
HAL Id: hal-01684031
https://inria.hal.science/hal-01684031

Submitted on 15 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Circular Laser/Camera-based attitude and altitude
estimation: minimal and robust solutions

Rémi Boutteau, Peter Sturm, Pascal Vasseur, Cédric Demonceaux

To cite this version:
Rémi Boutteau, Peter Sturm, Pascal Vasseur, Cédric Demonceaux. Circular Laser/Camera-based
attitude and altitude estimation: minimal and robust solutions. Journal of Mathematical Imaging
and Vision, 2018, 60 (3), pp.382-400. �10.1007/s10851-017-0764-y�. �hal-01684031�

https://inria.hal.science/hal-01684031
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Circular Laser/Camera-based attitude and altitude estimation:
minimal and robust solutions
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Abstract This paper proposes a basic structured light

system for pose estimation. It consists of a circular

laser pattern and a camera rigidly attached to the laser

source. We develop a geometric modeling that allows

to efficiently estimate the pose at scale of the system,

relative to a reference plane onto which the pattern is

projected. Three different robust estimation strategies,

including two minimal solutions are also presented with

this geometric formulation. Synthetic and real experi-

ments are performed for a complete evaluation, both

quantitatively and qualitatively, according to different

scenarios and environments. We also show that the sys-

tem can be embedded for UAV experiments.

Keywords Conic · Structured light · Epipolar

geometry · Robust pose estimation

1 Introduction

Pose estimation is an essential step in many applica-

tions such as 3D reconstruction [1] or motion control
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[2]. Many solutions based on a single image have been

proposed in past years. These systems use the image of

a perceived object or surface in order to estimate the

related rigid transformation [3].

When a monocular vision system and a known ob-

ject are used, the problem is well known as PnP (Pers-

pective-n-Points) [4][5][6][7]. In this case, the matching

between known 3D points and their projection in the

image allows to deduce the pose. For a calibrated stere-

ovision sensor, the epipolar geometry and a direct tri-

angulation between 2D matched points of stereoscopic

images allow both to reconstruct the scene at scale and

to estimate the pose of the camera. When the stere-

ovision system is not calibrated and we do not have

any knowledge about the 3D structure of the scene, the

epipolar geometry can still be estimated, in the form of

the fundamental matrix, but the final 3D reconstruction

is only projective [3]. Finally, if we consider a single cal-

ibrated camera in motion, the essential matrix between

two acquired images can be estimated from matched

2D points as well as the pose, but only up to scale [8].

All the previous methods are classified as passive

because they only exploit images acquired under ex-

isting lighting conditions and without controlling the

camera motion. They require the scene to be textured

in order to extract discriminant features that can be

matched easily. If the scene is globally homogeneous

with very few remarkable features, the previous meth-

ods will mostly fail. Thus, when the scene is globally

homogeneous, the best way to handle the problem with-

out introducing assumptions about the material of the

ground surface and about the lighting present in the

scene is to employ active sensors that use the deforma-

tion of a projected known pattern in order to estimate

the pose. These methods are also known as structured
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light [9] and one of the most popular sensors is undoubt-

edly the Kinect sensor [10].

The projected pattern can be obtained from a pro-

jector or a laser and different shapes and codings can be

used [11]. Globally, patterns are based either on discern-

able points that have to be matched independently or

on general shapes such as lines, grids, conics that have

to be extracted in acquired images. The Kinect sensor

is widely used in mobile robotics but suffers from sev-

eral downsides. First of all, its size and weight make it

difficult to embed on a drone with a low payload. On

the other hand, its field of view and its range of opera-

tion are limited: the field of view is around 57°and the

sensor runs from 0.6 meters to 4 meters. It consequently

has a close range blind-spot that makes it unusable in a

critical stage such as the landing of a drone. Moreover,

since this type of sensor uses an infrared pattern, it is

very sensitive to the material on which the pattern is

projected, and is sensitive to the infrared light of the

sun, which makes it unsuitable for outdoor applications.

In this paper, we propose a complete and simple

laser-camera system for pose estimation based on a sin-

gle image. The pattern consists in a simple laser circle

and no matching is required for the pose estimation.

Using a circular pattern is very interesting because its

projection onto a reference plane is a general conic; this

has shown to be a strong mathematical tool for com-

putational geometry [12]. Recently, in [13] the authors

proposed a non-rigid system based on a conic laser pat-

tern and an omnidirectional camera for a similar aim

as ours. In their approach, rather than calibrating the

complete system (laser-camera) they propose to detect

simultaneously the laser emitter and the projected pat-

tern in the image in order to estimate the pose.

In [14], an algebraic solution of our system was de-

veloped while a geometrical approach was given in [15].

This paper is an extension of the latter for which we

propose different improvements. First, a complete ded-

icated calibration method is presented, giving improved

results. Next, we propose a new robust algorithm that

simultaneously estimates conic and pose parameters and

that is particularly efficient and accurate. Finally, we

present extensive simulations and experimental results

with ground truth measures that allow comparison and

quantitative evaluations of the approach in different en-

vironment settings.

The paper is organized as follows. The following sec-

tion briefly describes notations and provides some basic

material required in this paper. Section 3 describes our

camera/laser setup and formulates the pose estimation

problem. Section 4 gives a first solution to pose esti-

mation. In section 5, we then propose different robust

approaches for the conic detection and the pose esti-

mation. In section 6, a new method to calibrate the

system is presented. Finally, section 7 presents the dif-

ferent simulation and experimental results, evaluations

and comparisons. It is followed by a section with con-

clusions.

2 Basic material and notations

This section provides some mathematical material re-

quired in this paper. Concerning notation: matrices and

vectors are denoted by bold symbols, scalars by regular

ones. Geometric entities (planes, points, conics, projec-

tion matrices, etc.) are by default represented by vec-

tors/matrices of homogeneous coordinates. Equality up

to a scale factor, of such vectors/matrices, is denoted

by the symbol ∼.

2.1 Representing quadrics and conics

A quadric is represented by a 4× 4 matrix Q such that

XTQX = 0 (1)

for all homogeneous 3D points X lying on the quadric.

Similarly, a conic is represented by a 3× 3 matrix c

such that

xT cx = 0 (2)

for all homogeneous 2D points x lying on the conic.

2.2 Representing a pair of planes

It is well known that a plane pair can be considered

as a degenerate quadric, actually a quadric of rank 2

[16]. Let U and V be 4-vectors of homogeneous coordi-

nates, representing two planes. The quadric formed by

the “union” of the two planes, can then be represented

by the following 4× 4 matrix:

Q = VUT + UVT . (3)

This matrix is by construction of rank 2, hence two

of its eigenvalues are zero. As for the non-zero eigenval-

ues, it can be shown, see appendix A.1, that they are

always of opposite sign (unless U ∼ V, i.e. unless the

two planes are identical).
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Fig. 1: Geometric representation of the laser/camera

setup

2.3 Back-projecting a conic

Let P be the 3 × 4 projection matrix of a perspective

camera and let c be a symmetrix 3 × 3 matrix repre-

senting a conic in the image plane. Back-projecting the

conic into 3D, gives rise by a cone (the cone spanned by

the camera’s optical center and the conic in the image

plane). It can be computed as

C ∼ PT c P. (4)

3 Problem formulation

Figure 1 presents our system consisting of a camera and

a laser source projecting a circular pattern. It can be

mounted on a UAV to estimate its altitude and attitude

(roll and pitch) relative to the ground plane on which

the pattern is projected. The circular pattern from the

laser projector defines a conic on the ground. The image

of this conic in the camera is again a conic; extracting

this conic allows to estimate the pose (altitude and atti-

tude) of the laser/camera system. In the following, this

is formulated mathematically.

Let the camera coordinate frame be the reference

(world) frame. Hence, the camera’s projection matrix

can be written as

Pcam ∼
[
K 0

]
3×4 (5)

where K is the 3 × 3 matrix containing the camera’s

intrinsic parameters.

As for the laser, we also describe the projection it

carries out, in the form of a perspective camera. Let

Plas be the “projection matrix” of the laser, i.e.

Plas =

1 0 0 0

0 1 0 0

0 0 1 0

[Rlas −Rlastlas
0 1

]
. (6)

Here, Rlas represents the orientation and tlas the po-

sition of the laser, relative to the camera. They can be

obtained by calibration as explained in section 6.

The circular laser pattern can be represented by a

circle d in the laser’s “image plane” as

d ∼

1 0 0

0 1 0

0 0 −tan2(θ)

 (7)

where θ is the opening angle of the laser cone. The

cone D is then obtained by back-projecting d to 3D

(cf. section 2):

D ∼ PT
las d Plas (8)

D ∼
[

RT
lasd Rlas −RT

lasd Rlastlas
−tTlasR

T
lasd Rlas tTlasR

T
lasd Rlastlas

]
. (9)

As shown in Figure 1, this cone cuts the ground

plane in a conic, which is seen in the camera image again

as a conic. Let the latter be represented by a symmetric

3× 3 matrix c. The computation of c from edge points

extracted in the image, is described in section 5.1.

The problem considered in this paper is then the

estimation of the pose of the camera/laser system rel-

ative to the ground plane. Prior and fixed input are

the knowledge of the laser pattern (circle d respectively

cone D) and of the calibration of the camera/laser sys-

tem (camera calibration K and relative camera/laser

pose, represented by Rlas and tlas). Further input is

then the image conic c, extracted in the current cam-

era image. This conic depends on the pose of the system

relative to the ground plane.

We can immediately observe that with this input,

not all 6 degrees of freedom of the camera/laser sys-

tem’s pose can be determined. As for the 3 translational

degrees of freedom, translation of the system parallel to

the ground plane, does not affect any of the inputs, in

particular the image conic c stays fixed in this case. The

same holds true for rotations about the plane’s normal.

As a consequence, we may determine 3 degrees of free-

dom of the pose: altitude above the plane and attitude

relative to the plane (2 rotation angles – roll and pitch).

Note that this is equivalent to determining the location

of the ground plane relative to the camera/laser system.

In the following sections, we thus describe methods to

estimate the ground plane location.

4 A geometric solution for altitude and

attitude estimation

In the previous section, the cone D generated by the

circular laser pattern, was defined. Likewise, the back-
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projection of the image conic c into 3D gives rise to a

cone C (cf. figure 1). It is computed as

C ∼ PT
cam c Pcam. (10)

In our scenario, these two cones, one from the laser

projector and one from the camera, are “spanned” by

the respective optical centers and the conic projected on

the ground plane. To solve our pose estimation problem,

one may proceed as follows. First, compute the inter-

section of the two cones. The intersection must contain

the conic on the ground plane. Second, if that conic can

be uniquely determined, it is then enough to compute

the location of its support plane (the ground plane).

In the following, we present an analogous approach,

but which does not require explicit intersection of the

two cones. The approach is based on the study of the

linear family of quadrics generated by the two cones,

i.e. the family consisting of quadrics Q parameterized

by a scalar x. Q is defined by

Q = C + xD. (11)

We first study the properties of this family, then

propose a pose estimation method based on this study.

4.1 Geometrical study

In particular, we study the degenerate members of the

above family of quadrics, i.e. quadrics with vanishing

determinant: det(Q) = 0. The term det(Q) is in general

a quartic polynomial in the parameter x. Among its up

to four roots, we always have roots x = 0 and x→∞,

corresponding to the cones C and D. As for the other

two roots, they may be imaginary or real, depending on

the cones C and D generating the family. In our setting,

we know that these two cones intersect in at least one

conic (the conic on the ground plane). In this case, it

can be proven (see appendix A.2) that the remaining

two roots are real numbers and identical to one another.

Further, the degenerate quadric associated with that

root, is of rank 2, hence represents a pair of planes.

Finally (cf. appendix A.2), one of the planes is nothing

else than the ground plane, whereas the second plane of

the pair is a plane that separates the optical centers of

the camera and of the laser, i.e. the two optical centers

lie on opposite sides of the plane. This is illustrated in

figure 2.

4.2 Pose estimation method

The properties outlined in the previous section, are

used here to devise a pose estimation method for our

scenario. Concretely, we wish to compute the ground

plane’s location relative to the camera.

Consider the linear family of quadrics generated by

the two cones C and D, i.e.

Q = C + xD. (12)

We first compute the roots of the polynomial det(Q)

and then consider the quadric Q associated with the

only root that is different from 0 and ∞. This is a

rank-2 quadric or, a plane pair. We now need to ex-

tract these two planes from Q and later, to select the

one corresponding to the ground plane.

Let U and V be the two planes we wish to “extract”

from Q. Let us remind, see section 2.2, that the 4 × 4

matrix representing the plane-pair, satisfies

Q ∼ VUT + UVT . (13)

The two planes can be extracted from Q, for example

by applying an SVD (Singular Value Decomposition)

on it. Since Q is of rank 2 and since the two non-zero

eigenvalues are of opposite sign (see section 2.2), its

SVD must be of the following form:

Q =
[
A B

...
...

]
diag(σ1, σ2, 0, 0)


±AT

∓BT

. . .

. . .

 . (14)

Hence, we can write

Q = ±(σ1AAT − σ2BBT ). (15)

Thus U and V satisfy

UVT + VUT ∼ σ1AAT − σ2BBT . (16)

From (13), it is clear that U and V form a minimal

basis for the row space of Q (and, Q being symmetric, of

its column space too). From (14), A and B also form a

minimal basis for this row space. Hence, the two planes

U and V must be linear combinations of the singular

vectors A and B, i.e.

U = uA + B, (17)

V = vA + B. (18)

We now need to determine u and v. By inserting (17)

and (18) into equation (16), we get

2uvAAT + 2BBT + (u+ v)(ABT + BAT )...

... ∼ σ1AAT − σ2BBT . (19)

Thus, we can conclude that u+ v = 0. Upon insert-

ing v = −u into equation (19), we get

−2u2AAT + 2BBT ∼ σ1AAT − σ2BBT . (20)
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Fig. 2: Two cones generated by the same conic, intersect in general in a second conic.

This is satisfied for

u2 =
σ1
σ2
. (21)

Finally, the two planes can now be computed to be

U =

√
σ1
σ2

A + B and (22)

V = −
√
σ1
σ2

A + B. (23)

Note that since the singular values σ1 and σ2 are

positive, the square root in these equations is well de-

fined.

We still need to determine which one among these

two planes is the ground plane. Obviously, the optical

centers of camera and laser lie on the same side of the

ground plane. From what was shown in section A.2, the

optical centers must lie on different sides of the second

plane. It thus suffices to select the one plane among U

and V relative to which the optical centers lie on the

same side; this is the ground plane.

Let us scale the selected plane such that it can be

written as Π = [nx ny nz d]T , with
√
n2x + n2y + n2z = 1.

Then, the altitude of our system, is deduced by comput-

ing the orthogonal distance between the camera center

and the plane, defined by

Altitude = |d| (24)

since the camera center is the origin of our reference

frame.

We are now looking for the attitude of the system.

We have the normal of the ground plane expressed in

two frames: the world frame where it is
[
0 0 1

]T
and in

the camera frame, where our estimation is
[
nx ny nz

]T
.

Recovering the attitude of the system is equivalent to

finding the rotation matrix R from one frame to the
other one, which satisfies

nxny
nz

 = R

0

0

1

 . (25)

As mentioned earlier, rotation about the ground

plane’s normal (yaw) cannot be recovered. We thus only

consider pitch and roll angles. The Denavit-Hartenberg

[17] parametrization of R with these two angles leads

to

nxny
nz

 =

cos(θ) −sin(θ)cos(α) sin(θ)sin(α)

sin(θ) cos(θ)cos(α) −cos(θ)sin(α)

0 sin(α) cos(α)

0

0

1

 .
(26)

From (26), α (roll) and θ (pitch) can be easily re-

covered since
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α = arccos(nz)

θ = arcsin(nx)√
1−cos2(α)

. (27)

They can be re-injected into (26) to compute the

entire rotation matrix R that defines the attitude of

the camera/laser system.

5 Robust estimations

The methodology presented in section 4 supposes that

the cone associated with the projector (cone D in Fig-

ure 1) is known without error. Well, not exactly, since

calibration errors exist; but to compute the cone, we

do not need to make any image processing. In contrast,

the cone associated with the camera (cone C in Figure

1) is computed by first extracting an ellipse c in the

camera image. Note that our approach is valid for the

case of c being a general conic; however in our practi-

cal setting, it is always an ellipse, so we stick to this

in the following. A potential problem is that outliers

may affect the estimation of the ellipse. For instance,

these outliers can appear when the laser projector in-

tercepts a ground plane partially occluded by objects.

To still work in this case, one can resort to a RANSAC

scheme to compute the ellipse c. In this section, we pro-

pose three robust estimations: one based on a 5-point

RANSAC to estimate the ellipse in the image plane,

one based on a 3-point RANSAC to estimate the el-

lipse by taking into account the epipolar geometry, and

one based on a 3-point RANSAC to directly estimate

the ground plane (and consequently the altitude and

attitude of our system), without estimating the ellipse.

The random sample consensus (RANSAC) scheme

[18] consists in computing model hypotheses from min-

imal sets of randomly selected data, in our case im-

age points. Each hypothesis is verified on the rest of

the data points by computing a distance measure. The

points within a threshold distance are considered as in-

liers and constitute the consensus set for the model hy-

pothesis. This random selection is repeated a number

of times and the best model is the one with the higher

consensus set. The number of iterations N needed to

ensure with a probability p that at least one of the ran-

dom samples is free from outliers can be computed by

N =
log (1− p)

log (1− (1− ε)s)
(28)

where s is the minimal number of points necessary to

compute the model and ε is the supposed fraction of

outliers among the data points [3]. Usually, p is set to

p = 0.99 to ensure a high probability of success. As

highlighted in equation (28), the number of iterations

N is exponential with the size of the minimal subset

so finding a minimal parameterization of the model is

very advantageous for the computing time. For exam-

ple, with p = 0.99 and ε = 0.5 the 5-point method for

ellipse fitting requires 146 iterations, whereas the two

3-point methods require only 35.

5.1 The Plane-Pair 5-point (PP-5) algorithm

The method for estimating altitude and attitude pre-

sented in section 4 requires the computation of the el-

lipse c. In this section, we explain how to estimate it

with all points and then with 5 points using a RANSAC

scheme. This robust estimation is denominated the Plane-

Pair 5-point (PP-5) algorithm.

A point x = [x y z]T (given in homogeneous co-

ordinates) lies on c if xT c x = 0. Representing c as

usual by a symmetric matrix

c ∼

 a b/2 d/2

b/2 c e/2

d/2 e/2 f

 , (29)

the above equation becomes

ax2 + bxy + cy2 + dxz + eyz + fz2 = 0. (30)

The matrix representation of c has five degrees of

freedom: the six elements of the matrix (29) minus one

for the scale since multiplying equation (30) by a non-

zero scalar does not affect this equation.

Suppose we have n points (n >= 5) belonging to c.

Let xi = [xi yi zi]
T be the ith point. We can build

the system of linear equations

x
2
1 x1y1 y

2
1 x1z1 y1z1 z

2
1

...
...

...
...

...
...

x2n xnyn y
2
n xnzn ynzn z

2
n




a

b

c

d

e

f

 = 0. (31)

The coefficients a, b, c, d, e and f can be obtained

(up to scale) by a Singular Value Decomposition of the

first matrix of equation (31).

The points xi are detected by an image processing

step (e.g. thresholding and filtering) where outliers can

appear. A direct estimation as presented in this section

often leads to an erroneous result in the presence of

outliers. To avoid this, the ellipse fitting algorithm is

achieved in a RANSAC scheme to remove the potential

outliers as described in algorithm 1. Here, 5 points are

the minimum required to solve the ellipse coefficients

using equation (31).
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Algorithm 1 Pseudo-code for estimating c using a 5-

point RANSAC (PP-5 algorithm)

k ← 0
best consensus set ← ∅
while k < MAX ITERATIONS do

maybe inliers = 5 points selected randomly
Build the system of equations (31) with these 5 points.
Solve equation (31) by SVD.
maybe conic = c as defined in equation (29)
consensus set = maybe inliers
for each point not in maybe inliers do

if the point complies with the model with an error
smaller than MAX ERROR then

add the point to consensus set
end if

end for
if the number of points in consensus set > the number
of points in best consensus set then

This is definitely a good conic.
best conic = maybe conic
best consensus set = consensus set

end if
end while

5.2 The Plane-Pair 3-point (PP-3) algorithm

Three points are not enough in general to compute an

ellipse, but in our case we have additional information,

not used so far: we know the epipolar geometry between

the camera and the projector. This epipolar geometry

provides additional constraints since the two cones (C

and D) must be tangent to the same epipolar planes.

Considering Figure 3 for instance, both cones are tan-

gent to the plane spanned by the two optical centers

and the black lines on the cones. There is also a second

epipolar plane that is tangent to both cones, behind

them.

The analogous in 2D is as follows: consider the circle

in the projector image plane. There are two epipolar

lines, i.e. lines that contain the epipole, and that are

tangent to that circle. The two corresponding epipolar

lines in the camera image must be tangent to the ellipse

we are looking for in the camera image. This is the

epipolar constraint for images of conics [19].

As we know the pose of the laser with respect to

the camera, we can directly compute the fundamental

matrix given by

F = K−T [tlas]×Rlas. (32)

The epipoles can then be determined using the SVD

of F. The epipoles e in the laser image and e′ in the

camera image are the left and right null-vectors of F.

It is now possible to compute the two tangent lines

in the laser image since we know the epipole they are

passing through and the equation of the circle in the

laser image. As we also know the essential matrix, we

can obtain the equation of these lines in the camera

image.

We thus have two constraints on the c. They are

not trivial to use though. We propose the following for-

mulation. Let u and v be the two epipolar lines that

must be tangent to the ellipse c. In other words, the

two lines must be on the conic that is dual to c, which

can be written as

uT c−1 u = 0 and (33)

vT c−1 v = 0. (34)

On the other hand, any point x that lies on c, gives

a constraint

xT c x = 0. (35)

If we consider 3 points, we thus have 3 linear con-

straints on c and 2 linear constraints on its inverse. The

resolution of such a system of equations is not trivial.

To simplify expressions, we first apply an homography

to the image plane that leads to simple coordinates for

the considered points. Let xi, i = 1, 2, 3 be the three

points lying on the ellipse and x4 the intersection point

of the two tangent lines u and v, i.e. the epipole e′ in

the camera image. Let us compute an homography H

which maps these four points to

x′1 =

0

0

1

 , x′2 =

1

0

1

 , x′3 =

0

1

1

 and x′4 =

1

1

0

 .
(36)

This homography is computed from the linear equa-

tions of type (Hxi)×x′i = 0. For each of the four pairs

of points xi =
[
xi yi zi

]T
and x′i =

[
x′i y

′
i z
′
i

]T
, we can

build the following system of equations and solve it by

SVD: 0T z′ix
T
i −y′ixTi

−z′ixTi 0T −x′ixTi
y′ix

T
i −x′ixTi 0T

h1

h2

h3

 = 0. (37)

Here, hi are rows of H. After computing H, we use

it to map the two tangent lines as follows

u′ = H−Tu (38)

v′ = H−Tv. (39)

This mapping is illustrated in Figure 4.

u′ and v′ contain the point [1, 1, 0]T , hence must be

of the form

u′ ∼

 1

−1

r

 and (40)

v′ ∼

 1

−1

s

 (41)
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Fig. 3: Epipolar geometry of the camera and the projector. The black lines are tangents to the cones relative to

an epipolar plane. Their projection into the camera image gives epipolar lines (in cyan) which must be tangent to

c. The green curve is the second intersection curve of the two cones, besides the ellipse on the ground plane (see

text). This figure can be explored in 3D at https://www.geogebra.org/m/x3x62vRQ.

0 1 2 3 4 5 6 7 8 9

−4

−3

−2

−1

0

1

2

3

Configuration in the camera image

(a) The camera configuration.

0 0.5 1 1.5

−0.5

0

0.5

1

Configuration after applying the homography

(b) The homography configuration.

Fig. 4: Our problem in two configurations: in the camera image and after applying the homography. The 3 points

selected to estimate c are represented in green, the epipole in black, the two tangent lines in blue and the conic to

be estimated in red. Note that on the right hand side, obtained by applying the projective transformation H, the

conic may not be an ellipse.

where r and s can be extracted from equations (38) and

(39).

We now turn to the actual estimation of the conic c′.

First, since it contains x′i, i = 1, 2, 3, with the particular

coordinates as given in equation (36), it must be of the

special form

c′ ∼

2v u −v
u 2t −t
−v −t 0

 . (42)

Without loss of generality, we may fix the homo-

geneous scale factor for c′ by setting v = 1 (the only

case where this is not allowed would be if v = 0, but
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in that case, c′ is degenerate; this case can be safely

excluded in our application, where in practice we will

always observe a non-degenerate ellipse in the camera

image). Hence, we set

c′ =

 2 u −1

u 2t −t
−1 −t 0

 . (43)

The inverse of c′ is, up to scale, equal to

c′−1 ∼

 −t2 t −t(u− 2)

t −1 2t− u
−t(u− 2) 2t− u 4t− u2

 . (44)

To determine the two unknowns t and u, we use

u′T c′−1 u′ = 0 and (45)

v′T c′−1 v′ = 0. (46)

Making these equations explicit, gives two quadratic

equations in t and u:

−(t+ 1)2 + 2ru(1− t) + r2(4t− u2) = 0, (47)

−(t+ 1)2 + 2su(1− t) + s2(4t− u2) = 0. (48)

We may subtract the two equations from one an-

other to get

0 = 2ru(1−t)+r2(4t−u2)−2su(1−t)−s2(4t−u2), (49)

0 = 2u(1− t)(r − s) + (4t− u2)(r2 − s2), (50)

0 = t
(
2u(s− r) + 4(r2 − s2)

)
+
(
2u(r − s) + u2(s2 − r2)

)
.

(51)

This equation is linear in t and we may solve for t

as follows:

t =
2u(s− r) + u2(r2 − s2)

2u(s− r) + 4(r2 − s2)
. (52)

Plugging this into either (47) or (48), and extracting

the numerator, gives the following quartic equation in

u:

(r− s)2u4 + 8(r+ s)(rs− 1)u3 + 8(r2 + 4rs+ s2 + 2)u2

−32(r + s)(rs+ 1)u+ 16(r + s)2 = 0. (53)

Solving equation (53) leads up to four real solutions

for u. For each solution, we can then compute t from

equation (52) and thus a potential solution for c′ from

equation (44). We now only need to map each such

solution back to the original image plane with

c = HT c′ H. (54)

It may be possible to rule out spurious solutions

for c, by eliminating conics that are not ellipses. To

check for an ellipse: if and only if the eigenvalues of the

upper left 2× 2 sub-matrix of c are both non-zero and

have the same sign, then c is an ellipse. Nevertheless we

may obtain several solutions which are ellipses. To get

a unique solution, at least one more point is necessary.

Let x5 be this point, the right solution is the one where

xT5 c x5 = 0. (55)

Since the 3-point estimation method explained above

is in practice embedded in a RANSAC scheme, select-

ing such a fourth point is not necessary. We can simply

evaluate all obtained solution for c that are ellipses, us-

ing all the other image points, in the consensus step of

RANSAC, see algorithm 2.

Algorithm 2 Pseudo-code for estimating conic c using

a 3-point RANSAC (PP-3 algorithm)

We assume as input the epipole e′ and the tangent epipolar
lines u and v in the camera image; they all remain fixed for
our setup, independently of the pose of the laser–camera
system, and can thus be pre-computed.

k ← 0
best consensus set ← ∅
while k < MAX ITERATIONS do

maybe inliers = 3 points selected randomly.
Compute the homography that maps these 3 points and
the epipole e′ to x1, x2, x3, x4 by solving Eq. (37).
Map the two tangent lines using Eq. (38) and (39)
Compute r and s with Eq. (40) and (41)
Solve quartic Eq. (53) for u
for each real solution u do

Compute conic c′ with Eqs. (52) and (43)
Remap back c′ to the original image plane to obtain
c with Eq. (54)
Check if c is an ellipse
for each point x not in maybe inliers do

if point x belongs to conic c , i.e. if dist(x, c) <
MAX ERROR then

Add the point to consensus set
end if

end for
if the number of points in consensus set > the num-
ber of points in best consensus set then

best conic = c
best consensus set = consensus set

end if
end for
k ← k + 1

end while
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5.3 A minimal solution: the Ground-Plane 3-point

(GP-3) algorithm

The fitting of the ellipse from 3 points is feasible, as

shown in section 5.2, but not quite simple. It turns out

that it is simpler to directly solve the problem we are

interested in: the estimation of the ground plane. The

intersection of the two cones in 3D gives, as shown in

Figures 2 and 3, two conics in 3D. One of them is the

trace of the projected circle on the ground plane and

the support plane of that conic is hence the ground

plane, expressed in the reference system in which the

cones are represented (the camera frame in our case).

Let us consider now 3 points in the camera image,

that are assumed to lie on the ellipse c. What we can

now do is to actually back-project these 3 points to 3D,

i.e. to compute their lines of sight. We then intersect the

laser cone D with each of these lines, giving in general

two intersection points each. There are thus 23 = 8

possible combinations of 3D points associated with our

3 image points and one of them must correspond to

points lying on the ground plane. Selecting this correct

solution can be done by embedding this scheme into a

RANSAC, as explained below.

Let us now provide details on these operations. Let

x be an image point, supposed to lie on c. Its back-

projection gives a line in 3D, consisting of points pa-

rameterized by a scalar λ. With the camera projection

matrix as given in equation (5), the back-projection

gives

X(λ) =

[
λK−1x

1

]
. (56)

To find the intersection points with this line and the

laser cone, we must solve the following equation for λ:

X(λ)T D X(λ) = 0

where D is the cone, as defined in equation (9). In de-

tail, this is the following quadratic equation:

λ2 xTK−TRT
lasd RlasK

−1x︸ ︷︷ ︸
c2

− 2λxTK−TRT
lasd Rlastlas︸ ︷︷ ︸
c1

+ tTlasR
T
lasd Rlastlas︸ ︷︷ ︸

c0

= 0. (57)

Let ∆ = c21 − c0c2. Then,

– if ∆ < 0, there is no real solution and consequently

no real intersection between the cone and the ray,

– if ∆ = 0, there is only one real solution (λ = c1
c2

),

corresponding to a line tangent to the cone,

– if ∆ > 0, there are two intersections: λ = c1±
√
∆

c2
.

As mentioned above, the up to two intersection points

per back-projected image point, give up to 8 triplets of

3D points, among which one triplet lying on the ground

plane. To determine this, one may use geometric con-

straints (as already used above, the optical centers of

the camera and laser must lie on the same side of the

ground plane) and additional image points. The latter

possibility is described in the RANSAC scheme embod-

ied in algorithm 3.

Algorithm 3 Pseudo-code for estimating the ground

plane using a 3-point RANSAC (GP-3 algorithm)

k ← 0
best consensus set ← ∅
Back-project all points using Eq. (56).
while k < MAX ITERATIONS do

maybe inliers = 3 points selected randomly.
Compute the intersections of the rays with the cone by
solving Eq. (57).
Compute the 8 planes from the 3×2 intersection points.
maybe planes = these 8 planes
consensus set = maybe inliers
for each plane do

if the camera center and the projector center are on
the same side of the plane. then

for each point not in maybe inliers do
Compute the intersection point Xinter of the ray
and the plane
if the intersection belongs to the cone, i.e. if
dist(Xinter,D) < MAX ERROR then

Add the point to consensus set
end if

end for
if the number of points in consensus set > the
number of points in best consensus set then

best plane = maybe plane
best consensus set = consensus set

end if
end if

end for
k ← k + 1

end while

The advantages of this 3-point RANSAC method

are multiple:

– Lower computational cost than the general 5-point

fitting method (many fewer RANSAC samples need

to be considered as shown in section 5).

– Higher robustness as shown in section 7.

– The solution computed from 3 points satisfies all ge-

ometric constraints (the epipolar constraints actu-

ally); this means that the intersection of cones will

be exact. On the contrary, if one first estimates a

general ellipse in the camera image and then inter-

sects its cone with the cone from the projector: that

problem is over-constrained and the solution will not
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be an exact intersection of the cones. The numerical

solution obtained with such a 5-point method may

be worse than the 3-point method.

6 Calibration

Calibration is a necessary step to run our algorithms

on real data. In our system, we have three elements to

calibrate: the projector, the camera, and the relative

pose between the camera and the laser.

Regarding the projector, we suppose that we know

the opening angle of the laser cone since it is given by

the manufacturer or it can easily be measured.

The camera is calibrated by a conventional method,

using a checkerboard pattern [20].

The main problem thus lies in the estimation of the

relative pose between the laser and the camera. Pose

consists normally of three translation/position parame-

ters and three rotation parameters. Since the laser cone

is circular, rotation about its axis is irrelevant in our ap-

plication, hence only two rotation parameters need and

can be determined.

Our method uses a planar surface with a known tex-

ture, e.g. a calibration pattern. In that case, the pose of

the planar surface relative to the camera can be com-

puted [7].

It is theoretically possible to perform the calibra-

tion from one image. Nevertheless, for best results, one

should combine all available images, in a bundle adjust-

ment fashion.

One way of doing this is as follows. We have to op-

timize the pose of the laser cone relative to the camera

and for this, we need to define a cost function. One

possibility is to sample points of the ground plane el-

lipses and to minimize the sum of squared distances

between the sampled points and the ellipses that are

generated by cutting the cone with the ground plane,

where the cone is a function of the pose parameters to

be optimized. Minimizing this sum of squared distances

allows to optimize the cone parameters. Such a point-

based cost function is more costly to optimize than for

instance a cost function that compares ellipses as such

(e.g. that compares the symmetric 3 × 3 matrices rep-

resenting ellipses), but should be better suited.

The optimization of the proposed cost function can

be done in several different ways; here we describe a

solution analogous to one proposed for fitting conics to

points in[21]. It requires to optimize, besides the cone

parameters, one parameter per point, that expresses the

position of each point on the cone.

The formulation is as follows. Considers first a cone

in canonical position, with vertex at the origin and with

the Z-axis as axis of revolution. Directions of lines on

the cone can be parameterised by an angle γi as

Di =

cos γi − sin γi 0

sin γi cos γi 0

0 0 1

sin Θ
2

0

cos Θ2

 . (58)

The unknowns of the pose estimation problem are

the orientation and the position of the cone relative to

the camera. The orientation is given up to a rotation

about the Z-axis, i.e. can be represented by a rotation

about Y , followed by one about X. The position can be

represented simply as the position of the vertex, given

by a vector v = [vx vy vz]
T .

As for the orientation, the direction Di is mapped

to a direction D′i in the camera coordinate system by

D′i = Rlas,XRlas,Y Di

=

1 0 0

0 cosα − sinα

0 sinα cosα

 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

Di
. (59)

Finally, for a frame j, let the camera pose relative

to the calibration grid on the ground plane be given by

a rotation matrix Sj and a vector tj such that points

in the camera coordinate system are mapped to the

calibration grid coordinate system by

Qg = SjQ
c + tj . (60)

Now, in the grid’s coordinate system, the direction

is given as

Dg
ij = SjD

′
i (61)

and the cone’s vertex as

tgj = Sjv + tj . (62)

We need to find the intersection of the line given by

the vertex and the direction, with the ground plane (set

to the plane Z = 0 for the calibration process). This is

simply given by the point

Sjv + tj + λijSjD
′
i (63)

such that

λij = − (Sjv + tj)3
(SjD′i)3

. (64)

The XY -coordinates of that point are given as

Xij = (Sjv + tj)1 − (Sjv+tj)3
(SjD′i)3

(SjD
′
i)1 and

Yij = (Sjv + tj)2 − (Sjv+tj)3
(SjD′i)3

(SjD
′
i)2.

(65)

The cost function is the sum of squared differences be-

tween these predicted XY -coordinates, and the ones
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(a) One of the images used for the calibration (b) Detection of the conic and of the pattern .

Fig. 5: Our calibration method uses a planar surface with a known texture. The source image (a) is treated to

extract the pattern and the equation of the conic (b).

Fig. 6: Form of the Jacobian matrix for our calibration

formulation consisting of 5 relative pose parameters and

n points. Zero entries in the matrix are shown in gray.

measured (for the sampled points mentioned above). To

optimize it, we use the Levenberg-Marquardt algorithm

[22] which requires to compute its partial derivatives in

the unknowns, which are: α, β,v and the γi, as shown

in Figure 6.

To ensure the convergence of the algorithm, the op-

timization is achieved in two steps: we firstly optimize

only the γi before the re-estimation of all the parame-

ters (α, β,v, γi).

7 Experiments

To verify the validity of the proposed methods, we per-

form experiments using both simulated data and real

images. The latter have been acquired with a camera-

laser system and a motion capture system as ground

truth for quantitative comparisons.

7.1 Synthetic Evaluation

In these first experiments, we generate a set of laser

points on the ground floor, given the intrinsic parame-

ters of the camera and of the laser as well as their rel-

ative pose. We then introduced different noises in the

simulated data such as image noise, outliers, noise on in-

trinsic and extrinsic parameters, etc. The performances

of the three proposed algorithms are evaluated by com-

paring the mean error of the respective estimated alti-

tude, roll and pitch angles over a thousand trials.

7.1.1 Evaluation under image noise

In order to evaluate the robustness of the three algo-

rithms in presence of image noise, we have added differ-

ent levels of noise to the pixel coordinates of the image

points lying on the image of the laser beam’s intersec-

tion with the ground plane. We then propose to com-

pare the mean error of the estimated altitude, roll and

pitch angles obtained from the three methods over a

thousand trials. Results are shown in figure 7.

The GP-3 algorithm gives the best results for the

altitude estimation while for the attitude estimation
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Fig. 7: Evaluation of the proposed algorithms under varying image noise.

PP-5 PP-3 GP-3

Proportion of outliers 75 % 86 % 85 %

Table 1: Proportion of outliers from which algorithms

fail.

(roll and pitch), the PP-3 and GP-3 have similar perfor-

mances. We believe that the 5-point is the most sensi-

tive since less constraints than the two other approaches

are used.

7.1.2 Evaluation under varying outlier ratios

In this second experiment, we generate a given propor-

tion of outliers in the whole camera image. The compar-

ison is not based on error curves since the estimation

leads to an exact solution (no noise is added to the inlier

points). The results are summarized in Table 1 where

the proportions of outliers that causes the algorithms

to fail are given. Both PP-3 and GP-3 algorithms seem

to have a similar robustness to the outliers.

Examples of ellipse estimation respectively based on

the PP-5 and the PP-3 are shown in Figure 8. This

kind of result is not proposed for the GP-3 algorithm

since it does not estimate an ellipse but directly the

ground plane. The main advantage of our PP-3 algo-

rithm is that it takes into account the geometric con-

straints (the epipolar geometry of our system) to esti-

mate the ellipse. The introduction of these additional

constraints increases the robustness of this algorithm

when the number of outliers becomes very large. As

shown in Figure 8, in the same conditions of iteration

number and threshold, the PP-3 algorithm provides a

good ellipse estimation whereas the conventional PP-5

algorithm fails.

7.1.3 Evaluation under varying calibration noise

(intrinsic parameters)

For this experiment, we introduced noise in the intrinsic

parameters. Results are given in Figure 9. As illustrated

in this figure, the PP-3 and GP-3 algorithms give better

results for the altitude estimation than the PP-5. For

the attitude estimation, the three algorithms provide

similar results.

7.1.4 Evaluation under varying calibration noise

(extrinsic parameters)

In this case, we introduced noise on the extent of the

baseline between camera and laser. Results are given in

Figure 10. As illustrated in this figure, the baseline has

a stronger influence on the altitude estimation than on

the attitude. All the proposed algorithms seem to react

in the same way for the altitude estimation. The PP-3

and GP-3 algorithms give better results for the attitude

estimation than the PP-5.

7.1.5 Evaluation under varying ground plane noise

Complementary to the outliers previously treated, we

also introduced noise in the ground plane points coordi-

nates. The aim is to simulate what would happen with

a non-uniform ground (presence of gravel or grass). Re-

sults are given in Figure 11. As illustrated in this figure,

the non-uniform plane has a strong influence on the al-

titude and attitude estimations. The PP-3 and GP-3

algorithms give the best results, in particular for the

altitude estimation.

7.2 Experiments on real data with Vicon-based

ground-truth

In order to have a practical evaluation of our algo-

rithms, a dataset has been collected with a reliable
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Fig. 8: The estimated conic using the PP-5 (a) and the PP-3 (b) algorithms. Outlier ratio = 75%, Number of

RANSAC iterations = 100, RANSAC threshold = 0.01.
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Fig. 9: Evaluation of the proposed algorithms under varying intrinsic parameters noise.
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Fig. 10: Evaluation of the proposed algorithms under varying baseline noise.

ground-truth obtained by a motion capture system. The

experiments have been conducted in a room equipped

with a Vicon motion capture system composed of 20 Vi-

con T40S cameras. With such a system, we can assure a

6 DoF (Degrees of Freedom) localization of our system

with a sub-millimetric accuracy as demonstrated in [23]

and a high framerate (500fps).

The camera used in the experiments is a uEye color

camera from IDS with an image resolution of 1600x1200

pixels and a 60fps framerate. The color helps the laser

segmentation in the image since the laser produces a red

light. The laser is a Z5M18B-F-635-c34 from Z-Laser

which provides a red light (635nm) with a power of

5mW. It is equipped with a circle optic with an opening

angle of 34◦.
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Fig. 11: Evaluation of the proposed algorithms under varying ground plane noise.

Fig. 12: The hand-held system used for the Vicon ex-

periment

For the evaluation of the accuracy of our algorithms,

we used a hand-held system as shown in Figure 12. The

camera and the laser are mounted on a trihedron to

facilitate the positioning of the markers of the motion

capture system.

Due to the low power of the laser and the dark color

of the floor, the experiments are conducted in a dark en-

vironment as in our previous works [14] [15]. The lights

are nevertheless not totally turned off since the cam-

era has to observe a calibration pattern. The process-

ing pipeline to detect the conic points in the image is

simple. The color image is firstly converted from the

RGB space into the HSV one. Then, a fixed threshold

is applied only on the H-channel since it contains the

colorimetric information and we are looking for the red

light of the laser. There is no additional processing, the

outliers are directly removed by using the three pro-

posed algorithms.

A first dataset is acquired for the calibration of the

system as explained in Section 6. This dataset is com-

posed of 16 images where the laser projection and a cal-

ibration pattern are visible as shown in Figure 5. The

relative pose of the laser with respect to the camera is

initialized by measuring it roughly. This first estimation

is represented in Figure 13a. An intermediate and the

final estimations after the algorithm convergence are

shown respectively in Figure 13b and Figure 13c. The

average error after calibration is less than 1.6 millimeter

per point.

A second dataset composed of 106 images has then

been acquired without the calibration pattern. The tra-

jectory of this second dataset is represented in Figure

14. The ground truth is given by the Vicon system. The

results of our algorithms are given in Figure 15 and in

Table 2.

As we can see, the three algorithms provide a reli-

able estimate of the altitude and attitude of our system.

PP-3 and GP-3 algorithms have a similar performance

and they provide a better accuracy than the PP-5 al-

gorithm.

As previously shown in [15], our system can also be

mounted on a UAV vehicle with a similar baseline to

the hand-held experiment. This experiment aimed to

demonstrate the feasibility of a UAV positioning appli-

cation as shown in Figure 16.

8 Conclusion

This paper proposes different approaches to estimate

the altitude and attitude of a mobile system equipped

with a circular laser and a camera. We propose a ge-

ometric formulation and three robust methods for es-

timating the pose from 5 or 3 points. The results of

the synthetic and real experiments show that the two

3-point approaches are the most robust because they

use additional constraints for solving the problem. A

new calibration approach, based on a bundle adjust-

ment with one parameter per point, is also proposed to

estimate the relative pose between the camera and the

laser. As future work, we could study if the projection
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(a) Estimated projection (in red) and
real points (in green) of the conic on
the ground plane with the values used
for initialisation
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(b) Estimated projection (in red) and
real points (in green) of the conic on
the ground plane after the γi conver-
gence.
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(c) Estimated projection (in red) and
real points (in green) of the conic on
the ground plane after the convergence
of all parameters (points and relative
pose).

Fig. 13: Results of the three stages of the calibration process.

PP-5 PP-3 GP-3
Altitude error (mm) 11.28 ± 5.91 7.90 ± 4.51 7.52 ± 4.12
Pitch error (◦) 1.19 ± 0.86 0.67 ± 0.39 0.66 ± 0.37
Roll error (◦) 1.25 ± 0.89 0.78 ± 0.41 0.76 ± 0.36

Table 2: Altitude, pitch and roll errors of the real experiment.

of the cone axis on the ground plane brings additional

constraints since this point is visible on the images, or

even what would be the advantage of using several con-

centric circles instead of a single one. The addition of

geometric constraints could provide a better accuracy

as demonstrated in [24].

A Proofs

A.1 Eigenvalues of a plane pair quadric

We prove here the statement made in section 2.2, that a
quadric representing a pair of planes, has two zero eigenval-
ues and two non-zero eigenvalues of opposite sign. Let the
quadric be given as in section 2.2, i.e.

Q = VUT + UVT .

Its eigenvalues can be easily computed to be

0, 0,UT V ±

√√√√ 4∑
i=1

4∑
j=1

U2
i V

2
j .

We need to show that the non-zero eigenvalues have op-
posite sign. This is exactly the case if√√√√ 4∑

i=1

4∑
j=1

U2
i V

2
j > UT V

or, if

4∑
i=1

4∑
j=1

U2
i V

2
j >

(
UT V

)2
. (66)

Let u and v be scalars such that Ū = U/u and V̄ = V/v
have unit norm. Equation (66) can then be written as

u2v2
4∑

i=1

4∑
j=1

Ū2
i V̄

2
j > u2v2

(
ŪT V̄

)2
.

This is true exactly if

4∑
i=1

4∑
j=1

Ū2
i V̄

2
j >

(
ŪT V̄

)2
.

Since Ū and V̄ have unit norm, the left hand side is equal to
1 and the condition becomes

1 >
(
ŪT V̄

)2
.

As for the right hand side: the absolute value of the dot prod-
uct of two unit vectors is always less or equal to 1. Equality
occurs exactly if Ū = ±V̄, which is the case exactly if the
original (not normalized) plane coordinate vectors, are equal
up to scale: U ∼ V.

Overall, this means that unless the two planes are iden-
tical, the quadric representing the plane pair, has non-zero
eigenvalues of opposite sign, as stated. (If the planes are iden-
tical, the quadric is actually of rank 1 only and has three zero
eigenvalues.)

A.2 Quadric family generated by cones

We prove here the statements made in section 4.1, concerning
the degenerate members of a family of quadric generated by
two cones G1 and G2:

Q = G1 + xG2. (67)
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Fig. 14: The real experiment.

In particular, we consider the case where the cones are
known to intersect in a conic. Without loss of generality (sup-
posing that the conic’s support plane is not the plane at in-
finity), let us suppose that this conic lies on the plane Z = 0
and that in this plane, it is represented by the symmetric 3×3
matrix M. Let the two cones be spanned by this conic and
vertices

Hi =


Xi

Yi

Zi

1


for i = 1, 2 and with Zi 6= 0.

The two cones are then given by

Gi =


M11Z2

i M12Z2
i −giZi M13Z2

i

M21Z2
i M22Z2

i −hiZi M23Z2
i

−giZi −hiZi mi −kiZi

M31Z2
i M32Z2

i −kiZi M33Z2
i


with gi = M11Xi +M12Yi +M13

hi = M21Xi +M22Yi +M23

ki = M31Xi +M32Yi +M33

mi = giXi + hiYi + ki.

That this represents these cones, can be checked as fol-
lows. First, the intersection of these quadrics with the plane
Z = 0 is obtained by striking out the third row and third
column of the matrices Gi (the row/column corresponding
to the Z-coordinate). This gives the matrixM11Z2

i M12Z2
i M13Z2

i

M21Z2
i M22Z2

i M23Z2
i

M31Z2
i M32Z2

i M33Z2
i

 ∼M

which is equal to the conic M. Second, it is easy to check
that Hi is a null-vector of Gi. Hence, Gi is indeed the cone
spanned by the vertex Hi and the conic M in plane Z = 0.

Let us now develop the determinant of Q, defined in equa-
tion (67) as a member of the family generated by cones G1

and G2. Elementary computations give

det(Q) = Wx(Z2
2x+ Z2

1 )2

where W does not depend on x, only on coefficients of M,H1

and H2. Hence, det(Q) = 0 for x = 0 and x = −Z2
1/Z

2
2 , the

latter being a double root. The case x = 0 corresponds to
the cone G1, which is obviously a degenerate quadric. The
second cone, G2, corresponds to a root x→∞.

Let us now study the double root x = −Z2
1/Z

2
2 and the

associated degenerate quadric

Q = G1 −
Z2

1

Z2
2

G2

=


0 0 g2

Z2
1

Z2
− g1Z1 0

0 0 h2
Z2

1

Z2
− h1Z1 0

g2
Z2

1

Z2
− g1Z1 h2

Z2
1

Z2
− h1Z1 m1 −m2

Z2
1

Z2
2

k2
Z2

1

Z2
− k1Z1

0 0 k2
Z2

1

Z2
− k1Z1 0

 .
This matrix is of rank 2 at most, thus represents a plane

pair quadric. From section 2.2, we deduce that the two planes
represented by Q, are

U =


0
0
1
0

 V =


g2

Z2
1

Z2
− g1Z1

h2
Z2

1

Z2
− h1Z1

m1−m2
Z2
1

Z2
2

2

k2
Z2

1

Z2
− k1Z1

 ∼

Z1Z2(g2Z1 − g1Z2)
Z1Z2(h2Z1 − h1Z2)

m1Z
2
2
−m2Z

2
1

2
Z1Z2(k2Z1 − k1Z2)



with gi, hi, ki,mi defined as above. The first one is the plane
Z = 0, as expected (the support plane of the conic known to
be contained in both cones). The second plane also carries a
conic in which the two cones intersect (see also figure 2 for
an illustration). Its location depends on the cones; it is of no
particular interest in this paper.

We prove now one additional property of our scenario.
Namely that for one of the two planes, the cone’s vertices
lie both on the same side of the plane, whereas they lie on
opposite sides of the other plane. This property is useful in
finding a unique solution to pose estimation in this paper.
To prove this, one should study the signs of the dot prod-
ucts of the planes with the cone’s vertices (two points are on
the same side of a plane, if the respective dot products have
the same sign). In particular, it can be shown by elementary
computations (details omitted), that(
HT

1 U
) (

HT
2 U

) (
HT

1 V
) (

HT
2 V

)
< 0.

This implies that one of the two planes “splits” the two ver-
tices, whereas for the other one, they lie on the same side of
it (this can be easily proven by contradiction).
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Fig. 15: Results of the real experiments.

(a) Our system mounted on a Pelican UAV (b) The Pelican UAV in the VICON area. The flying area
available is 15x10x5m3 equipped with twenty T40S Vicon
cameras.

Fig. 16: The UAV experiment (see [15] for more details).
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