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Abstract. Being able to reduce test suites without having to execute
them for assessing the effects on their fault detection capabilities is quite
appealing. In this direction, we proposed recently to characterize test
suites via inferred decision trees and use these for comparisons in a re-
duction process. The equivalence relation underlying the comparisons
plays obviously a significant role for the effectiveness achieved and ef-
ficiency experienced. In this paper, we explore five such relations that
take different aspects into account and investigate their impact on test
suite reduction, their effectiveness in fault detection, and computation
time. We report corresponding results, and show as well as prove that
the equivalence relations build a taxonomy.
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1 Introduction

Today, our software tends to be improved and extended almost constantly dur-
ing its life cycle. Correspondingly, also the test suites we use for their validation
tend to grow with new product features, the isolation of faults to be avoided
in the future, and with the advent of new concepts for generating tests effec-
tive at unveiling specific software issues. The impact of software testing on the
overall development costs, however, demands keeping test suites as small as pos-
sible while preserving their fault detection capabilities. Consequently, we need
effective test suite reduction approaches in order to manage resources and costs
related to a test suite’s execution, validation, and management.

Even when focusing on predefined faults (like for mutation testing [9]) such
that we knew exactly which faults some test case t can identify, finding a min-
imum sized test suite able to identify a maximum of faults, is an instance of
the set cover problem that is one of Karp’s 21 NP-complete problems [19]. Still,
drawing on effective heuristics, researchers faced the challenge and proposed var-
ious strategies to tackle the problem, e.g., [4,12,13,15,22,24]. Known strategies
rely, e.g., on existing links between requirements and test cases, on analyzing



execution traces that can cover others, or on preserving coverage and mutation
scores as indicators for a test suite’s effectiveness.

An attractive feature of the approach introduced by Felbinger et al. in [10]
is that we do not need to execute the program under test for assessing the fault
detection capabilities when removing a test case. The underlying idea was that
every test suite T should at least partially capture the behavior of the program
under test in a sufficient way. The strategy then is to use machine learning for
model extraction, in order to derive representative characterizations from T and
a reduced test suite T ′. We proposed in [10] the following reduction process:
Initially, we learn a characterizing decision tree from T , and when successively
trying to remove test cases t ∈ T , we infer for each potential removal another
decision tree from the updated test suite T ′. If the decision tree for T ′ is equiv-
alent to the initial one, we assume that the fault detection capabilities were not
affected, and proceed with trying to remove further test cases. Otherwise, we go
back one step and re-add t. The reduction terminates after a preconfigured num-
ber of unsuccessful, random tries to remove a further test case. With avoiding
to execute T , we still could achieve reductions from 60 to 99% in our evaluation.
Our approach for decision tree learning is limited to test cases t represented as
some vector t = 〈x1, .., xk, out〉 of k input values and an expected output value
out. The inputs are either numeric of an infinite domain, numeric of a finite
domain, or discrete strings or numbers. The output type has to be of a finite
domain, whose values then build the labels of the decision trees’ leaf nodes.

Since such a test suite reduction depends on an equivalence relation for deci-
sion trees, the following questions arise immediately: Which methods are there
for determining equivalence? Are there more than structural and misclassifica-
tion equivalence as discussed and used in [10] (coined syntactic and semantic
equivalence there), and is there a relation between them? What is their impact
on the efficiency and effectiveness of the reduction process?

Imagining variants, one has to take the characteristics of the derived trees
into account. According to [17], optimizing a decision tree to a minimal number
of nodes which would allow us to compare minimal or canonical ones, is in NP.
Thus, the algorithm used to infer the decision trees in [10] is based on a statistical
measure (the information gain of variables) and does not stringently build opti-
mal decision trees. Consequently, trees inferred from different test suites might
appear different in respect of their strict structure. Exploring flexibility in this
respect, we consider five variants for checking some trees’ equivalence. In par-
ticular, we consider in Section 4 structural (≡), spine (=s), decision (=d), table
(=t), and misclassification (=m) equivalence aiming to cover and explore various
decision tree aspects. We show and prove that these variants build a taxonomy
as shown in Figure 1 in respect of their strength. We report in Section 5 on
our corresponding experiments, considering computation time and the achieved
reductions as well as the impact on fault detection capabilities. In Section 6 we
conclude on our findings and line out future work.



Fig. 1. Taxonomy of equivalence relation in respect of their strength.

2 Related Work

Safavian and Landgrebe provide a survey of decision tree classifiers in [26]. They
address the design, search strategies, issues like missing values and robustness,
and potential problems of decision trees in their survey. In [21] Moret provides
a common framework of definitions and notations for decision trees. In [7] Dat-
tatreya and Kanal introduce the usage of decision trees in pattern recognition.
In this context they define pattern recognition as "the assignment of a physical
object or an event to one of the prespecified categories". They consolidate the
major methodologies for decision tree design, bring out those methodologies’
commonalities, provide insight into multistage classification, explode the myth
that decision trees are always simple to design and use, mention areas of appli-
cations of decision trees, and aid a decision tree designer to select an appropriate
technique for the particular problem of interest.
Cockett introduces in [6] different notions of decision tree equivalence. These
notions are structural, decision, and transposition equivalence that are similar
to some of the notions we use in this work, which are structural, spine, and deci-
sion equivalence, but Cockett uses the notion of coalgebras to describe decision
trees and the equivalence relations. In [28] Zantema presents a simple efficient
algorithm to establish whether two decision trees are equivalent or not. This
algorithm is an axiomatization for decision equivalence as we use it in this work.
The complexity of this algorithm is bounded by the product of the number of
nodes n and m of both decision trees (O(n ∗m)). The algorithm only processes
decision trees representing discrete valued variables as decision nodes. In our
work we also cover numeric inputs, which are handled by binary splits. The au-
thors in [5] present an algorithm that reduces a decision tree by replacing the
decision tree with a smaller equivalent decision tree. To find an irreducible tree
using the reduction algorithm they also use decision and transposition equiva-
lence. In [29] the authors address the question, whether for a given decision tree,
a decision tree decision equivalent to the given one can be found, for which no
decision equivalent decision tree of smaller size exists. Breslow and Aha provide
an overview over methods how to simplify a decision tree in [2].



The underlying idea that a model inferred from a test suite can be used to
indicate the fault detection effectiveness of the test suite was initially published
in [11]. In [11] Felbinger et al. show that a linear correlation between model
inference based test suite quality assessment without executing the program un-
der test might depend on the structural properties, the types of inputs, and the
number of discrete outputs of the program under test. Some initial results of test
suite reduction without executing the program under test are provided in [10].
The promising results in [10], where reductions of 60-99% were possible, while
still keeping coverage and mutation score almost the same, led to this work,
where we used the same reduction algorithm. In [10] structural and misclassi-
fication equivalence were used to obtain the results. Briand et al. [3] describe
a test suite refinement approach that relies on the black box testing technique
Category-Partition [23] and machine learning. They use categories and choices
to define the functional properties of a program under test, where categories are
associated with choices. E.g. a category representing an inequality relation has
two choices of an inequality relation that are either greater than or less than.
Based on these categories they transform test cases into abstract test cases.
These abstractions are tuples of choices and an expected output value or an
equivalence class of expected output values. Like in our work, they use the C4.5
algorithm [25] to learn a decision tree in [3]. But in contrast to our work, where
we learn a decision tree from the raw values in a test suite, they learn decision
trees from the abstractions obtained by category-partitioning.

Since test suite reduction has been of interest for decades, there is a tremen-
dous amount of further related work. We refer the interested reader to [1] and [27]
for detailed overviews.

3 Preliminaries

In our work, we infer a decision tree D from a test suite T via the well-known
algorithm C4.5 [25]. Such a decision tree is a directed tree D = (V,E) having
nodes V and directed edges E connecting nodes. V can be split into decision
nodes and leaf nodes, where a decision node has outgoing edges and represents a
decision (i.e., a relational equation) like x > 0 (see Fig. 2) for some numeric input
x, or x equals 〈discrete value〉 for discrete inputs. A leaf node is a terminal one
and offers a discrete classification. An edge (v, v′) is a pair of nodes (v, v′ ∈ V ),
where v is parent of v′. For simplicity, we assume a function ρ: DT → V that
returns the root node of a decision tree, with the universe of decision trees DT
under consideration as input domain. Further we assume a function λ: V →
J ∪ C that returns the content of a node, with the union of the set of decisions
J and the set of classifications C as range. The decision trees in this work are
binary such that each decision node has exactly two outgoing edges. The answer
of a decision, e.g., whether we have x > 0, is represented by an edge label that
can be accessed via a function γ: E → {T, F}. In our decision trees, paths are
sequences containing nodes and connecting edges, starting from the root node,



following down the tree, and ending at a leaf node. We define a path Π in a
decision tree as follows:

Definition 1 (Path). A path Π of length |Π| = l in a decision tree D is
a sequence of nodes v0...vl−1 such that there is an edge from vi to vi+1 for
0 ≤ i < l − 1, starting with v0 = ρ(D) and ending at a leaf node vl−1.

With C4.5, decision trees are constructed top down, where decision nodes get
selected using a statistical property called information gain that measures how
well a decision separates the t ∈ T according to their expected outcome [20]. A
test case t is classified in a decision tree by following the decision nodes from the
root node, down the tree to some leaf node, according to the values in t. Not
necessarily all input variables appear in a decision tree, but numeric variables
can occur also multiple times in different decision nodes, even in the same path.
We define equivalence for decision trees as follows:

Definition 2 (Equivalence Relation). Decision Tree Equivalence is a reflex-
ive, symmetrical, and transitive binary relation R between two decision trees D1

and D2 from the universe of decision trees DT , such that:
reflexivity: ∀D ∈ DT : DRD
symmetry: ∀D1, D2 ∈ DT : D1RD2 → D2RD1

trans.: ∀D1, D2, D3 ∈ DT : D1RD2 ∧D2RD3 → D1RD3

In our work, we consider the equivalence of decision trees when reducing
test suites. When trying to remove test cases from a test suite T without effect-
ing changes in the decision tree, the achieved reduction is an indicator of the
reduction process’ effectivity:

Definition 3 (Reduction). Given a test suite T and a reduced test suite T ′ ⊆
T , the achieved reduction is defined via the difference in their sizes:

reduction =
|T | − |T ′|
|T |

(1)

When we infer a decision tree, we derive a hypothesis h regarding an approx-
imation of a function f that we can use to predict f ’s outcome for future input
values. Strategies for estimating the accuracy of such a hypothesis include k-folds
cross validation [16], or assessment with additional input and output values [20].
In principle, for evaluating a hypothesis h, we can use the function error(h, S)
as given in Equation 2 in order to obtain a result in the range 0..1:

error(h, S) =
1

|S|
∑
t∈S

δ(f(t), h(t)) (2)

Equation 2 requires three parts: First, some set S that should be different to
T (from which the hypothesis was learned) containing vectors t of input values
and an expected output. Second, the target function f : Ik → O, where I is the
type of the k inputs and O represents the set of all possible outputs. Third, a
function δ that detects deviating outcomes of f and h–returning 1 if f(t) 6= h(t)
for some t ∈ S and 0 otherwise.



4 Equivalence Taxa

For our investigation, we considered five decision tree equivalence relations, rang-
ing from structural equivalence to misclassification equivalence. Before show-
ing at the end of this section that they form a taxonomy in respect of their
strength, let us formally introduce them for the decision trees D1 = (V1, E1)
and D2 = (V2, E2) first.

Structural Equivalence (≡): Two decision trees D1 and D2 are struc-
turally equivalent, if and only if each node v1 ∈ V1 has a corresponding node
v2 ∈ V2 and each edge e1 ∈ E1 has a corresponding edge e2 ∈ E2 connecting
an equivalent pair of nodes. Structural equivalence can be represented using a
function equal: V × V → {True,False}, which we define recursively as follows:
For two decision trees D1, D2, and nodes v1 ∈ V1, v2 ∈ V2, equal returns True,
if and only if:

1. λ(v1) = λ(v2)
2. ∀(v1, vi) ∈ E1, ∃(v2, vj) ∈ E2, 0 ≤ i, j < 2|
γ(v1, vi) = γ(v2, vj) ∧ equal(vi, vj) (and vice versa)

Using this function, we define structural equivalence of two decision trees as
follows:

Definition 4 (Structural equivalence). Two given decision trees D1, D2 are
structurally equivalent if and only if the function equal(ρ(D1), ρ(D2)) returns
True.

EQUAL terminates if it detects different node contents or different edge
labels, or if all nodes have been visited.

Example 1 (Structural equivalence). Figure 2 shows two structurally equivalent
decision trees where decision nodes, leaf nodes, and edges are equivalent and on
the same position in both decision trees.

Spine Equivalence (=s): A decision tree consists of a set of spines SP. A
spine (Π, c) ∈ SP is described by a path Π to a leaf node v, such that c = λ(v).
Spine equivalence requires bag equivalence to hold, which is defined as:

Definition 5 (Bag equivalence). Two paths Π1 and Π2 are equivalent as
bags, if except for the ordering they contain nodes with precisely the same content
and with equivalently labelled outgoing edges, such that for all v1 ∈ Π1 there
exists an equivalent node v2 ∈ Π2 and vice versa, where λ(v1) = λ(v2) and
γ(v1, vi) = γ(v2, vj).

From the definitions of a path and bag equivalence, we define spine equiva-
lence as:

Definition 6 (Spine equivalence). Two decision trees D1 and D2 are spine
equivalent if for the respective sets of spines SP1 and SP2, for every spine
(Π1, c1) ∈ SP1 there exists a spine (Π2, c2) ∈ SP2 and vice versa, such that
Π1 and Π2 are bag equivalent and c1 = c2.



Fig. 2. Structurally (left), spine- (middle), and decision-equivalent (right) trees.

Example 2 (Spine equivalence). Figure 2 shows two spine equivalent decision
trees where the order of decision nodes in the paths differ, but the spines are
equivalent. However, these decision trees are not structurally equivalent.

Decision Equivalence (=d): A constraint built from a spine’s path is a
conjunction of equivalence relations that contain a decision node’s content and
its outgoing edge’s label for all decision nodes in the path. Satisfying a con-
straint classifies the inputs to that spine’s c. In a decision tree, there may be
multiple spines for some c. For decision equivalence, we thus build a summariz-
ing constraint for each c as a disjunction of the corresponding conjunctions of
the individual spines for c. E.g., from the top right decision tree in Figure 2, a
constraint ψ of paths from spines with c = 1 is (x > 0 = F ∧ x < 0 = T ) ∨ (x >
0 = T ∧ x > 1 = T ). More formally, we define decision equivalence as:

Definition 7 (Decision equivalence). Two decision trees D1 and D2 are de-
cision equivalent, if for all leaf nodes v1 ∈ V1 an equivalent leaf node v2 ∈ V2
exists, and for each constraint ψ1 of D1 there exists a constraint ψ2 in D2 where
the following equation holds:

ψ1 equals ψ2 (3)

Equation 3 is true, if no valuation exists for which ψ1 is satisfiable and ψ2 is
unsatisfiable, and vice versa.

Example 3 (Decision equivalence). Figure 2 shows two decision equivalent de-
cision trees that do not contain the same decision nodes and are therefore not
spine equivalent.



Table Equivalence (=t): A decision tree D classifies all test cases t ∈ T
according to the input values in t to a leaf node, as introduced in Section 3. A
test case t is misclassified, if λ(v) for the leaf node v to which t was classified
and the value out of t differ. Otherwise t is classified correctly. These principle is
also used in hypothesis evaluation as introduced in Section 3, where the function
h(t) returns the content of the leaf node to which t was classified, but unlike for
hypothesis evaluation, here the outcome of the target function f(t) is the value
of out that is already included in t. We create a set M of pairs (h(t), out) that
contains for each t ∈ T the content of the leaf node to which t was classified
and the value out of t. Note that we have |M | = |T |. Two sets M1 and M2 are
equivalent, if for each pair (h(t)1, out1) ∈ M1 there is a pair (h(t)2, out2) ∈ M2

such that h(t)1 = h(t)2 and out1 = out2, and vice versa. Consequently, we define
table equivalence as:

Definition 8 (Table Equivalence). Two decision trees D1 and D2 are table
equivalent, when classifying a test suite T yields two equivalent sets M1 for D1

and M2 for D2.

Example 4 (Table equivalence). Figure 3 shows two decision trees that are table
equivalent if T does not contain a test case t = 〈1, 1, 1〉, because then h(t) 6= out
only for the lower decision tree. These decision trees are not decision equivalent.

Fig. 3. Table (left) and misclassification-equivalent (right) trees.

Misclassification Equivalence (=m): Two decision trees D1 and D2 are
equivalent regarding their misclassification rate error(D,T ), if the following two
conditions hold:



1. error(D2, T ) = error(D1, T ).
2. For all distinct contents in the leaf nodes C1 ⊂ V1 an equivalent classification

exists in the leaf nodes C2 ⊂ V2 and vice versa.

Definition 9 (Misclassification equivalence). A decision tree D2 is mis-
classification equivalent to a reference decision tree D1, when classifying T , if
the following equation holds:

error(D2, T ) = error(D1, T ) ∧
∀v1 ∈ C1,∃v2 ∈ C2|v1 = v2 (and vice versa) (4)

Example 5 (Misclassification equivalence). Figure 3 shows two decision trees
where the same classifications exist in both decision trees as visualized by the leaf
nodes. If T contains two test cases t1 = 〈0, 0, 2〉 and t2 = 〈1, 2, 2〉, the decision
trees are misclassification equivalent, but not table equivalent.

Theorem 1. The five defined methods to determine equivalence of decision trees
can be presented in a subset order, where for a decision tree D inferred from a
test suite T , subsets DT≡ ⊂ DT , DT=s ⊂ DT , DT=d ⊂ DT , DT=t ⊂ DT ,
and DT=m ⊂ DT from the universe of decision trees DT exist, which contain
decision trees that were inferred from a test suite T ′⊆ T , and are equivalent to
D. These subsets are ordered as
DT≡ ⊆ DT=s ⊆ DT=d ⊆ DT=t ⊆ DT=m , for subsets
DT≡ ⊂ DT representing structural equivalent decision trees,
DT=s ⊂ DT representing spine equivalent decision trees,
DT=d ⊂ DT representing decision equivalent decision trees,
DT=t ⊂ DT representing table equivalent decision trees, and
DT=m ⊂ DT representing misclassification equivalent decision trees.

Proof. (sketch) Structural equivalence implies that all paths are equivalent. If
all paths are equivalent, spine equivalence is ensured. If paths in two decision
trees only have different orders of nodes, the decision trees are spine equivalent,
but not structurally equivalent. Spine equivalence implies that all nodes contain
the same content. Building constraints from the paths in spines ensures that the
constraints are equivalent, because they contain the same contents of nodes and
the same outgoing edges of the decision nodes. If a node is missing or redundant
in a path of two decision equivalent decision trees, this contradicts spine equiv-
alence. Decision equivalence implies that each possible input valuation leads to
an equivalent classification or misclassification. Equivalent classifications for all
possible input values ensure table equivalence, because table equivalence de-
pends only on the classification of a test suite T , which contains only a subset of
all possible input values. If a pair of decision trees is table equivalent, but test
cases are missing for boundary values of the decisions, different decision nodes
in a path lead to equivalent classifications for a test suite T , but not for each
possible input valuation. This fact contradicts decision equivalence. Table equiv-
alence implies that two decision trees provide equivalent classifications for a test



suite T , independently of whether a test case was correctly classified or misclas-
sified. If all test cases in T are equally classified or misclassified, misclassification
equivalence is given. A misclassification equivalent pair of decision trees where
classifying a test suite T yields the same misclassification rate, but different test
cases from T are misclassified, violates table equivalence. �

As stated in Theorem 1, structural equivalence is the strongest method to de-
termine equivalence of two decision trees, meaning that even if the four other
equivalence check methods evaluate to true, structural equivalence can be false.
Decision equivalence is the costliest method due to the NP-completeness of deter-
mining inequality of two constraints. Misclassification equivalence is the weakest
method to determine equivalence of two decision trees, because it neither con-
siders the structure of the decision tree nor the relation of inputs to outputs.

5 Experimental Evaluation

We used three different Java programs for our proof-of-concept experiments,
generated combinatorial test suites using the tool ACTS1, and evaluated the
reduced test suites’ fault detection effectiveness via their mutation score. For
generating mutants, we used the Major mutation framework [18].

5.1 Results

The three examples are Triangle, TCAS, and UTF8, as introduced in [10]. For
test suite reduction, we implemented the REDUCE algorithm from [10] in Java
and instantiated the equals method in REDUCE at line 12 by all 5 equivalence
methods introduced in Section 4. The input values for iterations and retries of
REDUCE were set to 2 and |T |10 respectively, since the results in [10] show that
these values allow high reductions. To infer decision trees from a test suite, we
used the Java library Weka [14] and its implementation J48 of the algorithm
C4.5. In the configuration options of Weka, we disabled pruning and set the
minimum number of leaf nodes to 1. The expected outcome for a test case was
derived with the original program. We obtained test suites of size 343 (Triangle),
1840 (UTF8), and 11021 (TCAS), and generated 35 (Triangle) and 147 (UTF8)
mutants. For the TCAS example, we used the 41 existing mutants2. In order to
determine decision equivalence, we applied the SMT-solver Z3 [8] that provides
a Java-API. For calculating the misclassification rate, we used the decision tree
evaluation method integrated in the Weka library. Since the REDUCE algorithm
selects potentially redundant test cases randomly, we executed the algorithm for
each example 10 times per equivalence method and plot the execution time and
the resulting reduction for each execution. All experiments ran on a MacBook
Pro with an Intel Core i5 2.7GHz CPU, 16GB RAM, an SSD, and OS X 10.11.6.
1 http://csrc.nist.gov/groups/SNS/acts
2 http://sir.unl.edu/portal/bios/tcas.php



The resulting reductions and the runtime to obtain these reductions for the
Triangle example are shown in Figure 4. The results in Figure 4 show that
decision equivalence is multiple times slower than other equivalence methods.
Structural equivalence is fastest, misclassification and table equivalence allow the
highest reductions. Reductions of structural equivalence are lowest. The results
in Figure 5 for the UTF8 example show that structural and spine equivalence are
fastest, but the reductions are around 30% lower than for the other equivalence
methods. Also for the UTF8 example decision equivalence was slowest. For the
TCAS example the results in Figure 6 show that all reductions only vary in
a range of around 10%. Also for TCAS, structural and spine equivalence are
fastest and decision equivalence is slowest on average. The highest reductions
were obtained by table and misclassification equivalence.
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Fig. 4. Triangle results.

5.2 Discussion

Our results suggest that structural equivalence, whose complexity is linear in the
number of nodes in a decision tree, is the fastest and decision equivalence is the
slowest equivalence method. Deciding decision equivalence is an NP-complete
problem and each pair of equivalent constraints in two decision trees gives the
worst case. When using misclassification equivalence, which allows the highest
reductions, the time to reduce T was slightly higher than for structural equiv-
alence. For evaluating a potential loss of the test suite’s fault detection effec-
tiveness, we derived the mutation score for all reduced test suites as reported in
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Figure 7. The mutation score of the initial test suites was 1 for each example.
For each example in Figure 7, the equivalence methods are ordered according
to their strength from left to right, starting on the left with the strongest one.
The results show that for the strongest equivalence method there was almost no
decline of mutation score, but for weaker methods the mutation score decreased.
In particular for the UTF8 example, the median mutation score dropped to val-
ues in the range 0.6 to 0.7 for decision, table, and misclassification equivalence.
These weak mutation scores origin in the fact that the initial test suite contained
test cases with unknown values, which were approximated automatically while
inferring a tree by the C4.5 algorithm. These approximations increased potential
uncertainties of the tree to predict future outputs for additional input values.
The dots in the plots for Triangle, UTF8, and TCAS represent outliers from the
obtained results.

Using structural or spine equivalence provided similar reductions at similar
costs. Although decision equivalence allowed high reductions, the computation
time was highest from all equivalence methods. Table and misclassification equiv-
alence provided the highest reduction results for our examples, consuming more
time than structural and spine equivalence (but in most cases less time than de-
cision equivalence). The mutation score results suggest the highest loss of fault
detection effectiveness to occur when using table or misclassification equivalence.
Therefore, if the execution time of the tests in the finally reduced test suite is
low, structural equivalence should be chosen. If keeping the fault detection ca-
pabilities as high as possible for a reduced test suite, also structural equivalence
should be chosen. In all other cases the results suggest that misclassification
equivalence is an educated choice. Promising results of an empirical evaluation
of structural and misclassification equivalence were provided in [10]. With our
results, we clarify that the runtime of the reduction approach depends on three
parts. First, the runtime depends on the size of the test suite and the domain
sizes of the inputs. The latter affects the run-time spent for the algorithm C4.5,
since we have to learn a decision tree for each potentially removable test case.
Second, as we surmised, the runtime depends on the complexity of the equiva-
lence relation used. Last, but not least, we saw that the runtime increases also
with the achieved reduction.

6 Conclusion

In this paper, we introduce a “strength of decision tree equivalence”-taxonomy
of five different equivalence relations. Decision tree equivalence is a crucial part
of a recently introduced test suite reduction approach that does not require to
execute the program under test. We came up with five different methods to
determine this equivalence and provide a theorem and a corresponding proof
that these methods form a taxonomy in respect of their strength. As a proof of
concept, our experiments show that the equivalence method indeed has a high
impact on the effectiveness and efficiency when reducing a test suite. The results
yield structural and spine equivalence as the methods with the lowest costs, but
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also with the smallest reduction. Decision equivalence is the costliest in respect of
computation time, but achieves high reductions. When determining equivalence
with table and misclassification equivalence, the reductions are very high, but
suffer from the highest decrease in fault detection effectiveness.

Underpinning the reduction approach itself and the selection of the most ap-
propriate equivalence relation will require an evaluation with additional, realistic
scenarios. If some T does not contain redundancies, no reduction is possible. For
detecting that T does not contain redundancies structural equivalence should
be chosen, because it is the least time consuming relation to determine. Since
the structure (control flow, data flow, lines of code, etc.) of the program under
test affects the reduction, with more examples possibly a classification can be
created such that we could derive from the program structure in combination
with background information on how T was generated which equivalence method
would be best suited.

For our current experiments, we used first order mutants for evaluating the
effectiveness in fault detection, but towards applicability of the reduction ap-
proach in practice, an examination with higher order mutants shall be part of
future work. In future work we will extend also our empirical evaluation, consid-
ering more examples from application domains like automotive control software.
Here an open research question is also how such a program’s structure affects
the test suite reduction approach of [10] in general.
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