Security scenarios are extracted
from the Threat trees and are manually converted to executable test scripts.
Shahmehri et al. proposed a passive testing approach to detect vulnerabilities
[9]. The undesired vulnerabilities are modelled with models called SGMs, which
are specialised DAGs showing security goals, vulnerabilities and eventually mit-
igations. Detection conditions are then semi-automatically extracted and given
to a monitoring tool, which returns test verdicts.

These works take Threat models as inputs, which are manually written. If
these lack of details (parameters, attack steps, etc.), the final test cases will be too
abstract as well. Furthermore, these methods do not give any recommendation on
how to write tests and on how to structure them. Hence, developers lack guidance
to write tests and to reuse them. This paper proposes a method, which semi-
automatically infer Attack Defense Trees, composed of attacks steps, techniques
and defenses. To ease the understanding and readability of the generated test
case stubs, we associate in our data-store every attack and defense step to some
test case sections, which are classified w.r.t. an application context and to an
attack step or security pattern.

Few works tackled the testing of security patterns, which is another topic
of this paper. Yoshizawa et al. introduced a method for testing whether be-
havioural and structural properties of patterns can be observed in the traces
of instrumented applications [10]. Given a security pattern, two test templates
(OCL expressions) are written, one to specify the pattern structure and another
to describe its behaviour. Then, developers have to make templates concrete by
writing Selenium scripts for experimenting the application. The latter returns
traces on which the OCL expressions are verified. In contrast to the previous
paper, our inferred ADTrees firstly help developers choose for every attack, the
combinations of patterns that can be used as countermeasures. Then, our testing
approach aims at testing the security pattern consequences. We do not check the

structure of the patterns. Hence, our approach is complementary to the previous
one.

We also proposed a semi-automatic data integration method in [7], in order
to extract a pattern classification. We took inspiration from this paper to infer
pattern combinations. In contrast, the notion of data-store, its architecture, the
considered security properties and the test case generation and execution are
new contributions.

3 Data Integration

3.1 Data-store architecture presentation

(a) Data-store meta-model (b) Data-store extension

Fig. 1.

Figure 1(a) exposes the meta-model of the first part of the data-store used
to integrate relationships among attacks, attack steps, techniques, security prin-
ciples and security patterns. The entities of Figure 1(a) refer to these security
properties. To increase the precision of the relations, we chose to decompose
attacks into sub-attacks, and into attack steps. These steps are associated to
countermeasures, allowing to prevent or counter attack steps. We also decompose
security patterns into strong points, which are sub-properties expressing pattern
key design features. Relying on a hierarchical organisation of security principles,
the method maps countermeasure clusters to principles and strong points to
principles. As countermeasures usually are detailed properties, we gather them
into clusters (groups) to reach about the same abstraction levels as those of the
security principles.

The meta-model of Figure 1(a) is extended with new entities and relations,
which are required for the testing process. This extension is depicted in Fig-
ure 1(b). An attack step is also associated to a Test architecture and to one
Application context. The context refers to an application family, e.g., Android
applications, or Web sites. The “Test Architecture” entity refers to textual para-
graphs explaining the points of observation and control, testers or tools required
to execute the attack step on an application, which belongs to an Application

context. Next, we map attack steps onto GWT test case sections. For readability
and re-usability purposes, we chose to consider the “Given When Then” pattern
to break up test cases into several parts:

– the Given section aims at putting an application under test in a known state;
– the When section triggers some actions;
– the Then section is used to check whether the conditions of success of the test

case are meet (assertions). In our context, we suppose that a Then section
returns “Passst” if an attack step st has been successfully executed on an
implementation and “Failst” otherwise.

Likewise, we map security pattern consequences onto Then sections to check
whether the consequences of the pattern can be observed in the application
traces. We assume that a Then section returns “Failsp” if a consequence of the
security pattern sp is not observed from the implementation. For instance, if
an application is conceived with the “Input Guard” pattern, then unexpected
inputs should bring the application to a quiescent state (no output) or outputs
reflecting errors should be observed.

Each test case section is linked to one procedure stored in the Procedure table
of the data-store, which implements the section. A Given, When or Then section
can be reused with several attack steps or security patterns. With regard to the
meta-model given in Figure 1(b), a GWT test case section (and procedure) is
classified according to one application context and one attack step or pattern
consequence.

In some specific application contexts, the procedures can be completed with
comments or with blocks of code to ease the test case development. When the
procedure content can be reused with any application in a precise context, we
call it Generic procedure:

Definition 1 (Generic procedure). Let C be an Application context. A Generic
procedure is a block of code, related to a Given, When or Then test case section,
that can be used with any application of C;

The data-store must only contain Generic procedures related to an applica-
tion context. It worth mentioning that an empty procedure is generic.

3.2 Security data acquisition and integration

This section summarises a data integration example for the Web application
(Web sites) context. We chose to focus on the CAPEC base to extract informa-
tion about security attacks. The CAPEC base offers an open and rich catalogue
of attacks in a comprehensive schema. We conceived a tool for data acquisi-
tion and extraction, based on text mining and on the ELT (Extraction, Load,
Transform) tool Talend 4. With it, we automatically scanned all the CAPEC
base (Version 2.8) and collected 215 attacks, 209 steps, 448 techniques and 217

4 https://talend.com/

countermeasures, knowing that attacks can share steps, attack techniques and
countermeasures. Among these, we gathered 75 attacks and 142 attack steps
specialised for the context of Web sites.

As security patterns are described in an abstract manner with texts, we
manually collected security patterns, their strong points and consequences from
the catalogue given in [12]. We gathered 26 security patterns, 43 consequences
and 36 strong points. We also integrated the inter-pattern relations given in
[11]. We organised 66 security principles found in the literature into a hierarchy
composed of four levels, from the most abstract to the most concrete principles.

The data integration of the GWT test case sections was automatically per-
formed. For a given attack, the CAPEC base provides two text sections called
“Attack Prerequisites” and “Resources Required”. We automatically scanned
these paragraphs and completed 209 procedures including comments composed
of the two previous paragraphs. Each procedure is associated to one Given test
case section (one section for each attack step). For every step st, we added one
When test case section and one procedure composed of comments listing the
techniques related to st. Still in the CAPEC documents, the paragraphs “In-
dicators” and “Outcomes” provide some directives and conditions on an attack
step realisation. In the same way as previously, we automatically scanned these
paragraphs and, for every attack step, we completed the data-store with one
Then section associated to one procedure, itself composed of the two previous
paragraphs of the CAPEC base given as comments. In this way, we generated
627 GWT test case sections. For every security pattern consequence found in the
data-store, a Then test case section and its related procedure are also automati-
cally inserted. The procedure is composed of comments listing the consequence,
which have to be observed from the application traces. In the context of Web
applications, we observed that several procedures can be completed with blocks
of code calling penetration testing tools. We completed 32 procedures, which
cover 43 attack steps. We used the tools Selenium and ZAProxy5, which is a
penetration testing tool covering various Web vulnerabilities.

This data-store is available here6.

4 Threat Modelling

Before presenting how our method assists developers in threat modelling, we
recall some notions about the ADTree model.

4.1 Attack Defense Trees (ADTrees)

ADTrees are graphical representations of possible measures an attacker might
take in order to attack a system and the defenses that a defender can employ
to protect the system [3]. As illustrated in Figures 3(a) and 3(b), ADTrees have

5 https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project
6 http://regainia.com/research/companion.html

two different kinds of nodes: attack nodes (red circles) and defense nodes (green
squares). A node can be refined with child nodes and can have one child of the
opposite type (linked with a dashed line). Node refinements can be disjunctive
(like in Figure 3(a)) or conjunctive. The former is recognisable by edges going
from a node to its children. The latter is graphically distinguishable by connect-
ing these edges with an arc. We extend these two refinements with the sequential
conjunctive refinement of attack nodes, defined by the same authors in [2]. This
operator expresses the execution order of child attack nodes. Graphically, a se-
quential conjunctive refinement is depicted by connecting the edges, going from
a node to its children, with an arrow. For instance, the node “Attack Step” in
Figure 3(b) is refined with a sequence of others steps. Alternatively, an ADTree T
can be formulated with an algebraic expression called ADTerm and denoted ι(T).
In short, the ADTerm syntax is composed of operators having types given as ex-
ponents in {o, p} with o modelling an opponent and p a proponent. ∨s,∧s,−→∧ s,
with s ∈ {o, p} respectively stand for the disjunctive refinement, the conjunctive
refinement and the sequential conjunctive refinement of a node. A last operator
c expresses counteractions (dashed lines in the graphical tree).

4.2 Attack Defense Tree generation

Fig. 2. Threat modelling and security testing steps

The first stage of our method takes place in the Threat modelling phase
of the software life cycle, which occurs while the requirement analysis. Threat
modelling is a process consisting in identifying and describing the attacker’s
goals and capabilities, as well as identifying the potential threats of an applica-
tion. Different methods can be followed, e.g., DREAD, or STRIDE. Our method
starts to semi-automatically generate an ADTree by means of the data-store.
The ADTree generation is illustrated in the the fourth first steps of Figure 2.
We present them below.

Step 1: Initial ADTree design
The developer initially establishes a first ADTree T whose root node repre-

sents the attacker’s goal, which may be refined with child nodes. The ADTree T

describes attack combinations, which can be applied on the application. We here
assume that T at least has leaves labelled by attacks kept in the data-store. Oth-
erwise, a semantic alignment may be required to replace some labels by similar
attack names.

Figure 3(a) depicts an ADTree example: the goal, given in the root node, is to
inject malicious code into an application. This node is disjunctively refined with
two children expressing two more concrete attacks, CAPEC-66: SQL Injection
and CAPEC-244: Cross-Site Scripting via Encoded URI Schemes.

(a) Initial ADTree example (b) ADTree general form

Fig. 3.

Step 2: ADTree generation
Usually, yhe ADTree T does not include enough details on how the attack is

sequenced and on the defenses expressing how the application can be protected.
Implementing a secure application and deriving test cases from this kind of
tree remains a tedious task. The data-store can be used to augment T . For
every node labelled with an attack Att, we automatically generate an ADTree
denoted T (Att). The architecture of the data-store leads to the generation of
ADTrees having the general form illustrated in Figure 3(b). The root of an
ADTree T (Att) is labelled by Att. This node may have children expressing more
concrete attacks and so forth. The most concrete attacks have step sequences
(edges connected with an arrow). These steps are connected to techniques with a
disjunctive refinement. The lowest attack steps in the ADTree are also linked to
defense nodes, which may be the roots of sub-trees expressing security pattern
combinations whose purpose is to counteract the attack step.

We implemented the ADTree generation with a tool, which takes attacks of
the data-store and yields XML files. These can be edited with the tool ADTool
[3]. For instance, Figure 4 depicts the ADTree of the attack CAPEC-66, which
was exported from ADTool. Each lowest attack step has a defense node express-

ing pattern combinations. Step 2.1, which identifies the possibilities to inject
malicious code through the application inputs, requires more patterns than the
other steps to filter these inputs. Some of them have relations: for instance “Ap-
plication Firewall” can be replaced by “Input Guard” with “Output Guard”.

Fig. 4. ADTree of the Attack CAPEC-66

Step 3: Security pattern choice
The developer can now edit the ADTrees T (Att) to keep or remove attack

steps w.r.t. the application context. He or she also has to choose the security
patterns that have to be contextualised and implemented in the application.
After this step, we assume that a defense node either is labelled by a security
pattern (it does not have children) or has a conjunctive refinement of nodes
labelled by security patterns. The lowest nodes labelled by attack steps, must
be linked to a defense node.

As a result of the steps 2 and 3, the generated ADTrees have specific forms
and are expressed with specific ADTerms:

Proposition 1. An ADTree T (Att) achieved by the previous steps has an ADTerm
ι(T (Att)) having one of these forms:

1. ∨p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm also having one of these forms:
2.
−→∧ p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm having the form given in 2)
or 3);

3. cp(st, sp), with st an ADTerm expressing an attack step and sp an ADTerm
modelling a security pattern combination.

The first ADTerm expresses children nodes labelled by more concrete attacks.
The second one represents sequences of attack steps. The last expression is com-
posed of an attack step st refined with techniques, which can be counteracted
by a security pattern combination sp. In the remainder of the paper, we call the
last expression Basic Attack Defence Step, shortened as BADStep. These shall
be particularly useful to build GWT test case stubs:

Definition 2 (Basic Attack Defence Step (BADStep)). A BADStep b is
an ADTerm of the form cp(st, sp), where st is an ADTerm modelling an attack
step and sp an ADTerm of the form sp1 or ∧o(sp1, . . . , spm) modelling a security
pattern conjunction.
defense(b) = {sp1 | b = cp(st, sp1)}∪{sp1, . . . , spm | b = cp(st,∧o(sp1, . . . , spm))}

Step 4: Final ADTree generation
In the initial ADTree T , each attack node labelled byAtt is now automatically

replaced with the ADTree T (Att). This can be done by substituting every term
Att in the ADTerm ι(T) by ι(T (Att)). We denote Tf the resulting ADTree. It
depicts a logical breakdown of the various options available to an adversary and
the defences, materialised with security patterns, which have to be inserted into
the application model.

In this step, we also extract from the data-store a description of the test
architecture required to run the attacks on the application under test and to
observe its reactions.

5 Test Suite Generation

The semantics of an ADTree can be defined in terms of attack-defense scenarios.
In general terms, a scenario is a minimal combination of events leading to the
root attack, minimal in the sense that, if any event is omitted from the attack
scenario, then the root goal will not be achieved. The semantics of an Adtree
Tf , i.e. its scenario set, can be extracted from its ADTerm ι(Tf):

Definition 3 (Attack scenarios). Let Tf be an ADTree and ι(Tf) be its
ADTerm. The set of Attack scenarios of Tf , denoted SC(Tf) is the set of clauses
of the disjunctive normal form of ι(Tf) over BADStep(Tf).

An attack scenario s of SC(Tf) is an ADTerm over BADSteps. BADStep(s)
denotes the set of BADSteps of s. We also denote SP (s) the security pattern set
found in s: SP (s) = {sp | ∃b ∈ BADStep(s) : sp ∈ defense(b)}. By extension,
BADStep(Tf) stands for the set of BADSteps found in ι(Tf); SP (Tf) is the
security pattern set of ι(Tf), found in all its scenarios.

Step 5: Test suite generation
Let us consider a security scenario s ∈ SC(Tf). Given a BADStep b =

cp(st, sp) ∈ BADStep(s), we generate the GWT test case TC(b), which aims
at checking whether the application under test I is vulnerable to the attack

step st and whether the consequences of the security patterns in defense(b) can
be observed from I. TC(b) is assembled from the data-store by means of the
following steps:

1. the data-store provides for st, with the relations testG, testW and testT ,
one Given section, one When section and one Then section, each related to
one procedure. The Then section aims to assert whether the application is
vulnerable to the attack step st;

2. the data-store provides from the security pattern set defense(b) a set of
other Then sections, each related to procedures. These Then sections aim to
check whether the security pattern consequences can be observed from the
application behaviours;

3. all these sections are assembled to make up the GWT test case stub TC(b).

By applying these steps on all the scenarios of SC(Tf), we obtain the test
suite TS with TS = {TC(b) | b = cp(st, sp) ∈ BADStep(s) and s ∈ SC(Tf)}.

We implemented these steps to yield GWT test case stubs compatible with
the Cucumber framework7, which supports a large number of languages. Figure
5 gives a test case stub example obtained with our tool from the first step of the
attack CAPEC-66 depicted in Figure 4. The test case lists the Given When Then
sections in a readable manner. Every section is associated to a Generic procedure
stored into another file. The procedure related to the When section is given in
Figure 6. The comments comes from the data-store and are extracted from the
CAPEC base. This procedure includes a generic block of code; the “getSpider()”
method relates to the call of the ZAProxy tool, which crawls a Web application
to get its URLs. In this example, it only remains for the developer to complete
the initial URL before testing whether the application can be explored.

Feature: CAPEC-66: SQL Injection
#1. Explore
Scenario: Step1.1 Survey application
#The attacker first takes an inventory of the functionality exposed by the application.
Given a new scanning session
When spider the application
Then the application is spidered
#assertions for security pattern testing
Then Output Guard security pattern is present
Then Input Guard security pattern is present

Fig. 5. A GWT test case example

Step 6: Test case stub completion
Now, the developer has to complete the previous GWT test case stubs. We

believe that the decomposition of the test case and its link to the ADTree Tf (as-
sociations among steps, security patterns and procedures) make this step easier.
In addition, the Generic procedures, composed of comments or blocks of code

7 https://cucumber.io/

@When("^spider the application")
public void theApplicationIsSpidered() {
// Try one of the following techniques :
// 1. Spider web sites for all available links
// 2. Sniff network communications with application using a utility such as WireShark.
getSpider().setMaxDepth(10);
url = "URL to be scanned";
try { spider(url);
} catch (InterruptedException e) {e.printStackTrace();}
waitForSpiderToComplete();}

Fig. 6. The procedure related to the When section of Figure 5

should make him or her more effective in the test case writing.

Step 7: Test suite execution

Once the GWT test case stubs are completed, these can be executed on the
application under test I. The test architecture allowing the experimentation of
I is described in the report provided by Step 4.

After the execution of one test case TC(b) on I, denoted TC(b)||I, we obtain
sets of verdict messages of the form “Passst”, “Failst” or “Failsp”, resulting
from its assertions (see Section 3.1) :

Definition 4 (Test verdict sets). Let I be an application under test, b =
cp(st, sp) ∈ BADStep(Tf) with defense(b) = {sp1, . . . , spm}(m > 0) and TC(b) ∈
TS be a test case. The execution of TC(b) on I leads to a verdict set, denoted
Verdict(TC(b)||I), which can be:

– {Failst} (resp. {Passst}) means I is (resp. does not appear to be) vulnerable
to the attack step st and that the consequences of the security patterns are
observed;

– {Passst, Failsp1
, ..., Failspk

} means I does not appear to be vulnerable to the
attack step st but some consequences of the security patterns sp1, . . . , spk are
not observed;

– {Failst, Failsp1, ..., Failspk
} means I is vulnerable to the attack step st and

that some consequences of the security patterns sp1, . . . , spk are not observed.

From these verdict messages, we define two first relations. The first relation
vulnerable defines that an application I is vulnerable to a BADStep b if the
message Failst belongs to the verdict set Verdict(TC(b)||I). The relation unsatc

defines that I does not satisfies the consequences of the pattern sp if the message
Failsp belongs to Verdict(TC(b)||I):

Definition 5 (Test case verdicts). Let I be an implementation, Tf be an
ADTree, b = cp(st, sp) ∈ BADStep(Tf) and TC(b) ∈ TS be a test case.

1. I vulnerable b = true if {Failst} ∈ Verdict(TC(b)||I), false otherwise;

2. I unsatc sp if sp ∈ defense(b) and Failsp ∈ Verdict(TC(b)||I).

We now define the relation effective on a scenario s ∈ SC(Tf), composed of
the BADSteps b1, . . . , bn and on I to formally state whether s detects vulnera-
bilities on I. The relation effective is evaluated by substituting every BADStep
term bi with the evaluation of I vulnerable bi. These relations help define and
evaluate the final implementation relations.

Definition 6 (Implementation relations). Let I be an implementation, Tf
be an ADTree, and s ∈ SC(Tf), with BADStep(s) = {b1, . . . , bn}.

1. σ : BADStep(s)→ {true, false} is a substitution {b1 → (I vulnerable b1), . . . ,
bn → (I vulnerable bn)};

2. s effective I, if the evaluation of the result sσ of applying σ to s returns true;
3. I vulnerable Tf ⇔def ∃s ∈ SC(Tf) s effective I;
4. I unsatc SP (Tf)⇔def ∃sp ∈ SP (Tf), I unsatc sp.

6 Evaluation

We empirically studied two scenarios on 24 participants to assess whether devel-
opers can take profit of our approach. The duration of each scenario was set at
most to one hour and half. The participants are third to fourth year computer
science undergraduate students, having good skills in the development and test
of Web applications.

The participants were given the task of choosing security pattern combina-
tions to prevent two attacks, CAPEC 244: Cross-Site Scripting via Encoded URI
Schemes, and CAPEC 66: SQL Injection, on two deliberately vulnerable Web
sites, RopeyTasks and The Bodgeit Store. We also asked the participants to write
test cases with the tool Selenium in order to: show that both Web sites are vul-
nerable to the two attacks, show that the application behaviours do not include
at least one consequence of the security pattern “Input Guard” and at least one
consequence of “Output Guard”.

In the first scenario, denoted Part 1, we supplied the CAPEC base, two
concrete attack examples, the detailed steps showing how to manually perform
them along with the expected outcomes and the security pattern catalogue given
in [12]. In the second scenario, denoted Part 2, we also supplied the ADTrees
of the two attacks (Figure 4 is one of them) along with the generated GWT
test case stubs for each attack step. At the end of each scenario, the students
were invited to fill in a form listing ten questions. Due to lack of room, we only
present the questions and results concerning the test case generation:

– Q7: Was it easy to write test cases?
– Q8: How long did you take for writing test cases?
– Q9: How confident are you about your test cases?
– Q10: Provide your test cases (or suites).

These questions was asked in order to evaluate the following criteria:

– C1: Comprehensibility: does our method ease the test case development?
– C2: Effectiveness: can the test cases detect defects?
– C3: Efficiency: does our method help reduce the time needed to write tests?

6.1 Experiment results

We extracted the following results from the forms returned by the participants
(available here8). We collected the answers of Question Q7, proposing this four-
valued scale: easy, fairly easy, difficult, very difficult. Figure 7 depicts the dis-
tribution of the participant opinions.

Fig. 7. Response rates for Question Q7

We collected the time spent by the participants for writing test cases. The
participants needed between 15 and 70 minutes in Part 1, while they took be-
tween 20 minutes and 86 minutes in Part 2. On average, they spent 46 minutes
in Part 1 and 60 minutes in Part2. The levels of confidence of the participants is
estimated with Question Q9. The possible answers were for both scenarios: very
sure, sure, fairly sure, not sure.

We finally analysed the test cases given by the participants and evaluated
their correctness with regard to four aspects: 1&2: detection (with at least one
test case) that both applications are vulnerable to the attacks CAPEC 66 and
CAPEC 244; 3&4: detection that the application behaviours do not include
the consequences of the patterns “Input Guard” and “Output Guard”. As we
considered this last aspect as difficult for students, we expected at least one Then
test case section for every pattern. Figure 8 presents the number of participants
who meet these aspects.

6.2 Result interpretation

C1 Comprehensibility: we chose this criteria to evaluate whether our method
makes testing easier. Figure 7 shows that one quarter of the students found easier
the test case writing with our test case stubs. After discussion, it turned out that
the test case structure with the GWT template made test cases more readable
and that the links between test case sections and Attack steps helped students

8 http://regainia.com/research/companion.html

Fig. 8. Test case correctness (Question Q10)

understand what to develop. In the meantime, Question Q9 reveals that the
confidence level of the participants about their test cases increases by 20,83%.

C2 Effectiveness: Figure 8 depicts the results about the test case correct-
ness. The columns “SQLi” and “XSS” provide the number of test cases allowing
to reveal that the attacks can be successfully executed on the applications. In
Part 1, few participants developed complete test cases despite the detailed steps
we provided (assertions were missing or incorrect in most of the test cases).
The number of correct test cases strongly increases in Part 2 thanks to the com-
ments the participants found in the procedures. The columns “Input Guard” and
“Output Guard” give the number of Then sections (and procedures) allowing
to show that the consequences of these security patterns are not observed from
the application behaviours. This task was much more difficult for the students
as they are not yet expert in security patterns. Hence, it is not surprising to see
that only one student was able to write at least an assertion showing that the
Input Guard consequences are not present. The number of correct Then sections
rises to 14 (58,3%) in Part 2. With the pattern “Output Guard”, the number
of correct Then sections rises from 0 to 23 in Part 2. We can conclude that the
test case correctness strongly increases with our approach.

C3 Efficiency: on average, the participants took 46 minutes for writing test
cases from scratch and 60 minutes with the use of our method. The additional
time spent in Part 2 can be explained when we alongside focus on Effectiveness
and Comprehensibility. Indeed, after discussion with the participants, we de-
duced that they took more time to follow and analyse the ADTrees, to read the
comments in procedures, etc. As a result, almost all the test cases are correct in
Part 2 (more assertions, etc.).

7 Conclusion

We have presented a method taking advantage of data integration for guiding
developers devise more secure applications from the Threat modelling stage to

the testing one. The method generates ADTrees and test case stubs allowing to
check whether an application is vulnerable to attacks and whether security pat-
tern consequences are observable from the application behaviour. We conducted
an evaluation of the method, which shows it makes the participants more ef-
fective on security testing. But, several issues remain open. For instance, our
method does not take into consideration the size of the ADTrees in the Threat
modelling stage. This is a strong limitation since large trees are usually unread-
able, which contradicts the method purposes. The ADTree reduction could be a
first solution on this problem. But, the literature does not yet provide a generic
method for this kind of reduction. Besides the tree structure, the node meaning
must be taken into account in the node aggregating process, which must preserve
the semantics of the ADTree.

References

1. Alvi, Aleem, K., Zulkernine, M.: A Comparative Study of Software Security Pattern
Classifications. 2012 Seventh International Conference on Availability, Reliability
and Security pp. 582–589 (2012)

2. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: IFIP International Information Security Confer-
ence. pp. 339–353. Springer (2015)

3. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack–defense trees. Journal
of Logic and Computation p. exs029 (2012)

4. Marback, A., Do, H., He, K., Kondamarri, S., Xu, D.: A threat model-based ap-
proach to security testing. Softw. Pract. Exper. 43(2), 241–258 (Feb 2013)

5. Marback, A., Do, H., He, K., Kondamarri, S., Xu, D.: Security test generation
using threat trees. In: ICSE Workshop on Automation of Software Test. pp. 62–69
(May 2009)

6. Morais, A., Martins, E., Cavalli, A., Jimenez, W.: Security protocol testing using
attack trees. In: International Conference on Computational Science and Engineer-
ing. vol. 2, pp. 690–697 (Aug 2009)

7. Regainia, L., Salva, S.: A methodology of security pattern classification and of
attack-defense tree generation. In: Proceedings of the 3nd International Confer-
ence on Information Systems Security and Privacy (ICISSP). SciTePress, Porto,
Portugal (feb 2017)

8. Schumacher, M.: Security Engineering with Patterns: Origins, Theoretical Models,
and New Applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2003)

9. Shahmehri, N., Mammar, A., Montes De Oca, E., Byers, D., Cavalli, A., Ardi, S.,
Jimenez, W.: An advanced approach for modeling and detecting software vulner-
abilities. Inf. Softw. Technol. 54(9), 997–1013 (Sep 2012)

10. Yoshizawa, M., Kobashi, T., Washizaki, H., Fukazawa, Y., Okubo, T., Kaiya, H.,
Yoshioka, N.: Verifying implementation of security design patterns using a test
template. In: 9th International Conference on Availability, Reliability and Security.
pp. 178–183 (Sept 2014)

11. Yskout, K., Heyman, T., Scandariato, R., Joosen, W.: A system of security patterns
(2006)

12. Yskout, K., Scandariato, R., Joosen, W.: Do security patterns really help designers?
In: Proceedings of the 37th International Conference on Software Engineering -
Volume 1. pp. 292–302. ICSE ’15, IEEE Press, Piscataway, NJ, USA (2015)

