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Abstract— This paper proposes a direct visual scheme. In
direct visual servoing approaches, the goal is to consider all
the image as a whole. Therefore we do no rely on a feature
extraction or tracking process. In nominal condition, these
approaches have proved to be robust and very precise. In
this paper, we proposed to consider a new metric that is the
Zero mean Normalized Cross-Correlation function (ZNCC).
This correlation criterion is known to be more robust that
the classical SSD to linear brightness variations. This paper
gives the expressions required to perform a ZNCC-based visual
servoing task. Experimental results demonstrates the efficiency
of the proposed method.

I. OVERVIEW

This paper relates to the direct visual servoing scheme.
Visual servoing which consists in using data provided by a
vision sensor for controlling the motions of a robot [2], [11]
has proved to a very approach for a long time.

A visual servoing problem can be written as an optimiza-
tion problem [15]. The goal of visual servoing is that, from
an initial arbitrary pose, the camera reaches the desired pose
r∗ that better satisfies some properties measured in or from
the images. If we note f , the function that measures the
positioning error, then the visual servoing task can be written
as:

r̂ = arg min
r
f(r, r∗). (1)

The visual servoing problem can therefore be considered as
an optimization of the function f where r is incrementally
updated to reach an optimum of f at r̂ (if f is correctly
chosen at the end of the minimization we should have r̂ =
r∗). The pose update is performed by applying a velocity v,
corresponding to the direction of descent, to the camera that
is mounted on a robot: rk+1 = rk ⊕ v where “⊕” is the
operator that updates the pose and which is “implemented”
through the robot controller.

Classical visual servoing approaches [2] consider a func-
tion f based on distance between geometrical features ex-
tracted from the image. The visual feature s can be 2D
feature leading to image-based visual servoing approach
(IBVS) or 3D features (such as the camera pose) leading
to position-based visual servoing approaches (PBVS). These
visual features (points, lines, moments, contours, pose, etc)
have thus to be selected of extracted from the images to
control the desired degrees of freedom of the robot. The
minimization process has to be designed so that these visual
features s(r) reach a desired value s∗ (that is function of the
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desired posed r∗), leading to a correct realization of the task.
The optimization problem can thus be written:

r̂ = arg min
r

(s(r)− s∗) . (2)

Although very efficient, these approaches have some draw-
backs. First, features (points, lines, moments, contours, pose,
etc) have to be chosen depending on the scene characteristics.
Second, the current features s(r) have to be tracked in real-
time over frame and matched with the desired ones s∗.
Despite progressions in computer vision, this tracking issue
is far from being solved. Finally, the tracking and matching
tasks are prone to some measurement errors that cause the
visual servoing task to be less accurate than it could be.

For some year now, more global approaches have been
proposed. Not considering the specific image features but
the image as a whole. These “direct” approaches have many
advantages [4], [8], [13], [17]. In this context, visual servoing
task is defined as an alignment between the current image
I(r) and the image acquired at the desired camera pose I∗.
The main characteristic of these method is to closely tie the
image to the control. Although this basic formulation is quite
simple, it raises many modeling issue. First, despite the fact
that all these techniques consider the image as a whole, it
does not mean that some image transformations cannot be
done. Second, whereas in the features based approach the
alignment function is usually a simple Euclidian distances,
here one can consider other criterion. In the general case,
the optimization problem can be rewritten by:

r̂ = arg min
r

f (g(I(r)), g(I∗)) . (3)

where g(.) is a transformation of the image and f(.) is the
alignment function. Let us note that in any case to build the
control, one has to determine the interaction matrix that relies
variation of the cost function to the camera velocity. When
g is the identity, this lead to the photometric visual servoing
approach [4], [5]. More complex visual information can be
considered such as color invariant [3], a subspace computed
from the image using a PCA approach [8], [18], the image
gradient [17], the image entropy [6], Kernel information [13],
mixture of Gaussian [1]. Dealing with the alignment function
f , it can be as simple as the Euclidian distance [3], [4], [17]
or, depending of the transformation f , more complex. When
g(.) measure the entropy of the image one has to consider for
f(.) the mutual information [6] that measures the quantity
of information shared by two images.

In [4] the simplest transformation function f has been
considered: the SSD or sum of squared differences (f is
then the identity). Although the approach based on the
luminance is very efficient in constrained environments, the
cost function may be affected by some illumination variations



or occlusion. In [6], it has been demonstrated that mutual
information (to be maximized) is a very robust cost function
which leads to an efficient visual servoing scheme. In this
paper we propose a good trade-off between the SSD and the
mutual information: In a tracking context [12], this approach
has proved to be very robust to linear brightness variation [9]
thanks to the normalization embodied into the ZNCC. While
considering only image intensity, this correlation criterion
is more robust that the simple SSD (used in [4]) and
less complex to compute that the mutual information (used
in [6]).

The next section presents the ZNCC computation along
with the derivation of the associated control law. Results will
then be presented.

II. ZERO-MEAN NORMALIZED CROSS CORRELATION

Along with the SSD, other classical correlation functions
include the Normalized Cross Correlation (NCC) and the
Zero-mean Normalized Cross Correlation (ZNCC).

The NCC is given by:

NCC(I, I∗) =

∑
x I(x)I∗(x)

σIσI∗
(4)

where σI and σI∗ are the standard deviation of the two
images defined by:

σI =

√∑
x

(
I(x)− I

)2
(5)

This normalization embodied into the NCC allows for toler-
ating linear brightness variations.

The Zero-mean Normalized Cross Correlation between
two images I and I∗ is given by:

ZNCC(I, I∗) =

∑
x

(
I(x)− I

) (
I∗(x)− I∗

)
σIσI∗

(6)

where I and I∗ are respectively the average intensities of the
images I and I∗:

I =
1

Nc

∑
x

I(x) (7)

where Nc is the number of pixels considered in the summa-
tion. Thanks to the subtraction of the image mean, ZNCC
can tolerate uniform brightness variations and, thus, provides
better robustness than the NCC [9], [10]. It is invariant to
linear radiometric changes. In the reminder of the paper
we will note the zero-mean images Î and Î∗ with Î(x) =
I(x)− I.

Figures 1 and 2 shows the differences between SDD,
ZNCC for local and global brightness intensity of the images.

Global illuminations affect every pixel of the image in a
consistent way. We limit our study to variations that affect
the intensities with a simple affine relationship. We compute
the cost function using the same reference image and a
current image acquired under a more intense light. The
results are presented in Figure 1. Dealing with the SSD, we
mainly observe a shift of the values of SSD. Indeed, the
optimum of the SSD function corresponding to the position
where the smallest (respectively the highest) intensities of the

current image are matched with the smallest (respectively
the highest) intensities of the reference image, and this is
typically enough to be robust with respect to a linear change
of the pixel intensities. ZNCC, which is by definition robust
to linear relationships between the intensities of the images
pixels gives the correct alignment position.

Reference image Current image

SSD ZNCC

Fig. 1. Robustness of the cost functions with respect to global illumination
variations.

Local illumination variations partially change the illumina-
tion of the scene. They appear in two major conditions: when
surrounding objects partially increase the illumination (as a
focused light would do) or decrease the illumination (as an
object occluding the light directed to the scene) or when the
object is non Lambertian, which does not diffuse an isotropic
light (same light in all directions). This time (see Figure 2),
the relationship between the pixel intensities is different from
one part of the image to another part, so the minimum of
SSD is affected by the illumination variation and gives a
wrong estimation of the correct alignment position.

Since the relation between the pixels intensities is different
from one part of the image to another, ZNCC is affected by
the variation. The modification is visible on the shapes of the
cost function, nevertheless the current and learned images
still share a lot of common information, so the maximum
is still located on the correct alignment position. ZNCC can
therefore be considered as strongly robust to global and local
illumination variations.

III. ZNCC BASED CONTROL LAW

The solution, proposed in this paper, is to define the
alignment function f as the ZNCC between the two images.
During the visual servoing task the current image is varying
with respect to the camera pose r and can therefore be
rewritten as I(r). The ZNCC becomes:

ZNCC(I(r), I∗)) =

∑
x Î(r,x)̂I∗(x)

σI(r)σI∗
(8)

A. Control law

To reach the desired pose, the goal is to maximize the
ZNCC between the desired and current image. The ZNCC
function is a quasi-concave function. The problem is there-
fore similar as the maximization of the MI in [7] and as in the
other direct approaches, we still use the entire information



Reference image Current image

SSD ZNCC

Fig. 2. Robustness of the cost functions with respect to global illumination
variations.

provided by the images I and I∗ by computing the following
optimization:

r̂ = arg max
r
ZNCC(I(r), I∗). (9)

The problem of finding the camera pose for which the
ZNCC will be maximal can be reformulated as finding the
velocity that bring the ZNCC derivatives to a null value. The
control law is then given by:

v = H−1L (10)

where L is the interaction matrix of the ZNCC with respect to
the camera pose and H is the Hessian matrix and v = (v,ω)
is the computed camera velocity. In practice, and as usual
in visual servoing [2], we use the Hessian H∗ computed as
if the camera was at convergence in the nominal conditions
(computed using I = I∗).

B. Computing the interaction matrix
Given equation (8) and using the chain rules, the interac-

tion matrix L is given by:

L =

∑
x

∂Î(r,x)
∂r Î∗(x)

σI(r)σI∗

− 1

σI(r)

∂σI(r)

∂r
ZNCC(r) (11)

To compute the derivative to the ZNCC we have first to
compute the derivative of the zero-mean image intensities
and the covariance of the current image with

∂Î(r)

∂r
=
∂I(r,x)

∂r
− 1

Nc

∑
x

∂I(r,x)

∂r
(12)

The derivative of the covariance σI(r) is also obtained by
the derivative chain rules:

∂σI(r)

∂r
=

∑
x

∂Î(r,x)
∂r Î(r)

σI(r)
(13)

Using the OFCE the derivative of a pixel intensity with
respect to the camera position is given by [4], [16]:

∂I(r,x)

∂r
= ∇I(x)Lx (14)

where ∇I(x) are the gradients of the image expressed in the
meter space at the point x and Lx is the interaction matrix
that links the displacement of the point in the image space
with respect to the camera velocity. The interaction matrix
is given by [2]:

Lx =

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]
where (x, y) are the coordinates of the point expressed in
meters in the image plan and Z is its depth relatively to the
camera. In this work we consider that the depth of the scene
is unknown and thus we simply set the depth of each point
to a constant.

C. Computing the Hessian

The second order derivatives of the ZNCC is obtained by
computing the derivative of the equation (11) and performing
some simplifications:

H =
1

σI(r)σI∗

∑
x

∂2Î(r,x)

∂r2
Î∗(x)

+
1

σI(r)

∂2σI(r)

∂r2
ZNCC(r) (15)

where the second order derivative of the covariance σI(r) is

∂2σI(r)

∂r2
=

(∑
x

(
∂2Î(r,x)

∂r2
Î∗(x)− ∂Î(r,x)

∂r

>
∂Î(r,x)

∂r

)

−∂σI(r)

∂r

>
∂σI(r)

∂r

)
1

σI(r)2
(16)

and

∂2I(r,x)

∂r2
= ∇IxHx +∇IyHy + L>x∇2Ī Lx (17)

where ∇2Ī ∈ R2×2 is the gradient of ∇Ī in the metric space
and Hx and Hy are respectively the derivatives of the first
and second line of the interaction matrix Lx (see [14] for
the computation of the two Hessian matrices).

IV. EXPERIMENTAL RESULTS

In all the experiments reported here, the camera is
mounted on a 6 degrees of freedom gantry robot. Control law
is computed on a Core 2 Duo 3Gz PC. The image processing
time along with the interaction matrix computation required
80ms (for 320×240 images). Let us emphasize the fact that
for all these experiments, the six degrees of freedom of our
robot are controlled.

We conduct a full set of experiment considering various
conditions (planar and non planar scenes, local and global
lighting variation, comparison with photometric visual ser-
voing [4],...). In each case we report the evolution of the
value ZNCC of the cost function (see equation (6)), the
camera velocity v = (v,ω) in meter/s and radian/s and the
positioning error (between r and r∗) in centimeter and radian.



A. Positioning tasks under nominal condition
For the first set of experiments the initial error pose was

∆rinit = (17 cm, -2, -3cm, 13.7◦, 5◦, 28◦). This is a quite
large displacement as can be seen on the first row of Figure 3
which features the initial and desired images. Only around
60% of the image pixels are common to both images. From
this position,

In the first experiment the scene is planar and the desired
pose was so that the object and CCD planes are parallel. The
interaction matrix has been computed at each iteration but
assuming that all the depths are constant and equal to Z∗ =
70 cm, which is a coarse approximation. As can be seen on
Figure 3.e the ZNCC increases rapidly and reach it maximal
value in 50 iterations. Considering that image processing and
control law computation is achieved in 80ms, convergence
is reached in 4 seconds. The robot reaches a pose error ∆r
below 0.2mm in translation on each axis and 0.01◦ in rotation
despite a distance to the scene of approximately 0.7 meter.
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Fig. 3. ZNCC based visual servoing under nominal condition. (a-b) initial
and desired image acquired by the camera. (c-d) initial and final error (that
is I − I∗) (e) ZNCC criterion (f) positioning error (in cm and rad) (g)
camera velocities in cm/s and rad rad/s

For comparison issue we have also considered the pho-
tometric visual servoing as described in [4]. Under nominal

condition that is no lighting are considered reached precision
and camera trajectory are similar (see Figure 4).
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Fig. 4. SSD based visual servoing under nominal condition [4]. (a) SSD
criterion (b) positioning error (in cm and rad) (c) camera velocities in cm/s
and rad rad/s

B. Robustness to non-planar scene

The goal of the last experiment is to show the robustness
of the proposed control law wrt depth variations. For this
purpose, a non planar scene has been used as shown on
Figure 5. Large errors in the depth are introduced (some
object are 20cm high whereas the camera is at 70cm from
the scene). Let us recall that since depths are not known (and
can hardly be recovered on-line), assuming a constant depth
in the interaction matrix introduces a modeling error in the
control law. Despite these modeling errors and the fact that
cost function to be maximized is more non-linear, ZNCC
increases and the positioning error always decreases leading
to similar positioning accuracy (that is less that 0.2mm and
0.1deg).

C. Behavior with lighting variations

As already mentioned the normalization embodied into
the NCC allows for tolerating linear brightness variations.
Furthermore thanks to the subtraction of the image mean,
ZNCC can tolerate uniform brightness variations and thus
provides better robustness than the SSD. In this experiment
we radically modified the lighting condition during the
realization of the positioning task. Figure 6a shows the first
image acquired by the camera while Figure 6b show the
desired one. Figure 6c show images acquired during the
positioning task (at iteration 1, 75 and at convergence). One
can see that most of the light has been shut down at the
beginning of the experiment. Although ZNCC is maximized
(see Figure 7a), its value at convergence is no longer 1.
Despite the light modification and the fact that the SSD I−I∗

is obviously no longer null at convergence as can be seen on
Figure 6d, ZNCC, as expected, allows a precise repositioning
process. Precision is of 0.8mm in translation and 0.3 deg
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Fig. 5. ZNCC based visual servoing on a 3D scene (a-b) initial and desired
image acquired by the camera. (c-d) initial and final error (that is I−I∗) (e)
ZNCC criterion (f) positioning error (in cm and rad) (g) camera velocities
in cm/s and rad rad/s

in rotation. Let us note that SSD based photometric visual
servoing failed in this case.

The same experiment is considered on a 3D scene. With
respect to the previous experiment, along with global lighting
variation, shadows due to 3D objects have to be handled (see
Figure 8).

Finally, we considered a scene with various metallic
tools and a ring-light mounted around the camera. This
configuration leads to a constant but moving light source.
Furthermore considering that object are metallic, we have
moving specularities. Despite these difficulties the proposed
control law allows a fast positioning task with a good final
accuracy.

V. CONCLUSION

In this paper we focused on direct visual servoing. We
present a pure photometric approach. Considering that the
registration criterion using in [4] is not robust to important
lighting variation, we have considered another similarity
criterion: the ZNCC. The new proposed criterion shows inter-
esting properties since it is robust to illumination variations

a b

c d

Fig. 6. ZNCC based visual servoing with important lighting variations (a-
b) initial and desired image acquired by the camera. (c-d) images acquired
during the positioning task (iteration 1, 75 and 1000) and the corresponding
error
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Fig. 8. ZNCC based visual servoing with important lighting variations on
a 3D scene (a-b) initial and desired image acquired by the camera. (c-d)
images acquired during the positioning task (iteration 1, 60 and 1300) and
the corresponding error (e) ZNCC criterion

between the reference and the current image. Furthermore
let us emphasize that, as for previous direct visual ap-
proaches, the method does not require any feature extraction
or matching/tracking process and thanks to the use of highly
redundant information it allows to achieved very accurate
positioning task.
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