N
N

N

HAL

open science

Generating Checking Sequences for User Defined Fault
Models

Alexandre Petrenko, Adenilso Simao

» To cite this version:

Alexandre Petrenko, Adenilso Simao. Generating Checking Sequences for User Defined Fault Mod-
els. 29th IFIP International Conference on Testing Software and Systems (ICTSS), Oct 2017, St.

Petersburg, Russia. pp.320-325, 10.1007/978-3-319-67549-7 20 . hal-01678955

HAL Id: hal-01678955
https://inria.hal.science/hal-01678955
Submitted on 9 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01678955
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Generating Checking Sequences
for User Defined Fault Models

Alexandre Petrenko

CRIM, Centre de recherche informatique de Montréal
405 Ogilvy Avenue, Suite 101, Montréal (Québec) H3N 1M3, Canada
petrenko@crim.ca

Adenilso Simao

Instituto de Ciencias Matematicas e de Computacao, Universidade de Sao Paulo
Sao Carlos/Sao Paulo, Brazil
adenilso@icmc.usp.br

Abstract. In this paper, we investigate how a checking sequence can be gener-
ated from a Finite State Machine, with respect to a user-defined set of faults,
modeled as a nondeterministic FSM, called Mutation Machine (MM). We pro-
pose an algorithm for generating a checking sequence in this scenario and dem-
onstrate its correctness.

Keywords. FSM testing, fault models, checking sequence, mutation machine

1 Introduction

Generation of checking sequence (CS) from a Finite State Machine (FSM) is a re-
levant problem, when the implementation may not be reset or when reset operation it
prohibitively costly. There are methods which, given a distinguishing sequence, can
generate a checking sequence in polynomial time [2] [3]. Other methods generate
checking sequence from characterization sets instead of a distinguishing sequence [1],
since the former is available for any minimal machine, while the latter may not exist.
Those methods, however, rely on the repetition of the sequences in the characteriza-
tion sets, resulting in an exponentially long sequence. These methods also consider
the classical fault domain where the implementation may have arbitrary faults, except
extra states.

In this paper, we investigate how a CS can be generated from an FSM, with respect
to a subset of faults. The faults of interest are modeled as a nondeterministic FSM,
called Mutation Machine (MM), such that any implementation is assumed to be a
deterministic submachine of the MM. We propose an algorithm for generating a CS in
this scenario. After demonstrating the correctness of the algorithm, we illustrate its
application on a simple example.

2 Checking Sequence Construction

An FSM is a tuple M = (S, Sy, X, O, h), where S is the set of states, Sy < S is the set
of initial states, X is the set of inputs, O is the set of outputs, which satisfy the condi-
tion /I M O=,and h < (Sx X x O x S) is the set of transitions. For state s and input
x, let (s, x) be the set of transitions from state s with input x. The FSM M is initia-
lized if |So| = 1 and is deterministic if for each (s, x) € Sx X, |h(s, x)| < 1. For an in-
itialized FSM, where |So| = 1, write s, instead of {so}.

The machine M is completely specified (complete FSM) if |h(s, x)| >1 for each (s,
x) e Sx X; otherwise, it is partially specified (partial FSM).

A path of the FSM M = (S, Sy, X, O, h) from state s € S is a sequence of transitions
(51, X1, 01, 82) (52, X2, 02, 83) ... (Sk» Xk» O Sg1), SUch that (s;, X;, 0;, Si+1) € h, for 1 <i< k.
Notice that we also allow a path to be empty, represented by €. The machine is
strongly connected, if it has a path from each state to any other state. The input pro-
jection (output projection) of the path is x;x;...x; (010;...0;). Input sequence § € [* is a
defined input sequence in state s of M if it is an input projection of a path from state s.
We use Q(s) to denote the set of all input sequences defined in state s and Q(M) for
the states in Sy, i.e., for M. Q(M) = X* holds for any complete machine M, while for a
partial FSM Q(M) c X*.

Given a path p, let trav(p) be the set of transitions of M which appear in p. For state
s and input x, let trans(p, (s, x)) be the set of transitions from state s with input x in
trav(p), i.e., trans(p, (s, x)) = trav(p) N h(s, x). For the FSM M = (S, S, X, O, h), giv-
en a set of states S’ < S and an input sequence a, let path(S', a) be the set of paths of
M from states of S” with input projection a.. We denote path(Sy, o) by pathy(a). Let
A(S’, a) be the set of output projections of the paths in path(S’, a.); we denote A(Sy, o)
by (o). Unless stated otherwise, paths are assumed to be from an initial state.

Given states s, t € S of the deterministic FSM M = (S, Sy, X, O, h), t is quasi-
equivalent to s, if Q(f) 2 Q(s) and A(¢, o) = A(s, o) for all o € Q(s); moreover, in case
Q(t) = Q(s), states are equivalent. States s, t € S are distinguishable, if \(t, o) # A(s,
a) for some a € Q(f) N Q(s). The machine is reduced, if any two states are distin-
guishable. The quasi-equivalence (equivalence) of two deterministic FSMs is the
corresponding relation of their initial states.

Spec = (S, so, X, O, h) is an initialized deterministic FSM specification. We assume
that it is strongly-connected machine, not necessarily complete and reduced.

Given an FSM M = (S, s¢, X, O, h) and s € S, let M/s be the FSM (S, s, X, O, h),
i.e., M initialized in state s. We let s-after-a denote the set of states reached by input
sequence o from state s; if a is applied to the initial state of M then we write M-after-
a instead of sq-after-a; for deterministic machines, we write s-after-o. = s’ instead of
s-after-a = {s'}

We use a so-called mutation machine MM = (S, S', X, O, h') which is a complete-
ly specified possibly nondeterministic FSM.

FSM M = (S, so, X, O, h) is a submachine of MM = (S', S, X, O, k") iff S §', 5o €

‘v and & < h'. Any complete deterministic submachine of MM is one of the mutants
of Spec. The number of mutants is |S%| IL, v < sx x |2(s, x)|. For the sets of states S,

inputs X and outputs O, we define the machine Chaos(S, X, O) = (S, so, X, O, (S x X x
O x §)) representing the universe of all FSMs with || states.

Let Prod be the product of Spec and MM = (S', S, X, O, h'); the states of Prod is a
subset of (S'U {A}) x S". A state (A, s) is a A-state. The product Prod = (P, Py, X, O,
H), where Py = {(so, s")| s'€ S%} is such that P and H are the smallest sets satisfying
the following rules:

1. If(s,se P,(s,x,0,0)€ h,(s",x,0,t)e h',and o =0, then (¢, t) € P
and ((s, s"), x, 0, (¢, t)) € H.

2. If(s,s)e P,(s,x,0,0)€ h, (s, x,0,t)e h',and 0 # o', then (A, t") e P
and ((s, "), x, o', (A, t")) € H.

Notice that A-states are sink states. If the product has no A-states, then any mutant
of MM is quasi-equivalent to Spec.

An input sequence ® € Q(Spec) is a checking sequence for Spec w.r.t. MM, if for
each deterministic submachine N of MM, if Ay(®w) = Age(®), then N is quasi-
equivalent to Spec/s, where s € S.

Given a path p = ((s1, my), x1, 01, (2, m2)) ((s2, M), X2, 02, (83, M3)) ... ((Sk, M), X,
0k, (Sk+1, mys1)) of the product Prod of Spec and MM, let pyyns be the corresponding
path in MM, i.e., piy = (my, X1, 01, my) (my, X2, 02, Mm3) ... (My, Xp, O, Mys1).

A path of the product Prod is deterministic (w.r.t. MM) if for every state s and in-
put x, |trans(piams, (5, x))| < 1. Given a set of paths Q of Prod, let det(Q) be the set of
paths of O which are deterministic (w.r.t. MM) and A(Q) be the set of deterministic
paths which leads to a A-state.

Algorithm for generating a CS for Spec w.r.t. UM

Input: Spec and MM

Output: A CS for Spec w.r.t. MM

o=

Compute the product Prod of Spec and MM.

While there exists a nonempty shortest input sequence o, such that
A(det(pathyp(oa))) #< do

® = oo
End While
Return ©

Lemma 1. Let o be an input sequence such that for each input sequence o, we
have that A(det(pathyp(ma))) = . Then, is a checking sequence for Spec w.r.t.
MM.

Proof. Assume that o is not a checking sequence for Spec w.r.t. MM, but for each
input sequence a., we have that A(det(pathyp(oa))) =3.

Thus, there exists a deterministic submachine N of MM, such that Ap(®) = Agpe(®),
and for each s € S, we have that N is not quasi-equivalent to Spec/s. This implies that
state N-after-o is not quasi-equivalent to any state Spec/s-after-w. Then for each s
S, there exists an input sequence § € Q(s) such that Ayn.ater-o(B) # Aspecs-atier-o(B)-

Let p,p be the path in N which has of3 as the input projection. It follows that p, €
A(det(pathyp(®f))), since N is deterministic, moreover, it leads to a A-state, since
AnN-afier-o(B) Z Aspecs-atter-o (B):thus, A(det(pathypdwf)))z &, a contradiction. O

Thus, by Lemma 1, if the algorithm stops, the resulting sequence ® is indeed a
checking sequence. It remains to show that it will always stop for any specification
and mutation machine.

Lemma 2. After a finite number of steps, the algorithm terminates.

Proof. First, notice that for a given deterministic submachine of MM, there is ex-
actly one deterministic path with a given input sequence projection (many subma-
chines can share the same path). Thus, the number of paths in det(path)p(®)) is li-
mited by the number of deterministic submachines of MM; as there are finitely many
such submachines, there are finitely many paths in det(pathyp(®)). Let Sub,, be the
set of deterministic submachines for which correspond the paths in det(pathyp(®)).
At least one path in det(pathy(®)) leads to a A-state, since the algorithm updated o
in the previous iteration to wo and A(det(pathyp(wa.))) # .

Let o be a nonempty input sequence, such that A(det(pathyp(®a))) # . Let Subg,,
be the set of deterministic submachines each which has a path in det(path)p(oa)). As
A-states are sink states, any submachine in Sub, with a path to a A-state is not in
Sub,,,. Thus, there exists at least one submachine which is in Sub, but not in Sub,,,.
The set of submachines with paths in det(path,y(w)) is thus reduced each time o is
updated by the algorithm. As the set of submachines is finite, eventually after a finite
number of steps the set Sub,, has no more machines distinguishable from the specifi-
cation machine Spec, which means that for any input sequence o, it holds that
A(det(pathyp(®a))) =D, and the algorithm terminates. O

We now illustrate the application of the algorithm. Consider the FSM in Figure 1a.
Observe first that it has no distinguishing sequence. In Figure 1b, we include a muta-
tion machine for which we will generate a checking sequence.

(b)

Figure 1. (a) Specification FSM. (b) the Mutation Machine MM

Notice that there are twelve deterministic complete submachines of MM. One pos-
sibility to obtain a checking sequence for Spec is to use any of the applicable methods
[2] [3], ignoring MM. However, the resulting checking sequence would be unneces-
sarily long.

The algorithm starts by building the product of Spec and MM, as well as initializ-
ing o with the empty sequence. The nonempty input sequence a = aa is such that ®a
reaches a A-state in the product, since det(pathypdoa)) = {((1, a, 0, 2), (2, a, 1, 3)),
((1,4a,0,2)(2,a,0,A)), ((1,a,0,2),(2,a, 1, 2))},ie., A(det(pathyp(wa))) . We

append o to ®, so that now ® = aa. In the next iteration, the nonempty input sequence
o = ba is selected, since det(pathyp(oa)) = {((1, a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a,
1,3),(1,a0,2),2,a1,2),(2,b,1,1),(1,a,0,A)),((1,a0,2),(2,a 1, 2), (2, b,
1, 3), 3, a1, 3), (1, a0,2), 2,a 1, 2), (2, b, 1, 3), 3, a, 1, 2))}, ie,
A(det(pathyp(oa))) #D. We append a to o, so that now @ = aaba. In the next itera-
tion, the nonempty input sequence a = aba is selected, since det(pathyp(ma)) = {((1,
a,0,2),2,a,1,3),3,b1,2),12,a,1,3),3,a,1,3),3,b,1,2), (2, a, 1, 3)), ((1, a,
0,2),(2,a,1,3),3,b1,2),12,a,1,3),3,4a,1,2),(2,b,1,1), (1, a, 0,A)), ((1, a, 0,
2),12,a,1,3),3,b,1,2),2,a,1,3),3,a,1,2),(2,b,1,3),3,a, 1,2)), ((1, a, 0, 2),
2,a,1,2),(2,b,1,3),3,a,1,3),(3,a,1,3),(3,b, 1,2),(2,a, 1, 2)), (1, a, 0, 2), (2,
a, 1,2), 2, b, 1,3), 3,a, 1,2, (2,a, 1,2), 2, b, 1, 3), 3, a, 1, 2))}, ie,
A(det(pathyp(oa))) # 3. We append a to o, so that now @ = aabaaba. In the next
iteration, the nonempty input sequence o = bba is selected, since det(pathyp(wa)) =
{((1,4,0,2),2,a,1,3),3,b,1,2),2,a,1,3),3,a,1,3),3,b,1,2), (2,4, 1, 3), (3,
b, 1,2),(2,b,1,1),(1,a,0,2)),((1,a0,2),2,a,1,3),3,b1,2),2,4a,1,3),(3,q,
1,3),(3,b,1,2),2,a,1,3),3,b,1,2), (2,5, 1,3),(3,a, 1,A)), (1, a, 0, 2), (2, a, 1,
3),3,b,1,2),2,a,1,3),3,a,1,2),(2,b,1,3),(3,a, 1,2), (2,5, 1,3), (3, b, 1, 2),
2,a,1,M),((1,a,0,2),(2,a,1,2),2,b,1,3),(3,a,1,3),(3,4a,1,3),(3, b, 1, 2), (2,
a,1,2),2,b,1,3),(3,b,1,2),(2,a,1,A), ((1,a,0,2),2,a, 1,2), (2, b, 1, 3), (3, a,
1,2),(2,a,1,2),2,b1,3),3,a,1,2),(2,b,1,3), (3, b, 1, 2), (2, a, 1, A)}, i.e.,
A(det(pathyp(oa))) # . We append a to o, so that ® = aabaababba. There is no
nonempty input sequence such that A(det(pathyp(wa))) # S. Thus, by Lemma 1,
aabaababba is a checking sequence for Spec with respect to MM.

Consider now the Spec in Figure 1(a) and the corresponding Chaos(S, X, O) which
represents a traditional fault domain, the universe of all FSMs with up to three states.
The algorithm we propose in this paper generates the checking sequence aaaabaaba-
babbababbabbbba, of length 24. On the other hand, the algorithm proposed in [1],
generates a checking sequence of length 130.

3 Experimental Results

In this section we present some preliminary experimental results on the length of
the checking sequence obtained for various size of a mutation machine. The experi-
ments are set up as follows. For each run, a random complete deterministic FSM Spec
with 5 states, 2 inputs and 2 outputs is generated, as proposed in [4]. Then, increas-
ingly bigger mutation machines are generated from Spec by adding transitions to it.
The size of the mutation machine is the number of its transitions; the smallest muta-
tion machine is the specification itself, which the biggest one is the Chaos machine
with that a given number of states, inputs and outputs. We executed 30 runs and col-
lected the length of the obtained checking sequence. Figure 2 shows the result of the
experiments. We note that, as expected, the length of the checking sequence increases
with the size of the mutation machine. However, the increment tends to be smaller, as
the number of transitions approaches the maximum.

[o s
S & =)

Median of the Length of the Checking Sequences

25 50 75 100
Number of Transitions in the Mutation Machine

Figure 2. Variation of the Length of the Checking Sequence with respect to the
Number of Transitions in the Mutation Machine.

4 Conclusion

In this paper, we proposed an algorithm for generating a checking sequence with
respect to a user-defined fault model. In the forthcoming steps of this research, we
plan to characterize scenarios when the algorithm can be effectively applied as well as
its scalability.

Acknowledgement.

This work was partially supported by MESI (Ministére de I'Economie, Science et
Innovation) of Gouvernement du Québec and NSERC of Canada, and by Brazilian
Funding Agency FAPESP, Grant 2013/07375-0.

References

1. Ali Rezaki, Hasan Ural: Construction of checking sequences based on characterization
sets. Computer Communications 18(12): 911-920 (1995).

2. Adenilso da Silva Simao, Alexandre Petrenko: Generating checking sequences for partial
reduced finite state machines. TestCom/FATES 2008: 153-168

3. Robert M. Hierons, Hasan Ural: Optimizing the length of checking sequences. IEEE
Trans. Computers 55(5): 618-629 (2006)

4. Adenilso da Silva Simao, Alexandre Petrenko: Checking completeness of tests for finite
state machines. IEEE Trans. Computers 59(8): 1023-1032 (2010)

