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Abstract. Recently, we proposed a mutation-testing approach from a classical
finite state machine (FSM) for detecting nonconforming mutants in a given fault
domain specified with a so-called mutation machine. In this paper, we lift this
approach to a particular type of extended finite state machines called symbolic
input finite state machine (SIFSM), where transitions are labeled with symbolic
inputs, which are predicates on input variables possibly having infinite domains.
We define a well-formed mutation SIFSM for describing various types of faults.
Given a mutation SIFSM, we develop a method for evaluating the adequacy of a
test suite and a method for generating tests detecting all nonconforming mutants.
Experimental results with the prototype tool we have developed indicate that the
approach is applicable to industrial-like systems.

Keywords: Extended FSM · Symbolic inputs · Conformance testing · Mutation
testing Fault modelling · Fault model-based test generation · Constraint solving

1 Introduction

Detecting nonconforming implementations is a major challenge during the design and
the maintenance of systems, which motivates the elaboration of innovative and efficient
testing [16,23], model-checking [6] and runtime verification techniques [12]. Testing
techniques [23] not only aim at exercising a system with adequate test cases to reveal
failures and ideally to identify and to repair faults causing the failures. They may also
target evaluating the adequacy of test cases and the generation of test cases to cover
artefacts that can conceal faults [5,11,4,2], e.g., statements, branches, interfaces, re-
quirements, mutants. Mutants which are versions of a specification of a system seeded
with undesired faults can be used to generate test cases or to determine the adequacy of
given test cases to reveal the faults. A fault domain can be specified with a set of mu-
tants and test cases detecting the mutants which do not conform to the specification can
be applied to detect faulty implementations of a system. Classical FSM model is often
used in developing fault model based testing approaches for detecting nonconforming
implementations. Recently we proposed an approach for this model to evaluate the ad-
equacy of test cases in a given fault domain [19] and to generate test cases detecting all
nonconforming mutants [20].



In case the testers need to deal with inputs with infinite domains, the finite input
alphabets which is used in classical FSM to represent the inputs of a system becomes
ineffective along with FSM-based testing approaches. In the automotive applications,
the behaviors of some controllers [18] depend on the truth values of predicates defined
over input variables with infinite domains. Extensions of FSMs with symbolic inputs
and arithmetic operations on variables have been proposed [3,21,14] to relax limita-
tions of the classical FSM and used in developing testing methods [9,21,14]. Following
the same trend, our test generation method by constraint solving from FSM in [19,20]
could be enhanced to extended FSM. The work of [8] also uses an EFSM model and a
mutation machine to model transition and output faults. Test generation requires (par-
tial) unfolding of the specification, which we completely avoid. A test suite complete
for used defined faults can only be generated if they satisfy certain sufficient conditions,
which severely restrict types of detectable transition and output faults. Moreover, faults
in transition predicates are not considered, as opposed to our approach.

In this paper, we lift the mutation testing approach from classical FSM in [19,20]
to symbolic input finite state machine (SIFSM). SIFSM [21] is an extension of FSM
with inputs specified with predicates on input variables possibly having infinite do-
mains, which permits a more compact representation of data, data-flow relations and
control-flow for determining outputs depending on the values of the predicates and
states. Examples of realistic systems which can be specified with SIFSM can be found
in [18,10]. The contribution is three-fold. First, we define mutation operations for build-
ing well-formed mutation machines specifying mutants in fault domains. New mutation
operations may change predicates used in the specification or introduce new predi-
cates. Secondly, we propose a method for evaluating the completeness of a test suite,
i.e., the adequacy of a test suite to detect all nonconforming mutants. Finally we pro-
pose a method for generating complete test suites. Following the ideas in our previous
work [19,20], the methods rely on building and resolving constraints specifying the mu-
tants undetected by given test cases. However, in this work the constraints differ from
those in our previous work; they are represented with Boolean expressions for express-
ing both undetected mutants and the input-completeness property of the mutants. The
latter property is formalized with a notion of cluster for state. This is needed because
predicates cannot be mutated independently. We evaluate the methods with a prototype
tool applied to a SIFSM model of a component from the automotive domain.

The remaining of the paper is organized as follows. Section 2 introduces mutation
SIFSM and mutation operations used for its creation. In Section 3 we present an ap-
proach for determining the mutants undetected by a test, which leads to a method for
completeness checking of a given test suite in Section 4. In Section 5 we develop a
method for complete test suite generation. Section 6 reports some experimental evalua-
tion of the approach. We summarize our contributions in Section 7.

2 Background

2.1 Preliminaries

Let G denote the universe of inputs that are predicates over variables in a fixed set V
for which a decision theory, e.g., an SMT solver, exists, excluding the predicates that



are always false. G∗ denotes the universe of input sequences and ε denotes the empty
sequence. Later in the paper, a test is just an input sequence. Let IV denote the set
of all the valuations of the input variables in the set V , called concrete inputs. A set
of concrete inputs is called a symbolic input; both, concrete and symbolic inputs are
represented by predicates inG. Henceforth, we use set-theoretical operations on inputs.
In particular, we say that concrete input x satisfies symbolic input g if x ∈ g. We also
have that IV ⊆ G. A set of inputs H is a tautology if each concrete input x ∈ IV
satisfies at least one input in it, i.e., {x ∈ g | g ∈ H} = IV .

We define some relations between input sequences in G∗. Given two input se-
quences α, β ∈ G∗ of the same length k, α = g1g2 . . . gk, β = g′1g

′
2 . . . g

′
k, we let

α∩ β = g1 ∩ g′1 . . . gk ∩ g′k denote the sequence of intersections of inputs in sequences
α and β; α and β are compatible, if for all i = 1, . . . , k, gi ∩ g′i 6= ∅. We say that α is
a reduction of β, denoted α ⊆ β, if α = α ∩ β. If α is a sequence of concrete inputs
as well as a reduction of β then it is called an instance of β; given a finite set of input
sequences E ⊆ G∗, a set of concrete input sequences is called an instance of the set E,
if it contains at least one instance for each input sequence in E.

Given a finite set of outputs O, a trace is a sequence of input-output pairs in (G ×
O)∗. A trace is concrete if every input in it is concrete; otherwise it is symbolic. Given a
trace β ∈ (G× O)∗, the input (resp. output) projection of β, denoted β↓G (resp. β↓O),
is a sequence obtained from β by erasing symbols in O (resp. G).

We consider an extension of FSM called symbolic input finite state machine (SIFSM)
[21], which operates in discrete time as a synchronous machine reading values of input
variables and setting up the values of output variables. Output variables are assumed to
have a finite number of valuations and form a finite output alphabet. On the other hand,
the set of input valuations can be infinite.

Definition 1. A symbolic input finite state machine S (or machine, for short) is a 5-
tuple (S, s0, V,O, T ), where

– S is a finite set of states with the initial state s0,
– V is a finite set of input variables over which inputs in G are defined,
– O is a finite set of outputs,
– T ⊆ S ×G×O × S is a finite transition relation, (s, g, o, s′) ∈ T is a transition.

The semantics of SIFSM is defined by a Mealy state machine with a possibly infinite
input set, where the state and output sets remain finite. The set of transitions outgoing
from state s is denoted by T (s). We say that input g is defined in state s if g is the
input of a transition in T (s). Then, G(s) denotes the sets of all the inputs defined in
s. We say that transition (s, g, o, s′) is triggered by input g′ if g′ is a reduction of g.
Several transitions in T (s) are nondeterministic if they can be triggered by the same
input. If a set of transitions T (s) includes nondeterministic transitions, the set is said to
be nondeterministic; otherwise it is deterministic.

An execution of S from state s is a sequence of transitions t1t2 . . . tn forming a path
from s in the state transition diagram of S. A deterministic execution is an execution
such that its set of transitions is deterministic; otherwise, i.e., if for some state s and
some transition in the execution there exists another transition such that both transitions
belong to T (s) and are triggered by an identical input, the execution is nondeterministic.



A symbolic trace of S in state s is the projection of an execution from s on the input-
output pairs in (G × O). A trace obtained from a symbolic trace in s by substituting
every inputs by an instance of it is called a concrete trace of S in s. Let TrS(s) (resp.
STrS(s)) denote the set of all concrete (resp. symbolic) traces of S in state s and TrS
(resp. STrS) denote the set of concrete (resp. symbolic) traces of S in the initial state.

We say that an input sequence triggers an execution of S (in state s) if it is a reduc-
tion of the input projection of a trace of the execution of S (in state s). Given an input
sequence α, let outS(s, α) denote the set of all output sequences which can be produced
by S in response to α at state s, that is outS(s, α) = {β↓O | β ∈ STrS(s) and α ⊆
β↓G}. We observe that outS(s, α) = outS(s, γ) whenever γ is a reduction of input α.

The machine S is deterministic (DSIFSM), if for every state s, T (s) is determinis-
tic; otherwise S is a nondeterministic SIFSM (NSIFSM). Clearly, a DSIFSM has only
deterministic executions, while an NSIFSM can have both. State s of S is completely
specified, if G(s) is a tautology, i.e., each concrete input x ∈ IV satisfies at least one
input defined at s. The machine S is completely specified, if each state is completely
specified. The machine S is initially connected, if for any state s ∈ S there exists an
execution from s0 to s. Henceforth, we assume that all SIFSM are initially connected
and completely specified.

We adapt several relations introduced in [19,20] for FSM to SIFSM and use trace-
based definitions of the relations introduced in [21]. Given states s1, s2 of a SIFSM
S = (S, s0, V,O, T ), s1 and s2 are (trace-) equivalent, s1 ' s2, if TrS(s1) = TrS(s2);
s1 and s2 are distinguishable, s1 6' s2, if TrS(s1) 6= TrS(s2); s2 is trace-included
into (is a reduction of) s1, s2 ≤ s1, if TrS(s2) ⊆ TrS(s1). S is reduced if any pair of
its states is distinguishable. Given two distinguishable states s1 and s2, there exists a
sequence α ∈ G∗ such that outS(s1, α) 6= outS(s2, α); α is called a distinguishing
input sequence for states s1 and s2, this is denoted s1 6'α s2.

We also use relations between machines. Given SIFSM S = (S, s0, V,O, T ) and
P = (P, p0, V,O,N), P ≤ S if p0 ≤ s0; P ' S if p0 ' s0; P 6'α S if p0 6'α s0
with α ∈ G∗ ; and P 6' S if P 6'α S for some distinguishing input sequence α for p0
and s0. Later, we use equivalence relation between machines as a conformance relation
between implementation and specification machines.

Given a NSIFSM S = (S, s0, V,O, T ), a machine P = (P, p0, V,O,N) is a sub-
machine of S if p0 = s0, P ⊆ S and N ⊆ T .

2.2 Mutation machine

Let S = (S, s0, V,O,N) be a DSIFSM, called the specification machine.

Definition 2. A NSIFSM M = (S, s0, V,O, T ) is a mutation machine of S, if S is a
submachine of M.

Transitions of M that are also transitions of S are called unaltered, while the others,
in the set T \N , are mutated transitions. A transition of M is suspicious if it belongs to a
nondeterministic set of transitions, let Susp(s) denote the set of all suspicious transitions
in state s and Susp(M) denote the set of all suspicious transitions of M. An unaltered
transition is trusted if it is not suspicious; otherwise it is untrusted and belongs to the
set Untr(S) = Susp(M) ∩ N . Given state s, a subset of T (s) is called a cluster of s if
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Fig. 1: A mutation SIFSM, state 1 is initial.

it is deterministic and the inputs of its transitions constitute a tautology, in other words,
the transitions of the cluster have a complete system of guards so that each concrete
input enables a transition. Let Z(s) denote the set of all clusters of s. State s is said to
be suspicious if |Z(s)| > 1. We use Ssusp to denote the set of all suspicious states of M.

In a mutation machine, untrusted transitions can be seen as the result of applying
mutation operations transforming the specification into mutants. Mutation operations
may also be considered as fault seeding in the specification. For an untrusted transition
to belong to a mutant, it must participate in clusters. We say that a mutation machine
is well-formed if each of its suspicious transitions belongs to a cluster. In what follows,
we consider only well-formed mutation machines.

We assume that only completely specified deterministic submachines of M are pos-
sible implementation machines for the specification machine S. The set of all such sub-
machines is called a fault domain for S, denoted Sub(M). If M is deterministic then
Sub(M) contains just S. Since each implementation machine in Sub(M) is determinis-
tic, each state of an implementation machine has only one cluster. The size of Sub(M)
is the product of the sizes of the clusters of the states, i.e., |Sub(M)| =

∏
s∈S |Z(s)|. A

DSIFSM P ∈ Sub(M), such that P 6= S, is called a mutant. Each mutant P has all the
trusted transitions of M and the set of suspicious transitions Susp(P). It holds that for
all P,P′ ∈ Sub(M), if P 6= P′ then Susp(P) 6= Susp(P′).

Fig. 1 presents an example of an NSIFSM which is a well-formed mutation ma-
chine with three Boolean input variables v1, v2 and v3 and two outputs in {0, 1}. The
mutation machine has five mutated transitions depicted with dashed lines. The solid
lines represent the unaltered transitions of the specification machine. Identifiers of tran-
sitions are presented in brackets and parentheses for mutated and unaltered transition,
respectively. There are eight suspicious transitions t5, t6, t7, t8, t9, t10, t11 and t12; three
of them t5, t9 and t10 are untrusted. The states 3 and 4 are suspicious. The four clus-
ters of state 3 are {t5, t9}, {t5, t8}, {t6, t7, t9} and {t6, t7, t8}. The only two clusters



for state 4 are {t10, t13} and {t11, t12, t13}. The mutation machine includes seven mu-
tants and the specification machine. Execution t1t3t7t5 is nondeterministic because it
includes two nondeterministic transitions t7 and t5. Execution t1t3t7t6 is deterministic
and involves four mutants determined with the following sets of suspicious transitions
{t9, t7, t6, t10}, {t9, t7, t6, t11, t12}, {t8, t7, t6, t10} and {t8, t7, t6, t11, t12}.

Let e be an execution of M and Susp(e) denote the set of suspicious transitions
in e. We say that a (possibly nondeterministic or partially specified) submachine P

is involved in e if Susp(e) ⊆ Susp(P). An execution of any submachine of M is an
execution of M, but only deterministic executions of M are executions of submachines
in Sub(M). P ∈ Sub(M) is the only mutant involved in e if Susp(e) = Susp(P).

Since the specification and mutants are completely specified and deterministic SIFSM,
we use equivalence as a conformance relation for testing. A mutant P is nonconforming
(faulty) if P 6' S, otherwise, it is called a conforming mutant. We say that a distinguish-
ing input sequence α ∈ G∗ such that P 6'α S detects or kills the mutant P.

The tuple 〈S,', Sub(M)〉 is a fault model following [19,20,21]. For a given specifi-
cation machine S the equivalence partitions the set Sub(M) into conforming implemen-
tations and nonconforming ones. In this paper, we do not require the DSIFSM S to be
reduced, this implies that a conforming mutant may have fewer states than the specifica-
tion S; on the other hand, we assume that no fault creates new states in implementations,
hence mutants with more states than the specification are not in Sub(M).

2.3 Mutation Operations for Building Well-formed Mutation Machines

Mutation operations permit seeding different types of faults including output, transition
and other types of faults which cannot be represented with classical FSM. Considering
for instance nondeterministic Simulink/Stateflow models, priorities which are automat-
ically assigned to transitions based on the graphical layout may vary upon changes in
the layout [22]. The variation of the priorities causes transition faults which can be
represented with mutated transitions. We consider mutation operations adding mutated
transitions to well-formed mutation machines to build new well-formed mutation ma-
chines. Every mutated transition introduced by a mutation operation must belong to a
cluster of a state. Let M = (S, s0, V,O, T ), M′ = (S, s0, V,O, T

′) be two well-formed
mutation machines, s ∈ S be a state, A ⊆ T (s) be a subset of unaltered transitions
from state s in M and B ⊆ T ′(s) be a subset of mutated transitions from state s in M′.
We say that M′ is a mutation of M w.r.t A and B if the following four conditions hold:
A ∩ B = ∅, T ′ = T ∪ B, the union of the inputs of the transitions in A is equivalent
to the union of the inputs of the transitions in B and there are t ∈ A and t′ ∈ B having
compatible guards but different outputs or target states. We specify a mutation opera-
tion with a tuple (M, A,B) such that there exists a mutation of M w.r.t. A and B. The
set B can be obtained from the transitions in A by changing target states or outputs,
merging/splitting inputs of transitions, replacing variables with default values, swap-
ping occurrences of variables in inputs, substituting a variable for another, modifying
arithmetic/logical operations in guards. These operations introduce faults which cannot
be represented in classical FSM; some of these faults are considered in [11,4,2]. Any
well-formed mutation machine for a specification can be obtained by iterative applica-
tion of mutation operations on the specification.



3 Boolean Expressions Specifying Mutants (un)Detected by Tests

Let 〈S,', Sub(M)〉 be a fault model. In the context of testing SIFSM, we consider
that a test is just an input sequence. Tests detecting mutants can be determined using
a distinguishing automaton obtained by composing the transitions of the specification
and mutation machines as follows.

Definition 3. Given a DSIFSM S = (S, s0, V,O,N) and a mutation machine M =
(S, s0, V,O, T ) of S, a finite automaton D = (D ∪ {∇}, d0, G,Θ,∇), where D ⊆
S × S,∇ is an accepting (sink) state and Θ ⊆ D ×G×D is the transition relation is
the distinguishing automaton for S and M, if it holds that

– d0 = (s0, s0) is the initial state in D
– For any (s, t) ∈ D
• ((s, t), g ∩ h, (s′, t′)) ∈ Θ, if there exist (s, g, o, s′) ∈ N , (t, h, o′, t′) ∈ T ,

such that o = o′ and g ∩ h 6= ∅
• ((s, t), g ∩ h,∇) ∈ Θ, if there exist (s, g, o, s′) ∈ N , (t, h, o′, t′) ∈ T , such

that o 6= o′ and g ∩ h 6= ∅

Fig. 2 presents the distinguishing automaton for the mutation and specification ma-
chines in Fig. 1. Multiple transitions are represented with a single arc labeled with
multiple inputs.

An execution of D starting at the initial state d0 and ending at the sink state∇ is said
to be accepted. The language of D, LD is the set of tests labeling accepted executions
of D. Any nonconforming mutant in Sub(M) can be detected by a test in LD.

Theorem 1. Given the distinguishing automaton D for S and M, P 6' S for some
P ∈ Sub(M) if and only if P 6'α S for some α ∈ LD.

A test α ∈ LD triggers several executions in the distinguishing automaton defined
by executions of the specification and mutation machine M which are the respective
projections of the distinguishing automaton’s executions; a deterministic execution of
M defining an execution of the distinguishing automaton D to the sink state is called
α-revealing if it is triggered by any prefix of the test α. An α-revealing execution may
belong to several mutants. As discussed above, given a deterministic execution e of M
which has the set of suspicious transitions Susp(e), a mutant P is involved in the ex-
ecution e, if Susp(e) ⊆ Susp(P). Since an α-revealing execution defines an accepted
execution of the distinguishing automaton, each involved mutant is killed. Thus the sets
of suspicious transitions in all α-revealing executions represent all the mutants killed
by test α; on the other hand, it does not detect mutants which are not involved in these
executions. To elaborate a mutant killing test generation procedure we need first to de-
termine all the sets of suspicious transitions of the revealing executions for a given test.
Let Eα be the finite set of α-revealing executions of M. We use Boolean expressions
for encoding of suspicious transitions of executions in Eα. A solution of a Boolean
expression c over a set of variables is an assignment to True or False of every vari-
able which makes c True. A solution of c can be obtained with solvers [7,13] which
return null in case c has no solution. Given the set of suspicious transitions Susp(M),
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Fig. 2: The distinguishing automaton for machines in Fig. 1, state 11 is initial.

we introduce |Susp(M)| Boolean variables each of which represents a suspicious tran-
sition of the mutation machine. From now on we will use t to refer to both a suspicious
transition and the variable which represents it. Then the conjunction ce

def
=

∧
t∈Susp(e) t

of variables of transitions in Susp(e) specifies the submachines involved in the reveal-
ing execution e. Moreover, the disjunction of conjunctions of all executions in Eα gives



Boolean expression cα
def
=

∨
e∈Eα ce specifying all the submachines which are involved

in all executions inEα and killed by the test α. As usual, the disjunction over the empty
set is False and the conjunction over the empty set is True. Boolean expression cα is
satisfiable whenever Eα 6= ∅, since an α-revealing execution of M is a projection of the
execution of the distinguishing machine. A witness solution of cα provides all the vari-
ables evaluated to True and defines a corresponding subset of Susp(M) which together
with the trusted transitions of M determines (the transition relation of) a submachine of
M involved in α-revealing executions.

Let α = (v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3) be a test case. It
triggers four executions in the distinguishing automaton in Fig. 2. These executions are
defined by four executions of mutation machine in Fig. 1 including e1 = t1t3t5t10t1t3,
e2 = t1t3t5t11t1t3, e3 = t1t3t7t5 and e4 = t1t3t7t6. The executions e3 and e4 are de-
fined by the two executions to the sink state of the distinguishing automaton. Execution
e3 is not α-revealing because it is nondeterministic. Only execution e4 is α-revealing
and includes the two suspicious transitions in Susp(e4) = {t7, t6}. Thus ce4 = t7t6 and
cα = ce4 . The solutions of cα determine the submachines involved in e4.

We denote by Generate_a_submachine(c) a function which either determines such
a submachine from a solution of c it obtained after calling a solver or returns null if c
has no solution. Nondeterministic and partially specified submachines are not mutants.
To exclude such submachines as well as the specification from any solution, clusters in
suspicious states has to be considered.

Let s be a suspicious state, Z(s) = {Z1, Z2, . . . , Zn} be the set of its clusters. Then
the conjunction of variables of a cluster Zi expresses the requirement that all these
transitions must be present together to ensure that a submachine with the cluster Zi is
completely specified in state s. Moreover, since all mutants are deterministic, only one
cluster in Z(s) can be chosen, therefore, the transitions are restricted by the expressions
determining clusters. Each cluster Zi is exclusively determined by Boolean expression
zi

def
= (

∧
t∈Zi t) ∧ (

∨
t∈Susp(s)\Zi t) which permits the selection of all the suspicious

transitions in Zi and the exclusion of the remaining suspicious transitions leaving s,
i.e., the exclusion of the other clusters.

Lemma 1. Let Zi, Zj ∈ Z(s) be two clusters of state s. Every solution of zi is not a
solution of zj .

Then each state s in Ssusp yields the expression cs
def
=

∨n
i=1 zi of which all the solutions

determine all the clusters in Z(s).

Lemma 2. Every solution of cs determines a cluster in Z(s) and every cluster in Z(s)
is determined by a solution of cs.

Each solution of
∧
s∈Ssusp

cs determines the set of clusters of suspicious states either in
the specification or in a mutant. Each such cluster in the specification has at least one
untrusted transition in Untr(S). Excluding the specification can be expressed with the
negation of the conjunction of the variables of all the untrusted transitions

∧
t∈Untr(S) t.

Any of its solutions excludes at least one cluster in the specification and therefore cannot
determine the specification. The Boolean expression cclstr

def
=

∧
s∈Ssusp

cs ∧
∧
t∈Untr(S) t



Procedure Build_expression (TS,D);
Input : TS, a test suite
Input : D, the distinguishing automaton of mutation machine M and specification S

Output : cTS, a Boolean expression defining submachines of M involved in revealing
executions for tests in TS

cTS := False;
for each α ∈ TS do

Using D, determine Eα, the set of α-revealing executions of M;
cα := False;
for each e ∈ Eα do

ce :=
∧
t∈Susp(e) t ;

cα := cα ∨ ce;
end
cTS := cTS ∨ cα;

end
Return cTS;

Algorithm 1: Building cTS

excludes nondeterministic and partially specified submachines and the specification,
which means that cclstr specifies only all mutants in the fault domain Sub(M).

Considering the example mutation machine, we determine the Boolean expressions
for the suspicious states 3 and 4. For the four clusters of state 3 Z31 = {t5, t9}, Z32 =
{t5, t8}, Z33 = {t6, t7, t9} and Z34 = {t6, t7, t8} we build Boolean expressions z31 =
t5t9(t6t7t8), z32 = t5t8(t6t7t9), z33 = t6t7t9(t5t8) and z34 = t6t7t8(t5t9). Then
c3 = (z31 ∨ z32 ∨ z33 ∨ z34). Similarly for state 4, we build c4 = (z41 ∨ z42) where
z41 = t10t13(t11t12) and z42 = t11t12t10t13. Finally, cclstr = c3 ∧ c4 ∧ (t5 ∨ t9 ∨ t10).

A solution of cα ∧ cclstr defines a subset of Susp(M) which together with the trusted
transitions of M determines (a transition relation of) a mutant detected by α. All solu-
tions thus determine all mutants detected by the test α. For a non-trivial mutation ma-
chine, a sheer number of killed mutants makes their enumeration impracticable. Hence,
instead of determining killed mutants, we determine a (conforming or nonconforming)
mutant which survives the test α. The negation of cα, cα determines the transition re-
lations of not only all mutants which survive α but also other submachines which are
not mutants. Considering the running example, a partially specified submachine having
the suspicious transitions t9 and t8 is determined by the solution of cα which assigns
True t9 and t8; such a submachine is not a mutant and it does not belong to Sub(M). To
eliminate them as well as the specification, we use cclstr as before. Finally, each mutant
which survives test α is determined by a solution of the expression cα ∧ cclstr.

Theorem 2. Test α ∈ G∗ does not detect a mutant P if and only if there is a solution
of cα ∧ cclstr which determines P.

4 Checking Completeness of a Test Suite

Given a fault model 〈S,',M〉, a fault subdomain for S, FD is a subset of Sub(M). A
test suite, TS is a set of tests. TS is complete for fault subdomain FD if it detects all the



nonconforming mutants in FD. Let us define cTS
def
=

∨
α∈TS cα, a Boolean expression

which determines the submachines involved in revealing executions for the tests in TS.
Procedure Build_expression for building cTS is presented in Algorithm 1.

Let cfd be a Boolean expression specifying only all mutants in a fault subdomain
FD. It can be formulated as the conjunction cclstr with another (possibly always True)
Boolean expression over the variables of suspicious transitions, which excludes mutants
from Sub(M) to obtain FD. A fault subdomain can always be refined with an expression
specifying the mutants to be excluded. Later, in checking the completeness of a test suite
for a given FD, we will be excluding conforming mutants.

Theorem 3. Test suite TS is complete for fault subdomain FD if and only if cTS ∧ cfd

has no solution or each of its solutions determines a conforming mutant.

The fault domain Sub(M) is specified with cclstr, which leads to Corollary 1.

Corollary 1. Test suite TS is complete for Sub(M) if and only if cTS ∧ cclstr has no
solution or each of its solutions determines a conforming mutant.

Based on Theorem 3, checking the completeness of a test suite for a fault subdomain
FD amounts to its iterative refinement by excluding conforming mutants as solutions
to cTS ∧ cfd while no nonconforming mutant is found. In particular, the negation of the
conjunction of variables of all suspicious transitions of a conforming mutant added to
cfd excludes it from FD. This method is formalized in Algorithm 2 which presents Pro-
cedure Check_completeness for checking the completeness of a test suite TS for a fault
subdomain specified by the input parameter cfd which is refined each time a conform-
ing mutant is generated. The procedure Check_completeness also takes as inputs a test
suite TS and the distinguishing automaton for the mutation and specification machines.
It returns a witness test detecting a mutant surviving TS in case TS is not complete; oth-
erwise the witness test is empty, which indicates that TS is complete. It also returns an
updated expression of cfd specifying a reduced fault domain which is used to generate
tests that make TS a complete test suite in Section 5. Procedure Check_completeness
proceeds as follows. It calls Build_expression for building cTS, the Boolean expression
which determines the submachines involved in revealing executions for tests in TS. Ini-
tialy, the fault domain is specified with the conjunction of cfd with the negation of cTS

which determines all mutants surviving TS. The execution is iterative and each step
consists in generating a mutant surviving TS, checking the conformance of the mutant
and removing from the current fault domain the mutant in case it is conforming.

Procedure Check_completeness makes calls to Generate_a_submachine to select a
mutant in a fault domain specified with Boolean expression cfd. Generate_a_submachine
returns null in case the fault domain is empty. The execution of Check_completeness
stops when Generate_a_submachine returns a nonconforming mutant or null. In case
null is returned, the test suite is declared complete and Check_completeness returns the
empty test; otherwise the test suite is declared incomplete and Check_completeness
returns a non empty witness test detecting a nonconforming mutant. In both cases
Check_completeness returns an expression specifying the reduced fault domain at the
end of the execution. In the next section, we will check the completeness of generated
tests (e.g., the witness tests) for the reduced fault domains in determining complete test
suites for fault domains specified with mutation machines.



Procedure Check_completeness (cfd, TS,D);
Input/Output : cfd a boolean expression specifying a fault domain
Input : TS, a (possibly empty) test suite
Input : D, the distinguishing automaton of M and S

Output : α 6= ε, a test case revealing a nonconforming mutant surviving the test
suite; α = ε, if TS is complete

cTS := Build_expression(TS,D);
cfd := cTS ∧ cfd;
cP := False;
α := ε;
repeat

cfd := cfd ∧ cP ;
P := Generate_a_submachine(cfd) ;
if P 6= null then

Build DP, the distinguishing automaton of S and P ;
if DP has no sink state then

cP :=
∧

t∈Susp(P)

t ;

else
Set α to an input sequence in LDP

;
end

end
until α 6= ε or P = null;
return (cfd, α)

Algorithm 2: Checking the completeness of a test suite for a fault domain

In checking the completeness of the initial test suite {α} for the example mutation
machine and test α, Check_completeness takes as input cfd = cclstr, TS = {α} and the
distinguishing automaton in Fig. 2. Then, it determines cTS = cα = t7t6, sets cfd =
cTS ∧ cclstr, cP = False and α = ε and starts executing the loop. In the first iteration,
the call of Generate_a_submachine with input cfd has generated the mutant with the
suspicious transitions t8, t11, t12. The mutant is nonconforming and killed by the test
β = (v1v3)(v1 ∨ v2)(v2 ∨ v3) labeling a path to the sink state in the distinguishing
automaton for the mutant. Then the execution of Check_completeness terminates with
outputs cfd and non empty test β, which indicates that the test suite {α} is not complete.

5 Complete Test Suite Generation

In case an initial (possibly empty) test suite does not detect all the nonconforming mu-
tants in a fault domain, we want to generate tests which together with the initial tests
constitute a complete test suite for the fault domain. This can be done iteratively by
adding a new test detecting a nonconforming mutant surviving the incomplete test suite,
obtaining a new test suite which in turn can be augmented in case it is not complete.
This complete test suite generation method is formalized in Algorithm 3 with procedure
Complete_test_gen which takes as inputs an initial test suite TSinit and a fault domain
represented with a mutation machine. At every step, the procedure adds a current test



Procedure Complete_test_gen (TSinit, 〈S,', Sub(M)〉);
Input : TSinit, an initial (possibly empty) test suite
Input : 〈S,', Sub(M)〉, a fault model
Output : TS, a complete test suite for 〈S,',M〉
Compute cclstr, the boolean expression which determines all mutants in Sub(M);
Compute D the distinguishing automaton for S and M;
cfd := cclstr;
TS := ∅;
TScurr := TSinit;
repeat

TS := TS ∪ TScurr;
(cfd, α) := Check_completeness(cfd, TScurr, D);
TScurr := {α} ;

until (α = ε);
return TS is complete;
Algorithm 3: Generation of a complete test suite from initial test suite TSinit

suite to the set TS of already analyzed tests and makes a call of Check_completeness to
analyze the completeness of a current test suite w.r.t. a current fault domain. In case of
completeness, Check_completeness returns the empty test, which triggers the termina-
tion of Complete_test_gen with TS as a complete test suite for the initial fault domain;
otherwise, Check_completeness returns a witness test detecting a nonconforming mu-
tant and a reduced fault domain obtained by removing the nonconforming mutant and
possibly other conforming mutants, as discussed in the previous section. Then Com-
plete_test_gen proceeds to a next iteration step after it has set the current fault domain
and the current test suite to the reduced fault domain and the witness test.

Theorem 4. Procedure Complete_test_gen always terminates and returns a complete
test suite for the fault domain specified with a fault model.

Procedure Complete_test_gen always terminates because the execution of its only loop
always terminates. This is because the initial fault domain consisting of a finite number
of mutants is reduced at every iteration step of the loop and Check_completeness returns
the empty test when executed with the empty fault domain as an input.

Considering the running example, Table 1 summarizes data computed in executing
Complete_test_gen to generate a complete test suite from initial test suite TSinit = {α}.
The iteration step appears at the first column. Data are initialized at the end of step init.
In each step Complete_test_gen makes a call to Check_completeness which computes
the executions revealed by TScurr determined in the previous step and updates cfd .
Three iteration steps were sufficient to obtain the complete test suite {α, β, γ} having
three tests for the detection of the seven nonconforming mutants, which shows that the
method permits generating fewer tests than the nonconforming mutants. Notice that
we generate symbolic tests; their concrete instances should be used to execute against
black box implementations. In our working example, for simplicity, all input variables
are Boolean, which however, can represent comparisons of integer variables with some
constants. The obtained concrete tests could then be just rewritten by replacing every
Boolean variable by an instance of the corresponding comparison.



Table 1: Execution of Procedure Complete_test_gen with the initial test α.
In Check_completeness End of the step

step Revealing. Exec cTScurr cfd Surv. mut. TS TScurr

init N/A N/A cclstr N/A ∅ α

1 t1t3t7t6 t7t6 cfd ∧ t7t6 t8, t11, t12 α β

2 t1t3t8 t8 cfd ∧ t8 t9, t11, t12 α, β γ

3 t1t3t5t12t3t5t10,
t1t3t5t10t1t3t8

(t5t11t12)∨
(t5t8t10)

cfd ∧
(t5t11t12) ∨ (t5t8t10)

∅ α, β, γ ε

α = (v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)
β = (v1v3)(v1 ∨ v2)(v2 ∨ v3)
γ = (v1v3)(v1 ∨ v2)(v2v3)(v1v3 ∨ v2v3)(v1v3)(v1v2v3)(v2v3)

Table 2: Experimental results with the prototype tool
#Mutants 8191 163839 1105919 9400319
#Tests 14 15 18 18
Time (sec.) 30 90 100 296

6 Prototype Tool and Experimental Results

We implemented in JAVA a prototype tool consisting of three main modules. The first
module for parsing mutation machines in text format was developed using ANTLR
4.1 [15]. The second module is concerned with building clusters, distinguishing au-
tomata and Boolean expressions for undetected mutants; it uses as a back-end the solver
Z3 [13] for solving of non Boolean expressions obtained by combining predicates in
building clusters and automata. We integrated the solver in the tool using a Z3 API.
The third module is responsible of solving Boolean expressions for mutants, extracting
mutants and generating new tests. The module also uses solver Z3 though it may also
use a SAT solver [7] since it deals with the resolution of Boolean expressions only.

In our experiments, we use a desktop computer with the following settings: 3.4Ghz
Intel Core i7-3770 CPU, 16.0 GB of memory (RAM), Windows 7 (64 bits).

We use the prototype on an industrial-like SIFSM model obtained by transforming
a Simulink/Stateflow model [18] of an automotive controller. To regulate the air quality
in a vehicle, the controller sets an air source position to 0 or 1 depending on its current
state and truth values of predicates on integer and Boolean input variables. The trans-
formation required flattening and determinizing the original hierarchical Simulink/S-
tateflow model. The determinization is based on priorities assigned to nondeterministic
transitions as it is done by Simulink [22]. We obtained a SIFSM with 13 states, 62
transitions and 22 input variables. Then we have manually introduced faults (transition
faults, output faults, swapping of variables, replacing variables with constants), obtain-
ing a mutation machine with 213 − 1 = 8191 mutants. Our tool generates, within 30
seconds, a complete test suite with 14 tests detecting the mutants. Finally, we generate
complete tests from automatically generated mutation machines with a generator exe-
cuting randomly selected mutation operations. Table 2 presents the numbers of mutants
in the mutation machines, the number of tests in the generated complete test suites. The



maximal length of the tests is 8. We observed that the test generation is fast when the
mutation operations introduce a small number of nonconforming mutants, which is a
realistic assumption [11] for applying our method.

7 Conclusion

We lifted the multiple mutation testing approach developed for classical (Mealy) FSM
to symbolic input finite state machine (SIFSM). SIFSM extends classical FSM with
predicates defined over input variables with possibly infinite domains.

We defined well-formed mutation machines for SIFSM as a fault model for compact
representation of a fault domain consisting of several faulty implementations (mutants)
of a specification machine. Then we defined mutation operations for building well-
formed mutation machines. Based on the machine equivalence and distinguishability
relations, we have defined tests detecting nonconforming mutants and developed a mul-
tiple mutation testing approach from SIFSM. The proposed approach leveraging on that
developed for classical FSM includes a method for checking the completeness of test
suites, i.e., their adequacy to detect all nonconforming mutants in a fault domain, and
a method for complete test suite generation avoiding mutant enumeration. The novelty
of the proposed approach is that it can analyze and enhance completeness of symbolic
tests w.r.t. user defined fault models for a specification with infinite input domains.

The experiments with a prototype tool we have developed indicate that our methods
can be applied to industrial-like models of systems.

Our current work focuses on extending the approach to FSM with outputs deter-
mined by arithmetic operations over input and output variables [17], to FSM extended
with timing predicates [1,14] and to C program.
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