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Abstract. Commercial anti-malware systems currently rely on signa-
tures or patterns learned from samples of known malware, and are un-
able to detect zero-day malware, rendering computers unprotected. In
this paper we present a novel kernel-level technique of detecting keylog-
gers. Our approach operates through the use of a decoy keyboard. It
uses a low-level driver to emulate and expose keystrokes modeled after
actual users. We developed a statistical model of the typing profiles of
real users, which regulates the times of delivery of emulated keystrokes.
A kernel filter driver enables the decoy keyboard to shadow the physi-
cal keyboard, such as one single keyboard appears on the device tree at
all times. That keyboard is the physical keyboard when the actual user
types on it, and the decoy keyboard during time windows of user inac-
tivity. Malware are detected in a second order fashion when data leaked
by the decoy keyboard are used to access resources on the compromised
machine. We tested our approach against live malware samples that we
obtained from public repositories, and report the findings in the paper.
The decoy keyboard is able to detect 0-day malware, and can co-exist
with a real keyboard on a computer in production without causing any
disruptions to the user’s work.

Keywords: decoy I/O, 0-knowledge anti-malware, kernel drivers.

1 Introduction

Malware development, dispersion, and infection are an ever-present threat to
system security and user privacy. Among the most insidious and difficult to de-
tect are 0-day malware, as well as those using code and data structure mutation.
With nearly limitless access to system services, drivers, and modules, these types
of malware have some distinct advantages over current detection methods – not
only must they have been previously encountered and analyzed in order to be
caught, but they can interfere with and elude the software trying to track them.
Keyloggers are a common component of malware, able to spy on a user’s ac-
tivity and gather information like passwords, account numbers, and credit card
numbers.

There are several methods used by keyloggers to capture information from the
keyboard in the Windows operating system. User level keyloggers can implement
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a software hook that can intercept keystroke events, perform cyclical querying
of the keyboard device to determine state changes, or inject special code into
running processes that has access to the messages being passed. Kernel level
keyloggers work by using filter drivers that can view the I/O traffic bound for
a keyboard. There are varying methods of implementing keyloggers, and while
many are documented, it is likely that there are some that are not. New keystroke
interception techniques are discovered continuously.

Contribution. We present a novel defensive deception approach, which uses
a decoy keyboard to receive contact from keyloggers in a way that leads to
their detection unequivocally. The decoy keyboard emulates the presence and
operation of its real counterpart with the help of drivers in the kernel. The
decoy keyboard can be installed on a full production system in active use, and
is able to not interfere with the activities of a normal user. The decoy keyboard
appears as a standard USB keyboard in the Windows device tree. It is effectively
invisible to the user, and indistinguishable from a real keyboard to malware.
The defender’s objective is to proactively misdirect malware into intercepting
keystrokes emulated by the decoy keyboard. An attack surface is created by
sending emulated keystrokes to a decoy process (dprocess), which runs in user
space. Malware are detected when they use the data that they had intercepted
from the decoy keyboard on the compromised computer. Some malware are
detected upon contact with the decoy keyboard. The decoy keyboard can be
combined with a decoy mouse and a decoy monitor for consistency reasons,
using techniques similar to those discussed in this paper.

Novelty. The decoy keyboard is a 0-knowledge detector, meaning that it
can detect malware without any prior knowledge of their code and data. 0-day
malware, polymorphic malware, metamorphic malware, data-structure mutating
malware, are all detectable by this work. A shadowing mechanism enables the
decoy keyboard to coexist with its real counterpart on a computer in production.
A timing model helps the decoy keyboard expose emulated keystrokes on the
attack surface in a realistic and consistent fashion. Data intercepted from a decoy
keyboard have the same timing characteristics as data intercepted from a real
keyboard. The decoy keyboard is a usable security tool. It runs automatically
with very little computational overhead, and requires no user input or any other
involvement. Overall, our approach creates an active redirection capability that
is effective in trapping malware.

Threat Model. Our approach currently works against keyloggers that run in
user space. Kernel-level malware are planned as future work. Malware could use
any exploits to land on a computer, and could have any form of internal design
to intercept keystrokes. Our approach works independently of the exploitation
techniques and the inner workings of malware. We did this work with reference
to the Windows operation system, as we were seeking a proof of concept to show
the potential of our approach. Similar principles can be applied to other modern
time-shared operating systems as well.

Paper organization. The remainder of this paper is organized as follows.
Section 2 describes the proposed approach in four parts, namely modeling hu-
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Fig. 1. Distribution of timing data for a single digraph.

man keystroke dynamics, low-level deceptive driver, keyboard shadowing, and a
discussion of how our approach attains malware detection. In Section 3 we dis-
cuss the evaluation of the proposed approach against live malware. In Section 4
we discuss related work in malware detection, deception tactics, and keystroke
dynamics. Section 5 summarizes our findings and concludes the paper.

2 Approach

2.1 Modeling Human Keystroke Dynamics

Just as we humans have unique patterns in our handwriting (to the level that
it can be used for identification), we have similar patterns in the way that we
type on computer keyboards. This has been extensively studied [36] as a biomet-
ric means of user authentication and identification, with generally good results.
However, it is important to note that we are not using this model for authen-
tication, but rather for generation of keystrokes. This presents a different set
of unique challenges, and eliminates some of the specific considerations needed
for user verification. Notably, we are proceeding with the assumption that the
malware is not specifically targeting a user or users that they already have ac-
quired a large amount of recorded keystroke data and built complex models for.
We used the large body of previous research to help define a model that we
could use to send emulated keystrokes that would appear to come from a unique
human user, while simultaneously meeting our goals.

One primary goal was having low overhead, since we are working at the
driver and operating system level, and additional processing time could add
unwanted and unintentional delays that could cause our deception to become
visible. Low overhead implies a measure of simplicity in the model, with the
additional consideration that a more complex and specific model is difficult to
implement without error and likely easier to detect, as well as being unsuitable
for the initial stage of research. Of course, model accuracy was also important,
keeping in mind that the accuracy of keystroke dynamic authentication may not
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map directly to our generation of keystrokes. Based on these considerations and
requirements, we chose to implement a model consisting of the time between
each key in a digraph, or two consecutive keys. For example, in the word ’the’,
there are two digraphs: ’th’ and ’he’.

This is similar to the models used by Gaines [34] and Umphress [33] (among
others), and has shown to be quite effective in user authentication for text such
as passwords. Importantly, Gaines found there was little difference in the digraph
times between english text, random words, or random phrases, and the data was
found to be normally distributed. A histogram of a single example digraph is
shown in Figure 1.

The model itself consists of the mean time in milliseconds and the sample
standard deviation for each possible key combination. Each unique digraph can
be represented as a normal curve with those two values. With a relatively small
finite number of possible digraphs, this can be quickly implemented with a lookup
table containing the two variables for each digraph, and a statistical function
used to generate a random number (for milliseconds of key delay) that falls
within the normal curve. Thus we are very likely to get a value that is close
to the mean, but occasionally we will get a delay that is less than or more
than usual, as is common with human behavior. We developed the model using
data from some publicly available datasets [37–39], but for the operation of the
software we are using data recorded from individual members of the research
group, in order to present a unique user.

While our software is still a prototype, future production and distribution
across numerous machines could enable the possibility of malware analyzing data
from different sources that are all operating the software, and thereby the ability
to expose the deception if they all had nearly identical timing values. Thus we
must provide a unique user, and we evaluate and test the software using models
created from real people. Working with these datasets exposed us to the issue of
outliers when using recorded data. After implementing and testing our model, we
discovered that there were several instances of unnaturally long delays between
generated keys, due to unrealistically high standard deviation values. This was
due to the fact that any sort of pause in the middle of typing, even to the extent
of leaving the computer for several minutes, was reflected in the timing data;
these outliers were affecting the model and were not representative of what we
were trying to model.

We explored two methods of outlier removal, the simple but naive method
(removing values that fall outside of a certain number of standard deviations
from the mean), and a more robust method using the median absolute deviation
(MAD). Leys et al [40] describes this method in detail, but the results are evident
and can be seen in Table 1.

To generate the models used in testing the deceptive driver against real mal-
ware, we recorded our own typing data for a full page of text and generated a
model for each user, associating every digraph with a mean time in milliseconds
and standard deviation. This is also how the decoy keyboard learns the typing
profile of a user on a machine in operation. Significant outliers were removed, and



5

Table 1. Comparison of Outlier Removal Methods for a Single Digraph

Baseline Naive MAD

Mean 261.7162 158.2817 131.8971

Median 127 124 120.5

Std. Dev. 562.0665 142.0196 57.17455

Fig. 2. Comparing the digraph model of three users.

digraphs for which there was insufficient data (less than three occurrences) were
discarded. When encountering digraphs for which there is no entry in the model,
the deceptive driver will use a predetermined mean value with high variance to
represent the unpredictability of such rare occurrences; regardless, a user’s typ-
ing patterns can be identified using a limited number of common digraphs [34],
and rare occurrences are not of much use in generating or validating a model.
To illustrate the effectiveness of the model in distinguishing users, the timing
values for the ten most common digraphs of three of the authors are shown in
Figure 2. Each data point consists of the mean timing value for one of the ten
digraphs, where the distance from the center represents the time in milliseconds.
We can see that the two users in the middle have roughly the same typing speed,
but they have unique characteristics for each digraph. The user on the outside
is significantly different just by nature of a slower typing speed.

2.2 Low-Level Deceptive Driver

This is the driver that emulates keystrokes. We refer to this driver as the decoy
keyboard (DK) driver. It is a customized Windows USB Human Interface Device
(HID) function driver, based on an open-source project called VMulti [44], i.e., a
virtual multiple HID driver using the Kernel Mode Driver Framework (KMDF).
We modified and extended VMulti to turn it into a decoy keyboard driver.



6

KMDF is the same framework used by many vendor drivers for real hardware.
It allows us to follow the same requirements and standards as a real keyboard.
Thus, it appears in the device tree and Device Manager just as any other device.
The location of the decoy function driver within the Windows device tree can
be seen in Figure 3. Normally, a driver does not initiate messages or data traffic
itself, but responds to signals either from the hardware device (like keys being
pressed) or from the operating system (turning on lights for Caps Lock, etc).

In our case, with no physical hardware to generate signals, the keystrokes
must originate from within the driver itself. That is, keystrokes are processed
as normal key events through the driver so as to be indistinguishable from a
real keyboard. These events have no explicit time stamps. They are retrieved
using a first in, first out queue. However, any software that intercepts or records
the events can easily associate a time value to each event for the purposes of
analysis. Keystrokes sent without regard to timing would simply go at machine
speed, that is, far faster than any human could possibly type. This is why we
use the statistical model that we described previously, to regulate the time each
event is sent, emulating human typing behavior. The model of a user’s typing
profile is represented internally as an array that functions as a lookup table,
providing the core statistical values for each pair of keys.

On loading, the DK driver processes the statistical model and thus initializes
a normal distribution function for each digraph, using the mean and standard
deviation in combination with a cryptographically secure random number gen-
erator. Keystrokes are sent by the driver one at a time. Each key event is an
individual action. Text/keycodes are taken as input and then are processed by
the DK driver. For each pair of keys encountered, the appropriate distribution is
used to randomly generate a time value that falls within the range as defined by
the statistical model. That value is used as the delay between sending the two
key events. When the driver decides to send a specific keystroke, it will immedi-
ately process it per the USB HID protocol, queuing a keyboard report as a USB
interrupt transfer request that contains the key being pressed and any modifiers
(shift, alt, etc). The operating system will periodically poll the interrupt trans-
fer pipe and retrieve the data, delivering it to any requesting applications, i.e.,
dprocess in our case.

2.3 Keyboard Shadowing

The operation of a decoy keyboard in parallel with a real keyboard creates
an outlier configuration. Malware could simply browse all I/O devices on the
computer, and then check if more than one keyboards are attached to the com-
promised computer. Computers with two physical keyboards are not common,
consequently the decoy keyboard needs to operate when the user is not typing
any keys on the real keyboard. We have devised a technique, which we refer to
as the keyboard shadowing mechanism (Kshadow), to detect windows of time
when the user is not using the keyboard. The duration of those time windows of
inactivity varies from several seconds to several minutes, and at times may last
one or more hours depending on the work situation a user is in. For example,
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Fig. 3. Location of the decoy keyboard in the device tree. (Source: Microsoft Hardware
Dev Center [43])

the user may be reading a document, and occasionally use the real keyboard to
perform keyword searches on it. The user may be attending an hour-long presen-
tation, in which the user mostly listens and sometimes writes down notes. The
user may also be away from the computer for extended periods of time, such
as when going to lunch or when participating in a meeting. Note that, since
Kshadow runs in the kernel, there is now running process for it in user space.

Kshadow signals the DK driver when a time window of inactivity begins,
and again when it ends. A go signal gives the DK driver a green light to start
sending keystrokes to a dprocess. A stop signal notifies the DK driver that the
physical keyboard is now producing keystrokes. It is time that the DK driver
quickly wraps up the communication with a dprocess, and goes to sleep until
the next signal from Kshadow arrives. The DK driver may choose to not use a
time window of inactivity entirely, especially if the time window is long. In those
cases, the DK driver selects specific portions of the time window in which to send
keystrokes to a dprocess. The remaining fractions of the time window are left to
be inactive. Keyboard shadowing is transparent to the user, who does not see or
interact with the decoy keyboard. The user types on the physical keyboard as
if the decoy keyboard were not present on the computer. Only one keyboard is
discoverable at any time on the computer, with characteristics that match those
of the physical keyboard.

We now discuss the inner workings of keyboard shadowing, with reference to
Figure 4. In Windows, the I/O system is packet driven [41]. An I/O device in
general is operated by a stack of drivers. The driver stack of an I/O device is
an ordered list of device objects, i.e., device stack, each of which is linked with
the driver object of a kernel driver. A device object is a C struct that describes
and represents an I/O device to a driver, whereas a driver object is a C struct



8

that represents the image of a driver in memory [41]. The I/O requests that read
keystrokes from a keyboard are packaged into data structures called I/O request
packets (IRPs) [41]. An IRP is self contained, in the sense that it contains all
the data that are necessary to describe an I/O request. IRPs originate from a
component of the I/O system called I/O manager, which is also responsible for
enabling a driver to pass an IRP to another driver.

An IRP traverses the device stack top to bottom. It is processed along the way
by the drivers in the driver stack using the I/O manager as an intermediary. Once
an IRP is fully processed by those drivers and thus reaches the bottom of the
driver stack, the lowest driver populates its payload with scancodes. A scancode
is a byte that corresponds to a specific key on the keyboard being pressed or
released. The IRP may climb back up the driver stack. At the end, the I/O
manager responds to the caller thread in user space by passing the keystrokes
to it. The keyboard class driver referenced in Figure 4 does IRP processing that
applies generally to all keyboards, regardless of their hardware, low-level design,
and type of hardware connection to the computer. When a process in user space
requests to read keystrokes, the I/O manager converts the request into an IRP
and sends it to the driver located at the top of the stack. Here is how.

The I/O operation performed by an IRP is indicated by a field called major
function code, which may be accompanied by a minor function code. The I/O
manager accesses the device object located at the top of the stack, and from
there follows a pointer to the corresponding driver object. At that point, the
I/O manager uses the major function code as an index into a dispatch table
of the driver object, and obtains the address of a driver routine to call. The
routine belongs to the keyboard class driver, which can now process the IRP
and subsequently pass it down the driver stack. All the other drivers in the
stack are given an opportunity to process IRPs this way as well. Without any
keyboard shadowing in place, the keyboard class driver passes the IRP to a
function driver. Generally speaking, the function driver of an I/O device has the
most knowledge of how the device operates. The function driver presents the
interface of the device to the I/O system in the kernel.

The function driver of the physical keyboard is an HID driver, which is re-
ferred to as keyboard HID client mapper driver. It is written in an independent
way from the actual transport. Possible transports can be USB, Inter-Integrated
Circuit (I2C), Bluetooth, and Bluetooth Low Energy. In the case of the comput-
ers that we used for code development and research in this work, the HID class
driver serves as a bridge between the keyboard HID client mapper driver and a
USB bus. The reader is referred to [20] for a thorough description of HID con-
cepts and architecture. Keyboard shadowing is implemented as a filter driver,
which is positioned between the keyboard class driver and the keyboard HID
client mapper driver, as depicted in Figure 4. Kshadow creates a filter device
object (FiDO). This FiDO is similar to the functional device object (FDO) and
physical device object (PDO) created by the other drivers in the stack. These
device objects are only different in the type of drivers to which they represent
an I/O device.
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Fig. 4. Integration of keyboard shadowing with the driver stack of an HID keyboard.

By registering with the I/O manager as a filter driver, Kshadow gets to see
all IRPs bound for the keyboard, physical or decoy. Kshadow has access to the
process ID of dprocess. Furthermore, for each IRP, Kshadow retrieves the pro-
cess ID of the thread that requested the I/O operation. This is how Kshadow
knows whether an IRP originated in dprocess or in another process. Regard-
less of the source, Kshadow receives IRPs from the keyboard class driver. If
an IRP originated in a process other than dprocess, Kshadow passes it down
to the keyboard HID client mapper driver. If an IRP originated in dprocess,
Kshadow simply passes it to DK driver, which populates it with the scan-
codes of emulated keystrokes. Kshadow acquires high resolution time stamps
to measure the interval between the current time and the time an IRP was last
seen going down the driver stack. The Windows kernel provides APIs such as
KeQueryPerformanceCounter() that are highly accurate.

If no IRPs from processes other than dprocess arrive for an interval of time
that exceeds a given threshold, Kshadow marks the beginning of a time window
of inactivity and thus sends a go signal to the DK driver. All communications
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between Kshadow and DK driver take place through direct function calls, and
do not involve the I/O manager. This is because DK driver is not part of the
driver stack, consequently no device object is created for it. It is slightly more
challenging for Kshadow to spot the end of a time window of inactivity. We deem
that inactivity ends when the driver at the bottom, which is also referred to as
a miniport driver, completes its processing of a pending IRP. The completion
event is due to the user pressing a key on the keyboard, and the miniport driver
subsequently reading the scancode byte and placing it on the IRP. We leverage
the fact that the completed IRP could be made to climb up the driver stack.

When Kshadow notices a completed IRP coming from underneath, it knows
that the physical keyboard has become active and thus sends a stop signal to
the DK driver. However, a completed IRP does not just climb up the driver stack
by itself. Kshadow registers one of its functions as an IoCompletion routine for
an IRP, before passing it down the driver stack. When the IRP is complete, the
IoCompletion routines of all higher-level drivers are called in order. When the
IoCompletion routine of Kshadow is invoked, Kshadow marks the end of the
time windows of inactivity and DK driver stops sending emulated keystrokes to
dprocess.

2.4 First and Second Order Detection

First order detection of a keylogger happens when the malware attempts to
intercept keystrokes and is detected in the act. Second order detection refers
to detection at a time that postdates the keystroke interception mounted by a
keylogger. As we discuss later on in this paper, our approach can attain first
order detection of various forms of keyloggers. Nevertheless, its main strength is
in second order detection of keyloggers. When we started this research, our goal
was to deliver effective second order detection. First order detection is primarily
consequential, and was noticed mostly during the practical tests against live
malware. We base this work on a simple observation: keyloggers intercept data
for attackers to use. Of course, not all intercepted data will be used, but some
of those data will. In fact, malicious use of intercepted data is the reason behind
the very existence of keyloggers.

The idea that underpins this work is to use a decoy keyboard to generate
emulated and hence decoy keystrokes for keyloggers to intercept. Keyloggers
commonly encrypt the data they intercept on a compromised computer, and
then send those data to the attacker over the network. Furthermore, keyloggers
commonly come as one of the modules of larger malware. Other modules open
up backdoors into the compromised computer, and enable the attacker to access
any resources. Yet other modules intercept filesystem traffic, spy on a user over
the webcam, or authenticate to other computers using stolen credentials. The
malware are detected when they use decoy data leaked by the decoy keyboard.
In our prior work we have created decoy network services, which require authen-
tication. In this case, we need to leak an account by using the decoy keyboard
to make it appear as if a user is typing his or her username and password to
authenticate to those services.
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More specifically, we have explored a decoy network interface card (DNIC),
which makes a computer appear to have access to an internal network [42]. Nei-
ther the DNIC nor the internal network exist for real. Furthermore, they are
both masked to the user, consequently the user does not see and hence does not
access them. We have developed an Object Linking and Embedding (OLE) for
Process Control (OPC) server, which provides power grid data after authenti-
cating the client. All of these decoys are implemented in the kernel, therefore no
network packet ever leaves the computer for real. The decoy keyboard leaks an
OPC server account, which includes the IP address of the server computer, the
name of the OPC server, and of course username and password. The IP address
in question is reachable over the imaginary network. Once malware intercepts
the OPC server account from the decoy keyboard and thus uses it to access the
OPC server over the DNIC, we attain second order detection.

Another example involves the leakage of credentials that provide access to a
virtual private network (VPN), which is reachable only over the DNIC. VPNs
are of particular interest to attackers, since they commonly lead to protected
resources. For instance, the BlackEnergy malware that compromised a regional
power distribution company in Ukraine was able to access electrical substation
networks through a VPN and using stolen VPN credentials. We can display an
imaginary VPN over the DNIC. The imaginary VPN is accessible via credentials
leaked by the decoy keyboard, leading to an unequivocal second order detection.
It is of paramount importance to this work that the attacker does not discard
the data that the keylogger had intercepted from the decoy keyboard. This is
why the model of human keystroke dynamics, which we discussed earlier in this
paper, is so critical to this work. If we can leak data in a way that resembles
those produced by a real keyboard, we give the attacker no reason not to use
the decoy data. For consistency reasons, the decoy keyboard can provide decoy
non-sensitive data for other decoy processes. For example, the decoy keyboard
can fill a webform through a decoy web browser process.

3 Evaluation

The decoy keyboard approach was installed and run on a 64-bit Windows 10
virtual machine in our lab. The lab was isolated both logically and physically
from any physical computer networks. Firstly, we tested the ability of the decoy
keyboard to co-exist with a real keyboard. We simply used a computer equipped
with a decoy keyboard for several days to do our usual work. We paid attention
to all details related to the keyboard use. We observed no visible delays when
typing on the physical keyboard. There were numerous periods of keyboard inac-
tivity, in which we were away from the computer. The logs show that the decoy
keyboard had been in operation multiple times, however we saw no anomalies
with the use of the real keyboard when we returned to work on the computer.
The only observable was that the screen saver and the power saving mode ap-
peared to be affected by the operation of the decoy keyboard. As a dprocess
requests keystrokes, and the DK driver generates them, normal computer activ-
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Fig. 5. I/O filtering overhead while the physical keyboard is in use.

ity is created, consequently Windows assumes that there is a user working on
the computer.

The delay in IRP processing caused by Kshadow, as the user types on the
physical keyboard, is characterized by the data of Figure 5. The lower chart
indicates the delays that occur when Kshadow passes the IRPs down the driver
stack as soon as they arrive. This graph is given solely for comparison reasons.
The higher graph shows the delays when Kshadow works to determine if a time
window of inactivity has begun. The greater delays are due to Kshadow register-
ing one of its functions as an IoCompletion routine, acquiring high-resolution
time stamps to measure time intervals, and retrieving the process ID for the
thread that originally requested to read a keystroke. Other overhead is due to
starting and maintaining a kernel thread.

The delays caused by the overall approach when a user returns to his or her
workplace and presses a key on the keyboard are given in Figure 6. This is the
situation in which the decoy keyboard has been operating for some time, and
now the user needs the physical keyboard back in operation. The data pertain
to 10 separate occurrences of the aforementioned situation. The lower chart
shows the delays that occur when the DK driver is able to respond to the stop

signal immediately. This only happens when the DK driver is not emulating
keystrokes, and dprocess does not exist or is suspended and hence is not reading
keystrokes. Otherwise the DK driver needs some time to wrap up its keystroke
emulation, halt dprocess, and altogether get out of the way. The duration of these
finalizations depends on the data that the decoy keyboard is leaking through the
attack surface and hence may vary. There is also some delay occurring when the
keyboard transitions in the opposite direction, namely from physical to decoy.
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Fig. 6. Decoy-to-physical transition overhead.

Nevertheless, the user is not affected, since he or she is not typing on the physical
keyboard at that time.

We examined the arrival times of keystrokes in user space for the purpose of
testing the statistical model. Without incorporating the model in the DK driver,
keystrokes arrive at an almost constant rate. The delay between any two keys
is the same, and quite minimal. Clearly this is an obvious indication that the
keyboard is a decoy. With the statistical model in use within the DK driver, the
keystrokes arrive at times that match the typing profile of an actual user. We
have not included the corresponding charts due to room limitations.

We now discuss the evaluation of the effectiveness of our approach. We tested
the decoy keyboard against live malware. The malware corpus was comprised of
samples that were obtained from public malware repositories, namely Open Mal-
ware, AVCaesar, Kafeine, Contagio, StopMalvertising, and unixfreaxjp. Those
repositories provide malware samples for academic research. The malware sam-
ples were known, and included remote access tools (RATs), worms and trojans,
and also viruses. We used the IDA Pro tool to analyze the malware samples to
the greatest degree that we could in order to identify and remove goodware. We
also did analysis work to identify malware samples that are of the same malware,
but appear different because of polymorphic or metamorphic techniques. At the
end, the malware corpus consisted of 50 malware samples. Most of those mal-
ware samples have a history of involvement in malware campaigns in the recent
years, therefore are valid and pertinent for testing purposes.

Some of the malware samples use keylogger modules that intercept keystrokes
by probing their target keyboard. Those probes resulted in IRPs bound for the
target keyboard. When the decoy keyboard was in operation, the malicious IRPs
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Fig. 7. The control panel of QuasarRAT.

reached Kshadow and DK driver, causing a first order detection of the malware.
The other malware samples that escaped first order detection needed to be tested
against second order detection. In that regard, we did not operate the decoy
keyboard against real human attackers on the Internet. We are a University and
thus are not in the position to run real-world cyber operations at this time.
Nevertheless, we tested whether or not the decoy keystrokes were intercepted by
the malware, and the malware subsequently attempted to send those keystrokes
to attackers over the network. If we succeeded in causing malware to attempt to
send decoy data to attackers, then the use of those decoy data by the attackers,
and hence a second order detection of the malware by our approach, is only a
matter of time.

Our testing differed depending on the type of malware. Let us first discuss
the case of RATs. We started with testing the decoy keyboard approach against
QuasarRAT and jRAT, and later realized that they resemble the software archi-
tecture and interception tactics of several other RATs such as Bandook, Ozone,
Poisonivy, and njRAT. These RATs are comprised mainly of two executables, a
client and a server. The server executable is run on a compromised computer,
whereas the client executable is run on the attacker’s machine. The server exe-
cutable performs keylogging, and then sends the data to the client. The client
executable typically presents a graphical user interface (GUI) panel to the at-
tacker, which the attacker uses to select target computers, as well as the oper-
ations to perform on them. A typical control panel is shown in Figure 7. The
keylogger module is selected.

As the decoy keyboard found several time windows of inactivity, it sent
keystrokes to dprocess. The keystrokes were intercepted by the server executable,
which sent them to the client executable. The client executable in turn displayed
the intercepted keystrokes on the GUI panel. The decoy data that were leaked
by the decoy keyboard were now listed on the GUI panel. In the case of the
other malware samples, the testing was challenging as there were no GUI panels
to display the intercepted data. In those cases, we used a kernel debugger to set
breakpoints on instructions of the malware that accessed intercepted keystrokes.
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We dumped the intercepted data on the debugger’s console, and verified that
some of those data were indeed data generated by the DK driver.

In conclusion, all of the samples in the malware corpus intercepted keystrokes
generated by the decoy keyboard, and either sent them to the client executable
running on a computer on the local network, or attempted to send them to
external IP addresses. In the latter case, the network packets were eventually
dropped due to the testbed isolation. There were no false alarms raised, because
no goodware ever requested to read keystrokes after the user went away from
the computer and a decoy keyboard was made active.

4 Related Work

Decoy I/O devices are intrinsically a form of deception, and there has been
a great deal of prior work in the field. Cohen’s Deception Toolkit [9] in 1997
was one of the first publicly available programs designed to deceive and identify
attackers by presenting fake information and vulnerabilities [10]. Honeypots and
honeyfiles, decoy machines and files designed to entice and trap attackers, have
also been explored quite heavily. In 1989, Stoll published a book that detailed
some of the earliest uses of honeypots and honeyfiles as he worked to catch
a hacker that infiltrated the computer systems at Lawrence Berkley National
Laboratory [11]. By presenting attractive yet fake files to the attacker, he was
able to catch them ”in the act,” eventually leading to their arrest. These concepts
have since been applied towards attracting automated software instead of real
people, but the underlying idea remains the same.

A decoy I/O device as presented in this research has two main differences
from existing deception tactics and decoys such as honeypots and honeyfiles.
The first is that it can (and is intended to) be deployed on an active, production
machine, running in the background transparent to the user. The second is that
it is specifically designed to emulate a real I/O device down to the hardware
level, making it as indistinguishable from a real device as the complexity of
the decoy communications allow. A typical honeypot, such as Sebek [12], is a
system designed solely for logging and reporting attacks that presents itself as
a potential target through the activity of a typical system in production use.
However, due to the nature of the design, the honeypot itself cannot be in active
use; any incoming connections are either malicious in nature or from someone
who has stumbled upon it by accident.

Sebek and other high-interaction honeypots will imitate a complete machine,
and thus require the full resources of one, and are expensive to maintain. Low-
interaction honeypots like PhoneyC [13] are designed to only present certain
vulnerable services, and require less resources to operate. In order to operate
multiple honeypots on one physical computer, virtual machines can be utilized,
but malware such as Conficker [14] can detect that they are being run virtually
and change their behavior, or simply avoid the honeypot altogether. Along that
vein, Rowe proposed using fake honeypots as a defensive tactic by making a
standard production machine appear to be a honeypot [15], scaring away any
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would-be attackers by emulating the signatures and anomalies that are typically
associated with honeypots.

Anagnostakis et al. proposed a hybrid technique called a ”shadow honey-
pot” [16] that utilizes actual production applications with embedded honeypot
code. Incoming connections are first filtered through an anomaly detection pro-
cess, which will redirect possible malicious traffic to the shadow honeypot, and
normal traffic to the standard server. However, the shadow honeypot is running
the same server application with the same internal state, with the added honey-
pot code serving to analyze the behavior of the request. The shadow honeypot
can then send valid requests to the real server, and any change in state from ma-
licious activity is thrown out. Spitzner discussed the issue of insider threats [17],
and how they target actual information that they can use, thus the honeypot
could provide fake data that appears attractive. This data could be business doc-
uments, passwords, and so on, and would be a ”honeytoken” designed to redirect
the attacker to the honeypot. This is similar to the research presented here in
that fake data attracts an attacker to the decoy I/O device, but is on an entirely
different scale and still requires a high-interaction honeypot to implement.

The honeytokens proposed by Spitzner are a type of honeyfile, a concept
explored by Yuill et al. [18] which are commonly used on honeypots but have
also been placed on systems in actual use. Software can then analyze traffic to
and from the files with the assumption that any activity is malicious in nature,
as those files are not in use by legitimate applications. This concept of a Canary
File, or a honeyfile placed amongst real files on a system, was proposed by
Whitman [19], and he also discusses the automatic generation and management
of the Canary Files. However, the content of automatically generated files is
difficult to present as authentic upon inspection, and malware that resides at
the operating system level is able to examine file access patterns to ignore files
that are not being used.

5 Conclusion

The decoy keyboard is a novel anti-malware approach that is transparent to
both normal users and attackers. The approach requires no prior knowledge of
malware code and data structures to be able to detect them, and can oper-
ate on computers in production. The filter driver is able to shadow a physical
keyboard. It can reliably guide a low-level deceptive driver in the generation of
decoy keystrokes for malware to intercept. The decoy keystrokes are delivered to
malware according to a timing model that makes both the decoy data and their
delivery quite consistent with the behavior of a physical keyboard. The decoy
keyboard is safe to operate, and does not interfere with the user’s work. The
decoy keyboard showed to be effective against a large malware corpus, attaining
approximated second order detections and some first order detections as well.
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Appendix A: Malware Detection

Current malware detection (including keyloggers) is based on both static and dy-
namic analysis. Malware detection through static analysis consists of scanning
an executable file for specific strings or instruction sequences that are unique to
a specific malware sample [21, 2, 1]. This is a primary type of detection employed
by commercial anti-virus software packages; in addition to simply scanning files
present on a computer, the keyboard and other device stacks are inspected and
interceptions by known malware are flagged and reported, but lists of known sig-
natures must be kept and frequently updated. The main limitation of the static
analysis techniques is that malware can change its appearance by means of poly-
morphism, metamorphism, and code obfuscation. Other static analysis research
focused on higher-order properties of executable files, such as the distribution
of character n-grams [22, 23], control flow graphs [24, 25], semantic characteris-
tics [4], and function recognition [26–28]. Dynamic analysis is another field of
ongoing research that studies the execution flow of a malware binary using meth-
ods such as function call monitoring and information flow tracking [5]. Tools like
Detours [6] allow an analyst to hook into the function calls of a piece of malware
and execute their own code for investigative purposes before returning control
to the original program. This type of hook can be performed on binary files
located on disk as well as by modifying the memory space of a currently running
process. Using these techniques, researchers are able to learn various indicators,
which are then used to detect that malware. Detection indicators include disk
access patterns [29], malspecs [30], sequences of system calls and system call
parameters [31], and behavior graphs [32].

All of these methods are rooted in and constrained by the concept of an-
alyzing existing malware. The main advantage and differentiator of the decoy
keyboard approach over such a large body of malware detection research is that
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a decoy keyboard does not require any prior analysis of a malware sample in
order to detect it. A decoy keyboard can detect malware encountered for the
very first time, whereas the techniques from the mentioned large body of mal-
ware detection research require that an instance of malware be given to them as
input for analysis. A specific instance of the malware needs to be detected by
other means – someone has to provide the malicious code, along with an explicit
and validated statement that it is malware. Those techniques will then be used
to analyze the program, which at that time is known to be malware, and thus
will learn indicators such as those discussed in the previous paragraph. Those
indicators are subsequently used to detect other instances of the malware. This
introduces a period of time between the release and discovery of new malware
and the update of any software to protect against it during which targeted sys-
tems are vulnerable. Additionally, kernel-based malware has such a degree of
access to the system and underlying processes that it may very well be able to
find and circumvent any installed security software.

Some work has been done to counteract the deficiencies of static and dynamic
analysis by using machine learning techniques such as behavioral clustering [7]
and classification [8], but the accuracy of these techniques is dependent on the
quality of the training set; malware that is significantly different in operation
from the majority may still manage to evade detection.


