
HAL Id: hal-01684362
https://inria.hal.science/hal-01684362

Submitted on 15 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Firewall Policies Provisioning Through SDN in the
Cloud

Nora Cuppens, Salaheddine Zerkane, Yanhuang Li, David Espes, Philippe Le
Parc, Frédéric Cuppens

To cite this version:
Nora Cuppens, Salaheddine Zerkane, Yanhuang Li, David Espes, Philippe Le Parc, et al.. Firewall
Policies Provisioning Through SDN in the Cloud. 31th IFIP Annual Conference on Data and Ap-
plications Security and Privacy (DBSEC), Jul 2017, Philadelphia, PA, United States. pp.293-310,
�10.1007/978-3-319-61176-1_16�. �hal-01684362�

https://inria.hal.science/hal-01684362
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Firewall Policies Provisioning through SDN in
the Cloud

Nora Cuppens1, Salaheddine Zerkane123, Yanhuang Li1, David Espes23,
Philippe Le Parc23, and Frédéric Cuppens12

1 IMT Atlantique, 2 Rue de la Chataigneraie, 35510 Cesson-Sevigne, France
2 BCOM, 1219 Avenue des Champs Blancs, 35510 Cesson-Sevigne, France

3 Université de Bretagne Occidentale, Lab-STICC, 20 Avenue Le Gorgeu, 29200
Brest, France

Abstract. The evolution of the digital world drives cloud computing
to be a key infrastructure for data and services. This breakthrough is
transforming Software Defined Networking into the cloud infrastructure
backbone because of its advantages such as programmability, abstraction
and flexibility. As a result, many cloud providers select SDN as a cloud
network service and offer it to their customers. However, due to the rising
number of network cloud providers and their security offers, network
cloud customers strive to find the best provider candidate who satisfies
their security requirements. In this context, we propose a negotiation and
an enforcement framework for SDN firewall policies provisioning. Our
solution enables customers and SDN providers to express their firewall
policies and to negotiate them via an orchestrator. Then, it reinforces
these security requirements using the holistic view of the SDN controllers
and it deploys the generated firewall rules into the network elements. We
evaluate the performance of the solution and demonstrate its advantages.

Keywords: Security Policies, Software Defined Networking, Cloud Com-
puting, Orchestration, Firewall, OpenFlow, Service Providers, ABAC

We implement our solution into an existing SDN Firewall solution by en-
hancing its orchestration layer. Then, we deploy a use case for our proposition
in an SDN infrastructure. The scenario compounds a NSC and 3 different NSPs.
Each provider delivers a type of SDN firewall whether it is a stateful proactive
SDN firewall [36], a stateful reactive SDN firewall [37] or a stateless SDN fire-
wall [16], [31]. All the peers express their firewall policies using our language.
The Orchestrator mediates between them, selects the best provider and runs a
negotiation process in order to reach a mutual agreement with the customer.
Afterwards, it sends the contract to the chosen firewall service. The latter in-
terprets it into OpenFlow [1], [12], [25] rules and installs them in the network
elements. We evaluate the performance of our framework by setting a test-bed
for the aforementioned scenario.

The rest of the paper is organized as follows: Section 1 reviews existing pro-
posals on policy-related solutions. Section 2 describes the formalism and all the

2 Nora Cuppens et al.

processes from policy expression till the interpretation process of the firewall
policies into OpenFlow rules and their deployment. Section 3 presents the inte-
gration of our solution into an existing SDN firewall environment and its per-
formance experimentation results. Section 4 concludes the paper and outlines
future work.

1 Related Work

The literature lacks of propositions that integrate to SDN security applica-
tions (especially SDN firewalls) firewall policy provisioning in the orchestration
layer. There is an open research field on the subject in terms of SDN as a ser-
vice and firewall policies orchestration in the cloud. To the extent of our stud-
ies the majority of SDN security solutions do not support negotiation between
firewall policies, neither propose mutual agreement processes between providers
nor reinforcement function of the client-provider agreement. CloudWatcher [32],
FRESCO[33],[13] and OpenSec [17] are three famous SDN propositions that rely
on specific policy script languages. They lack interoperability and openness since
they are plateform specific. In addition, they do not integrate a policy manage-
ment process in order to interact with the cloud level. Other solutions focus on
policy expression and enforcement. Tang et al. [34] develop a service oriented
high level policy language to specify network service provisioning between end
nodes. Batista et al. [2] propose the PonderFlow, an extension of Ponder [9]
language to OpenFlow network policy specification. EnforSDN [3] proposes a
management process that exploits SDN principles in order to separate the policy
resolution layer from the policy enforcement layer in network service appliances.
The concept improve the enforcement management, network utilization and com-
munication latency, without compromising network policies. However, it can not
handle stateful security applications like stateful firewalls.

Many solutions have been proposed for selecting NSP in the cloud. There
are two trends in the literature. The major one focusses on NSC’s security re-
quirements without taking into consideration NSP’s constraints. [18],[23] define
the selection strategy exclusively on NSC’s capacity. Bernsmed et al. [4] present
a security SLA (Service Level Agreement) framework for cloud computing to
help potential NCSs to identify necessary protection mechanisms and facilitate
automatic service composition. In [6], different virtual resource orchestration
constraints are resumed and expressed by Attribute-Based Paradigm from NSC
perspective. The other trend which is part of our work takes into consideration
NSP capacities and offers in order to perform the selection. In [20], both NSP
and NSC can express security requirements in SLA contract then these security
requirements are transformed to OrBAC [15] policies. Li et al. [21] proposes a
method to measure the similarity between security policies and suggest using
the solution in SP selection process.

Most of the work in the literature define security policies negotiation based on
access control negotiation. The literature is classified in 3 types of negotiations:
(1) negotiation with no constraints, (2) negotiation with global constraints, (3)

Firewall Policies Provisioning through SDN 3

negotiation with local constraints [11]. For example, [5] examines the problem
of negotiating a shared access state, assuming all negotiators use the RBAC [30]
policy model. Based on a mathematical framework, negotiation is modeled as
a Semiring-based Constraint Satisfaction Problem (SCSP) [7]. In [35], authors
argue that the guidance provided by constraints is not enough to bring practical
solutions for automatic negotiation. Thus, they define an access control policy
language which is based on Datalog [14] with constraints and the language can
be used to define formal semantics of XACML [28]. Towards the need for human
consent in organizational settings, Mehregan et al. [22] develop an extension
of Relationship-Based Access Control (ReBAC) model [10] to support multiple
ownership, in which a policy negotiation protocol is in place for co-owners to
come up with and give consent to an access control policy. Some autors consider
security policy negotiation as a process of contract establishment. For example,
Li et al. [19] propose to integrate policy negotiation in contract negotiation
by introducing bargaining process. An extension of the negotiation model is
proposed in [29] and the model is designed for privacy policy negotiation in
mobile health-Cloud environments. In our work we combine the 3 negotiation
types and adapt them to negotiate SDN firewall policies in the cloud.

Our solution fills the aforementioned gaps. It meets key-functional require-
ments for user-centric clouds as (1) it addresses the firewall service configuration
at the management layer. (2) it offers a language for firewall policies expression.
(3) It supports multiple policy models in order to translate attribute-based se-
curity expression to concrete policies. (4) It selects the best SDN Firewall NSP.
(5) It provides a negotiation protocol for NSC and NSP based on 3 types of
negotiations. (6) it establishes a service level agreement between NSC and NSP.
(7) It reinforces the contract according to SDN infrastructure configuration. (8)
Then, it interprets it into OpenFlow rules and deploys them inside the network.
To the best of our knowledge, there is no method in the literature that considers
all these points together.

2 SDN firewall policy provisioning model

Both NSC and NSPs specify their firewall policies using our proposed expres-
sion Language. Then the Orchestrator assesses the expressions by comparing
NSP’s service templates with NSC’s policies after receiving them. It ranks the
NSPs and selects the best one which fulfills the most NSC’s requirements. It
starts a negotiation process with NSC in the case it is necessary. A successful
negotiation generates a firewall policy agreement. This contract is derived from
high-level firewall policies and sent to the chosen SDN firewall service. The latter
reinforces the received policies according to its view (topology, previous security
policies and other network configurations) and translates them into OpenFlow
rules. Afterwards, it sends the OpenFlow rules to the SDN controllers. Each one
of them deploys the received OpenFlow rules on its network elements.

4 Nora Cuppens et al.

2.1 Scenario Description

We introduce a use case to experiment our concept. The subjects involved
in the scenario are NSC, SDN orchestrator and 3 NSPs. NSC requires an SDN
Firewall service that meets its firewall policies (Requirements). Each NSP pro-
vides a type of SDN firewalls and a set of firewall policies (Obligations). The
three SDN firewall services are as follows:

1. NSP1: SDN Reactive Stateful Firewall [37]. It forwards systematically
all the packets to the stateful firewall Application over the SDN controller.
The application verifies each packet using its access control table and reacts
to these network events by installing the proper stateful firewall OpenFlow
rules in the Network Elements. It relies on the Finite State Machine of all
the connections. This service spares Network elements resources. However,
it shifts the computing and memory loads on the controller. As a result, the
latter became vulnerable to some DDoS attacks.

2. NSP2: SDN Proactive Stateful Firewall [36]. The service is based on a
white list approach. It closes all the accesses and opens only the routes to the
authorized connections while tracking their states. The service pre-installs
all the Stateful firewall OpenFlow rules in the Network Elements. The latter
sends each time a copy of their events to the Firewall service. The proactive
service protects against DDoS attacks. It delegates also the access control to
the Network Elements.

3. NSP3: Stateless SDN Firewall [16],[31]. The service does not track the
connections states and it is vulnerable to DDoS attacks. However it consumes
fewer resources in the Network Elements and in the Controller comparing
with the above services.

2.2 Expression of Firewall Policies

We propose an SDN firewall policy language to homogenize NSP’s obligations
and NSC’s requirements. The proposed language is inspired from the Attribute-
Based Access Control Model (ABAC) [8]. It allows expressing firewall policies
based on a common template. These unification guarantees the interoperability
between the Obligations and the Requirements. The grammar of our language
is as follows:
Π is the set of all the firewall policies. It describes the access controls within
the dynamic environment of the allocated cloud resources: Π = {π1, π2, ..., πm}
where πi=1..m are firewall policies.
Θ is a set of Obligations. It encompasses all the firewall policies of Π expressed
by NSPs. Θ = {θ1, θ2, ..., θk}
Φ is a set of Requirements. It encompasses all the firewall policies of Π expressed
by NSC. Φ = {φ1, φ2, ..., φj}
Where Π = Θ ∪ Φ and πi=1..m ≡ θi=1..k ∨ φi=1..j

Each firewall policy πi is formed by many atomic elements εi=1..n :
πi=1..m ≡ ε1 ∧ ε2 ∧ ... ∧ εn

Firewall Policies Provisioning through SDN 5

εi=1..n is defined by a preposition of predicates. Each predicates defines a pro-
priety of the element.

Theorem 1. A(εi) and B(εi) are two predicates defining εi proprieties. Predi-
cates equivalence is determined by the preposition : A(εi) ∈ Ω,B(εi) ∈ Ψ | (Ψ =
Ω)→ (A(εi) ≡ B(εi)).

The atomic rule element εi=1..n is formed by the following predicates :

1. Type: type(εi) ≡ subject(εi) ∨ action(εi) ∨ object(εi) ∨ context(εi)
2. Domain: domain(type(εi)) ∈ {protocol, time...}. Domain restricts the unit

of an element.

3. Value: value(type(εi)) ≡ variable(type(εi)) ∨ non-variable(type(εi)).
variable has not an assigned value while non-variable has an already as-
signed value. Both variable and non-variable can be assigned by three kinds
of data types:

(a) constant: numeric or semantic value, ex. value(type(εi)) = TCP .

(b) interval: numeric interval, ex. value(type(εi)) = [8 : 00, 20 : 00]

(c) set: a collection of values, ex. value(type(εi)) = {15 : 00, 16 : 00}

For simplification, we use xi to present a variable, xi ≡ variable(type(εi))
4. Scope: it defines the access to the values of a variable. It can be:

(a) Public preference: pubpre(xi) a public preference variable is accessi-
ble as public information.

(b) Private preference: pripre(xi) a private preference variable is a local
configuration that can not be disclosed.

If context is not specified in a policy we add a universal context element >. It
indicates that all the obligations for the context are acceptable.
(context(εi) ≡ >)→ ((domain(context(εi)) ≡ >) ∧ (value(context(εi)) ≡ >))
Finally we write:
εi ≡ type(εi) ∧ domain(type(εi)) ∧ value(type(εi)) ∧ (pubpre(xi) ∨ pripre(xi))
When the scope is not defined: εi ≡ type(εi)∧domain(type(εi))∧value(type(εi))
The firewall policies given in 2.1 using our language are defined in Table 1.

2.3 Assessment of Firewall Policies

The assessment of firewall policies is based on matching the Obligations with
the Requirements in order to determine which NSPs’ policies satisfies NSC’s
requests. This process depends on two level of relationships. Element-Element
relation which relies on corresponding the predicates of the firewall policies ele-
ments. The second level (Policy-Policy relation) focuses on finding the relation-
ships between the matched elements.

6 Nora Cuppens et al.

Table 1. Firewall Policy Expression for NSC, NSP1, NSP2 and NSP3

NSC

φ1

element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol time

value {NSC, NSP} pass
{HTTP, TCP,

ICMP} [0:00,24:00]

φ2

element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol connection exc

value {NSC, NSP} x2 TCP
TCP failed Time

>30

Scope -
pripre ({quarantine,

block, alert}) - -

φ3

Element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol attack detection
value {NSC, NSP} block ICMP DoS detection

NSP1

θ1
element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol time
value NSP x2 x3 x4

Scope -
pubpre({pass,

block})
pubpre({HTTP,
TCP, ICMP}) >

θ2
element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol connection exc
value NSP x2 x3 x4

Scope -
pripre({block,

alert})

pubpre({TCP,
HTTP, SSH,

ICMP})
>

NSP2

θ1 (same policy as NSP1)
θ2 (same policy as NSP1)

θ3
Element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol attack detection
value NSP block x3 x4

Scope - -
pubpre({HTTP,

TCP,SSH,
ICMP})

pubpre(
{Poisoning,

DoS detection})

NSP3

θ1 (same policy as NSP1)
θ4

element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation IP address >
value NSP x2 x3 x4

Scope -
pubpre({pass,

block}) > >

Firewall Policies Provisioning through SDN 7

Element-Element relation. There are five relations between the elements:

1. inconsistent: (type(εi) 6≡ type(εj)) → (εi a` εj). If two rule elements εi
and εj have not equivalent type predicates then they are in inconsistent
relation denoted: εi a` εj . For example, in Table 1, φ1.ε1 a` θ1.ε2 because
subject(φ1.ε1) 6≡ action(θ1.ε2)

Theorem 2. Not equivalence of type is defined as follows:
type(εi) ∈ Ω, type(εj) ∈ Ψ | ((Ω 6⊆ Ψ) ∧ (Ψ 6⊆ Ω))→ (type(εi) 6≡ type(εj))

2. comparable: ((type(εi) ≡ type(εj))∧ (domain(εi) ∼= domain(εj)))→ (εi ∼
εj). If two rule elements εi and εj have equivalent type predicates and their
domain predicates are in congruence, then they are in comparable relation. It
is denoted with εi ∼ εj . For example, in Table 1, φ1.ε2 ∼ θ1.ε2 because their
subject predicates are equivalent and their domain predicates are congruent.

Theorem 3. Domain congruence is defined as follows:
domain(εi) ∈ Ω, domain(εj) ∈ Ψ | ((Ω ⊆ Ψ) ∨ (Ψ ⊆ Ω)) → (domain(εi) ∼=
domain(εj))

3. equal: ((εi ∼ εj) ∧ (value(type(εi)) ∼= value(type(εj)))) → (εi = εj). If
two rule elements εi and εj are comparable and their values predicates are
in congruence, then they are in equal relation denoted with εi = εj . For
example, in Table 1, φ2.ε3 = θ3.ε3 because both elements are comparable
and their value predicates are congruent ({TCP} ⊆ {HTTP, TCP, SSH,
ICMP}).

Theorem 4. Value congruence is defined as follows:
value(type(εi)) ∈ Ω, value(type(εj)) ∈ Ψ |
((Ω ⊆ Ψ) ∨ (Ψ ⊆ Ω))→ (value(type(εi)) ∼= value(type(εj)))

4. unequal: ((εi ∼ εj) ∧ (value(type(εi)) 6≡ value(type(εj)))) → (εi 6= εj).
If two rule elements εi and εj are comparable but do not have equivalent
value, they are in unequal relation denoted with εi 6= εj . For example, in
Table 1, φ1.ε2 6= θ3.ε2 because both are comparable however they have not
equivalent values (pass 6≡ block).

Theorem 5. Not equivalence of value is defined as follows:
type(εi) ∈ Ω, type(εj) ∈ Ψ | ((Ω 6⊆ Ψ) ∧ (Ψ 6⊆ Ω)) → (value(type(εi)) 6≡
value(type(εj)))

5. incomparable: ((type(εi) ∼= type(εj)) ∧ (domain(εi) 6≡ domain(εj))) →
(εi � εj). If two rule elements εi and εj have equivalent type predicates
and not equivalent domain predicate, then they have incomparable rela-
tion denoted with εi � εj . For example, in Table 1, φ1.ε3 � θ4.ε3 because
they have congruent type predicates but their domains are not equivalent
(protocol 6≡ IP address).

Theorem 6. Congruence of type is defined as follows:
type(εi) ∈ Ω, type(εj) ∈ Ψ | ((Ω ⊆ Ψ) ∨ (Ψ ⊆ Ω))→ (type(εi) ∼= type(εj))

8 Nora Cuppens et al.

Policy-Policy relations. We derive from Element-Element relations, three
relations between policies. These relations are as follows:

1. match: (P 1 ∧ P 2 ∧ ... ∧ Pn)→ (πα ./ πβ)
Pi ≡ ((πα.εi = πβ .ε1) ∨ ... ∨ (πα.εi = πβ .εn)) | πα, πβ ∈ Π, i = 1..n
If any element of a policy α is in equal relation with another element of a
policy β, then the two policies are in match relation denoted with πα ./ πβ .
For example, in Table 1, φ3 ./ θ3 because (φ3.ε1 = θ3.ε1)∧ (φ3.ε2 = θ3.ε2)∧
(φ3.ε3 = θ3.ε3) ∧ (φ3.ε4 = θ3.ε4).

2. mismatch: ∃εi∃εj(πα.εi � πβ .εj)→ (πα � πβ) | πα, πβ ∈ Π. If there are at
least incomparable elements εi and εj from two policies πα and πβ , then the
two policies have mismatch relation denoted with πα � πβ . For example, in
Table 1, φ3 � θ2 because φ3.ε4 � θ2.ε4.

3. potential match: ((∀εi∀εj(πα.εi ∼ πβ .εj)) ∧ (∃εk∃εl(πα.εk 6= πβ .εl))) →
(πα ∝ πβ) | πα, πβ ∈ Π. If all the elements of the policies πα and πβ are
comparable but it exists at least an unequal relation between two of their
respective elements then the two policies are in a potential match relation
denoted πα ∝ πβ . For example, in Table 1, φ1 ∝ θ1 because ((φ1.ε1 ∼
θ1.ε1)∧ (φ1.ε2 ∼ θ1.ε2)∧ (φ1.ε3 ∼ θ1.ε3)∧ (φ1.ε4 ∼ θ1.ε4))∧ (φ1.ε1 6= θ1.ε1).

NSP Ranking. The orchestrator ranks each NSP based on the relations be-
tween the Requirements and the Obligations (see Section 2.3). This process
enables selecting the most compliant NSP according to the algorithm 1.

2.4 Establishment of contract

Negotiation Protocol. When an agreement is not reached between the peers,
the orchestrator negotiates the offers of the chosen NSP with NSC. We propose
the Rule-Element Based Negotiation Protocol (RENP) in order to manage the
negotiation process. Our protocol specifies for each element the next action re-
garding the proposed values (vrec) of NSP and the local configuration (vloc) of
NSC. The protocol contains three types of actions:

1. accept: it indicates that the proposed value is agreed.
2. refuse: it indicate that the proposed value is aborted.
3. propose: It generates a counter-offer .

Table 4 in the Appendix presents the detail of RENP protocol. (vp) is the pro-
posed variable upon negotiation. The results of the assessment and negotiation
processes for the example defined in Section 2.1 are as follows. The orchestrator
finds potential match relations between the pairs: (φ1, θ1), (φ2, θ2) and (φ3, θ3).
NSP1 does not meet the firewall requirement of φ3 and NSP3 does not fulfill φ2
and φ3. As a consequence, the resulting relations are mismatch. The orchestrator
puts NSP2 into the ranking list.

The orchestrator conducts then policy negotiation with NSC on behalf of
NSP2. It accepts the obligations θ1 for φ1 and θ3 for φ3. However, it proposes

Firewall Policies Provisioning through SDN 9

Algorithm 1 NSP Ranking

1: rank list is Empty {Initial ranking list is Empty}
2: for All NSPs do
3: rank ← 0 {Default ranking value}
4: matching ← True {To make sure that there are only matches for Gold ranking}

5: for i=0, i≤Length(Requirement), i++ do
6: for j=0, j≤Length(Obligation), j++ do
7: if Match(Requirement[i], Obligation[j]) = True then
8: rank ← 2
9: Break

10: else if Potential Match(Requirement[i], Obligation[j]) = True then
11: rank ← 1
12: matching ← False
13: Break
14: else if Mismatch(Requirement[i], Obligation[j]) = True then
15: matching ← False
16: end if
17: end for
18: if rank = 0 then
19: Break
20: end if
21: end for
22: if (rank = 2) and (matching = True) then
23: Add (rank list, (NSP, NSPgold)){Tag NSP as NSP gold and add it to the

ranking list}
24: else if rank = 1 then
25: Add (rank list, (NSP ,NSPsilver)){Tag NSP as NSP silver and add it to the

ranking list}
26: else
27: print NSP is not compliant with NSC, it will not be add to the ranking list
28: end if
29: end for
30: return rank list

a counter offer for φ2. This case corresponds to column 5 in row 4 of table 4
because the received value (in φ2) vprec : quarantine has no intersection with
pripreloc : {block, alert} (in θ2). Thus, the orchestrator chooses another value
= block in pripreloc as a new proposition. After receiving the proposition, NSC
accepts the new value because block belongs to the local private configuration
of φ2. Then the orchestrator establishes the contract between NSC and NSP2
(Table 2).

General Agreement. Algorithm 2 illustrates the contract building process
conducted by the orchestrator. It chooses the NSPtop in the top of rank list.
The orchestrator accepts directly without negotiation NSPgold and establishes
contract with NSC. While for NSPsilver, it starts a negotiation process with
NSC by executing the proposed negotiation protocol (see Table 4). It transforms
potential match relations into match relations. If the negotiation fails NSP is
deleted from rank list and the negotiation process is re-conducted.

10 Nora Cuppens et al.

Algorithm 2 Establishment of contract

1: rank list← call (NSP Ranking) {Making NSP Ranking List}
2: while NSP in rank list do
3: Best NSP = NSPtop{Choose NSPtop from rank list}
4: if Best NSP is NSPgold then
5: Accept (Best NSP.Obligation()) { Accept NSPtop offer }
6: Contract =Generate Contract (Best NSP,NSC) {Establish contract

with NSC}
7: return
8: else
9: Negociate (Best NSP.Obligation()), NSC.Requirement()) {Start negotia-

tion with NSC}
10: negotiation Result = RENP (potential match) {Execute negotiation proto-

col between potential match rule pairs}
11: if negotiation Result = Accepted then
12: Contract =Generate Contract (NSP,NSC) {Establish contract with

NSC}
13: return
14: else
15: Delete (NSPtop, rank list) { Delete NSPtop from rank list }
16: end if
17: end if
18: end while

Table 2. Final agreement between NSP and SDN Orchestrator

NSC

Policy 1
Element ε1 ε2 ε3 ε4
Type subject action object context

Domain organization firewall operation protocol time

value NSP pass
{HTTP, TCP,

ICMP} [0:00,24:00]

Policy 2
Element ε1 ε2 ε3 ε4
Type subject action object context

Domain organization firewall operation protocol connection exc
value NSP block TCP TCP failed Time>30

Policy 3
Element ε1 ε2 ε3 ε4
Type subject action object context

Domain organization firewall operation protocol attack detection
value NSP block ICMP DoS detection

2.5 Enforcement of Security Policy

Policy Transformation. SDN NSP contains two levels of policy abstraction:
(1) a service level abstraction which defines the business logic. This high level
is expressed by administrators and tenants. (2) An OpenFlow level which inter-
prets the high-level abstraction into infrastructure specific rules. The abstraction
at the service level hides the details of the network configuration and service de-
ployment. It simplifies the expression of the service policies. While the OpenFlow
level ensures deploying the policies into the network elements according to the
network state.

Firewall Policies Provisioning through SDN 11

The orchestrator sends the high level policies to SDN Firewall Applications.
Each one interprets the high level policies into OpenFlow rules and sends them
to the controller.

The interpretation process is based on mapping the elements of the high level
policy model with OpenFlow elements. A high level policy can be interpreted to
more than one OpenFlow rule.

OpenFlow is based on flow rules. Mainly, it structures policies into 6 parts. (1)
OF.Type can be Flow ADD rules, Flow MODIFY rules and Flow DELETE rules.
(2) Matching F ields define the characteristics of the traffic. They describe the
header of a packet in order to identify network flows. (3) Actions specify the oper-
ations on the matched. These actions can be Drop traffic, Forward to controller,
Forward to Port. (4) Timers indicate the lifetime of the rule (Hard Timeout)
or the ejection time if the rule is not matched for a time interval (Idle T imeout).
(5) Metadata can be used to save any extra information. (6) Counters allow to
specify rules based on traffic statistics. Table 3 shows the interpretation of the
final agreement (table 2) into OF rules. We applied the following mappings.

1. Object corresponds to OF Matching F ields. It is the first element which
is mapped to its OF counterparts. The interpretation of the object element
will generate at least an OF rules for each object value.

2. Action of the high level policy corresponds to OF Action Field. OpenFlow
offers also the possibility to express many actions (ACTION List) and to
associate them to the same OF rule. The orchestrator verifies that there is
no contradiction between actions (for example: block and allow) in the same
policy. For example, block corresponds to the OF action: DROP .

3. Context element is mapped to OF components such as TIME OUTs and
OF Counters but also to firewall specific functions. The interpretation to
firewall function triggers a condition in order to execute the OF rule of the
Context. For example, the context: TCP Failed T ime > 30 in Policy2
triggers TCP connection counting function and when it exceeds 30 connec-
tions it installs the corresponding rule for policy2.

4. NSP is mapped to the topology of the service provider. For each link between
the nodes, the interpretation module generates the corresponding OF rules
taking the 3 aforementioned mappings. The OF Matching fields that corre-
spond to the topology are at least IPsrc, IPdst, PORTsrc, and PORTdst. If
the topology is not provided, the Firewall Application installs the OF rules
without specifying the topology matching fields.

5. The default type of OF rule is ADD. The firewall application verifies firstly
that the rule is not a duplicate of a previous interpreted rule by comparing
both matching parts. If only the contexts are different, then the OF rule type
is set to MODIFY . If the firewall application receives from the Controller
an error upon sending a MODIFY rule, the firewall application changes the
MODIFY rule to ADD rule and re-sends it to the controller.

Policy Deployment. The controller opens a secure channel with the data
plane devices (network elements) and communicates by exchanging OpenFlow

12 Nora Cuppens et al.

Table 3. Interpretation of the Final Agreement into OpenFlow Rules

OF Type Matching Field Action Timer
Firewall
Function

Policy 1 ADD
ETH Type=2048
IP Proto=6
DST P=80

Forward
Controller

Idle Timeout=0
Hard Timeout=0

Policy 1 ADD
ETH Type=2048
IP Proto=6

Forward
Controller

Idle Timeout=0
Hard Timeout=0

Policy 1 ADD
ETH Type=2048
IP Proto=1

Forward
Controller

Idle Timeout=0
Hard Timeout=0

Policy 2 MODIFY
ETH Type=2048
IP Proto=6

DROP TCP Count(30)

Policy 3 MODIFY
ETH Type=2048
IP Proto=1

DROP
SNORT.ALERT

=DDOS

messages. Upon receiving OF rules from SDN firewall, the controller sends them
to the corresponding data plane devices which then install the rules. The rules
are parsed and their elements are saved in the Flow tables of the data plane
devices. At this level, the OF rules become Flow entries in the data plane devices.
When the data plane devices receive network packets, they parse their headers
and match the contents with all the matching fields of each flow entry. Once
a matching is found, the corresponding action is executed on the packet. If a
match is not found, the data plane device drops the packet or sends it to the
controller.

3 Evaluation

We implement the proposed solution using Python programming language.
The Framework has an orchestrator layer which integrates the firewall provision-
ing model. In addition, it has a stateful SDN firewall application that executes
the security policies and the finite state machines of stateful network protocols.

We deploy our solution in the B-Secure platform which is a cloud environment
to test the performance of SDN security solutions. It consists of a central machine
(16 Gb of RAM and Intel i7 processors), a data plane device machine (16 Gb of
RAM, Intel i7 processors, 6 physical network interfaces of 1 Gb/s) connected to
the central machine, and two machines (4 Gb of RAM and Intel i3 processors)
connected to the data plane device.

We install the orchestrator, the firewall application and the SDN controller
RYU [24] in the central machine. In the data plane device machine, we run the
OpenVswitch (OVS) [26],[27]. It is a virtual switch framework widely used in
both industry and research. The physical network link between the controller
and the OVS is 1 Gb/s.

In the central machine, we deploy NSC and NSP2 of the use case (see Section
2.1). The orchestrator generates the contract and sends the high level policies to

Firewall Policies Provisioning through SDN 13

the SDN firewall Application. Then the latter interprets the policies to Open-
Flow rules and asks RYU controller to install them on OVS. We vary the number
of NSC’s Requirements from 1 to 2500 policies. We measure the following per-
formance metrics:

1. Policy Processing Time (PPT) is the time that the orchestrator needs to
process the policy expression.

2. Orchestrator Processing Time (OPT) is the total time taken by the orches-
trator from the first policy expression to sending the last policy.

3. Firewall Application Processing Time (FAPT) is the total time taken by the
firewall application to process the policies.

4. Controller Processing Time (CPT) is the total time taken by the controller
to send all the OpenFlow rules.

5. Infrastructure Processing Time (IPT) is the total time that the infrastruc-
ture (Controller-OVS link and OVS) needs to install all the OF rules.

6. Policy Processing Total Time (PPTT) is the total policy provisioning time.
7. Orchestrator Setup Rate (OSR) is the speed of the orchestrator:

OSR = OPT/Number of Policies (1)

8. Firewall Setup Rate (FSR) is the speed of the firewall Application:

FSR = FAPT/Number of Policies (2)

9. Controller Setup Rate (CSR) is the speed of the Controller:

CSR = CPT/Number of Openflow Rules (3)

10. Infrastructure Setup Rate (ISR) is the speed of the Infrastructure:

ISR = IPT/Number of Openflow Rules (4)

Figure 1 and Figure 2 display the different measured processing times during
the experiment. The processing times in all the figures increase with the rise of
rule number. In Figure 1, we observe that PPT increases slowly with a starting
value of 0.00236s for 10 policies to a maximal value of 0.6421s for 2500 policies.
In addition, PPT ’s values are the lowest among all processing times. FAPT
is slightly higher than CPT . Moreover, OPT is slower than both FAPT and
CPT . For example, the values for 2500 policies are : 2.700s, 2.254s and 2.141s.
However, the largest processing times are those of IPT as shown in Figure 2 (
(10, 0.0034s) and (2500, 11.025s)).

The reasons are the amount and nature of the processing that each layer
performs. The orchestrator runs many processes in order to generates the fi-
nal agreement. The firewall application performs the interpretation to OF rules
and the controller deploys the generated OF rules in the network element. The
infrastructure is impacted by the performance of OVS and the data link with
the controller. Our solution accumulates a processing time of 7.96s with 2500
rules, while the infrastructure processing time is 1.5 times higher (2500, 11.02s).

14 Nora Cuppens et al.

0 500 1,000 1,500 2,000 2,500
0

0.5

1

1.5

2

2.5

Number of NSC’s policies

T
im

e
[S

ec
o
n
d
]

PPT

OPT

FAPT

CPT

Fig. 1. Policy processing Times

Around 50% (in Average) of PPTT is taken by the infrastructure to deploy the
rules. For example, for 2500 rules, it takes 18.12s from the time of releasing the
initial policy request in the orchestrator to the time of deployment of the final
OF rule in the network element. 60% of this time is taken by the infrastructure
alone (see Figure 2).

0 500 1,000 1,500 2,000 2,500
0

5

10

15

20

Number of NSC’s policies

IPT

PPTT

Fig. 2. Policy Deployment Times

Figure 3 displays the different policy setup rates in the infrastructure. We ob-
serve 3 different states. In the first state, CSR, FSR, OSR and ISR increase to
reach their top values respectively (100, 5186), (100, 4838), (50, 3150), (10, 2941).
In the second stage, all the rates decrease rapidly. The diminution is linear for
CSR, FSR and OSR while fluctuating for ISR. In the third stage, we observe

Firewall Policies Provisioning through SDN 15

that all the rates reduce with the increase of the number of policies. The rates of
our solution reach a value around 1000 Policies/s at 2500 while ISR continues
to hold lower values. This observation comforts the previous results. ISR low
rates are caused by the load on the link Controller-OVS. We observe that the
orchestrator has lower performance than the firewall application. This observa-
tion consolidates the explanations provided previously. Our solution has good
performances with around 1000 policies/s. In practice, the number of firewall
rules depends on the size of the topology and the granularity of each rule. Fur-
thermore, policies changes do not need the repetition of all the process because
OpenFlow enables to update directly the installed rules.

0 500 1,000 1,500 2,000 2,500
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

Number of NSC Policies

R
a
te

[P
o
li
ci

es
/
S
ec

o
n
d
]

ISR

OSR

FSR

CSR

Fig. 3. Solution’s Policy Rates

4 Conclusion and Perspectives

We propose a solution to express firewall policies, assess NSC’s requirements
with NSPs’ obligations, select the best NSP candidate, negotiate and agree on
a common policy contract then deploy the agreement in a SDN cloud platform.
We integrate and deploy the solution in an existing SDN firewall framework.
Moreover, we evaluate its performance and scalability. The evaluation shows
promising results with a rate of 1000 deployed policies/s.

Our framework brings many advantages. It offers interoperability between
different NSCs and NSPs through a unified language that simplifies administra-
tor’s tasks. It abstracts the complexity of the network by hiding the infrastruc-
ture details. In addition, it automatizes firewall policies orchestration.

In order to improve our solution, we plan to include in the process new
elements such as quality of service, pricing and NSP’s reputation. This improve-
ment will resolve specific cases in our ranking algorithm. For example, the empty
rank list or multiple matching and potential matching NSPs.

16 Nora Cuppens et al.

Acknowledgement

The work of Nora Cuppens and Frédéric Cuppens reported in this paper has been
partially carried out in the SUPERCLOUD project, funded by the European
Unions Horizon 2020 research and innovation programme under grant N643964.

References

1. Adrian Lara, A.K., Ramamurthy, B.: Network innovation using openflow: A survey.
IEEE COMMUNICATIONS SURVEYS & TUTORIALS 16(1), 493–511 (2014)

2. Batista, B., Fernandez, M.: Ponderflow: A policy specification language for open-
flow networks. In: The Thirteenth International Conference on Networks. pp. 204–
209 (2014)

3. Ben-Itzhak, Y., Barabash, K., Cohen, R., Levin, A., Raichstein, E.: Enforsdn:
Network policies enforcement with sdn. In: Integrated Network Management (IM),
2015 IFIP/IEEE International Symposium on. pp. 80–88. IEEE (2015)

4. Bernsmed, K., Jaatun, M.G., Undheim, A.: Security in service level agreements for
cloud computing. In: CLOSER. pp. 636–642 (2011)

5. Bharadwaj, V.G., Baras, J.S.: Towards automated negotiation of access control
policies. In: Policy. pp. 111–119 (2003)

6. Bijon, K., Krishnan, R., Sandhu, R.: Virtual resource orchestration constraints in
cloud infrastructure as a service. In: Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy. pp. 183–194. ACM (2015)

7. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-based csps and valued csps: Frameworks, properties, and comparison.
Constraints 4(3), 199–240 (1999)

8. Chernov, D.V.: Attribute based access control models. Prikladnaya Diskretnaya
Matematika. Supplement pp. 79–82 (2012)

9. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: Policies for Distributed Systems and Networks, pp. 18–38. Springer
(2001)

10. Fong, P.W.: Relationship-based access control: protection model and policy lan-
guage. In: Proceedings of the first ACM conference on Data and application secu-
rity and privacy. pp. 191–202. ACM (2011)

11. Gligor, V.D., Khurana, H., Koleva, R.K., Bharadwaj, V.G., Baras, J.S.: On the
negotiation of access control policies. In: International Workshop on Security Pro-
tocols. pp. 188–201. Springer (2001)

12. Hegr, T., Bohac, L., Uhlir, V., Chlumsky, P.: Openflow deployment and concept
analysis. Advances in Electrical and Electronic Engineering 11(5), 327 (2013)

13. Hu, H., Han, W., Ahn, G.J., Zhao, Z.: Flowguard: building robust firewalls for
software-defined networks. In: Proceedings of the third workshop on Hot topics in
software defined networking. pp. 97–102. ACM (2014)

14. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an interac-
tive tutorial. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data. pp. 1213–1216. ACM (2011)

15. Kalam, A.A.E., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y.,
Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In: Policies
for Distributed Systems and Networks, 2003. Proceedings. POLICY 2003. IEEE
4th International Workshop on. pp. 120–131. IEEE (2003)

Firewall Policies Provisioning through SDN 17

16. Kaur, K., Kaur, S., Gupta, V.: Software defined networking based routing firewall.
In: Computational Techniques in Information and Communication Technologies
(ICCTICT), 2016 International Conference on. pp. 267–269. IEEE (2016)

17. Lara, A., Ramamurthy, B.: Opensec: Policy-based security using software-defined
networking. IEEE Transactions on Network and Service Management 13(1), 30–42
(2016)

18. Leite, A.F., Alves, V., Rodrigues, G.N., Tadonki, C., Eisenbeis, C., de Melo,
A.C.M.A.: Automating resource selection and configuration in inter-clouds through
a software product line method. In: 2015 IEEE 8th International Conference on
Cloud Computing. pp. 726–733. IEEE (2015)

19. Li, Y., Cuppens-Boulahia, N., Crom, J.M., Cuppens, F., Frey, V.: Reaching agree-
ment in security policy negotiation. In: 2014 IEEE 13th International Conference
on Trust, Security and Privacy in Computing and Communications. pp. 98–105.
IEEE (2014)

20. Li, Y., Cuppens-Boulahia, N., Crom, J.M., Cuppens, F., Frey, V.: Expression and
enforcement of security policy for virtual resource allocation in iaas cloud. In: IFIP
International Information Security and Privacy Conference. pp. 105–118. Springer
(2016)

21. Li, Y., Cuppens-Boulahia, N., Crom, J.M., Cuppens, F., Frey, V., Ji, X.: Simi-
larity measure for security policies in service provider selection. In: International
Conference on Information Systems Security. pp. 227–242. Springer (2015)

22. Mehregan, P., Fong, P.W.: Policy negotiation for co-owned resources in
relationship-based access control. In: Proceedings of the 21st ACM on Symposium
on Access Control Models and Technologies. pp. 125–136. ACM (2016)

23. Nathani, A., Chaudhary, S., Somani, G.: Policy based resource allocation in iaas
cloud. Future Generation Computer Systems 28(1), 94–103 (2012)

24. NTT: Component-based software defined networking framework (2017), www.osrg.
github.io/ryu/

25. ONF: Openflow switch specification (December 2014)

26. Pfaff, B., Pettit, J., Amidon, K., Casado, M., Koponen, T., Shenker, S.: Extending
networking into the virtualization layer. In: Hotnets (2009)

27. Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rajahalme, J., Gross,
J., Wang, A., Stringer, J., Shelar, P., et al.: The design and implementation of
open vswitch. In: NSDI. pp. 117–130 (2015)

28. Rissanen, E.: extensible access control markup language (xacml) version 3.0 (com-
mitte specification 01). Tech. rep., Technical report, OASIS, http://docs. oa-
sisopen. org/xacml/3.0/xacml-3.0-core-spec-cd-03-en. pdf (2010)

29. Sadki, S., El Bakkali, H.: An approach for privacy policies negotiation in mobile
health-cloud environments. In: Cloud Technologies and Applications (CloudTech),
2015 International Conference on. pp. 1–6. IEEE (2015)

30. Sandhu, R.S., Coynek, E.J., Feinsteink, H.L., Youmank, C.E.: Role-based access
control models yz. IEEE computer 29(2), 38–47 (1996)

31. Satasiya, D., et al.: Analysis of software defined network firewall (sdf). In: Wireless
Communications, Signal Processing and Networking (WiSPNET), International
Conference on. pp. 228–231. IEEE (2016)

32. Shin, S., Gu, G.: Cloudwatcher: Network security monitoring using openflow in
dynamic cloud networks (or: How to provide security monitoring as a service
in clouds?). In: 2012 20th IEEE international conference on network protocols
(ICNP). pp. 1–6. IEEE (2012)

www.osrg.github.io/ryu/
www.osrg.github.io/ryu/

18 Nora Cuppens et al.

33. Shin, S., Porras, P.A., Yegneswaran, V., Fong, M.W., Gu, G., Tyson, M.: Fresco:
Modular composable security services for software-defined networks. In: NDSS
(2013)

34. Tang, Y., Cheng, G., Xu, Z., Chen, F., Elmansor, K., Wu, Y.: Automatic belief
network modeling via policy inference for sdn fault localization. Journal of Internet
Services and Applications 7(1), 1 (2016)

35. Xue, W., Huai, J., Liu, Y.: Access control policy negotiation for remote hot-
deployed grid services. In: First International Conference on e-Science and Grid
Computing (e-Science’05). pp. 9–pp. IEEE (2005)

36. Zerkane, S., Espes, D., Le Parc, P., Cuppens, F.: A proactive stateful firewall
for software defined networking. In: Risks and Security of Internet and Systems -
11th International Conference, CRiSIS 2016, Roscoff, France, September 5-7, 2016,
Revised Selected Papers. pp. 123–138 (2016)

37. Zerkane, S., Espes, D., Le Parc, P., Cuppens, F.: Software defined networking
reactive stateful firewall. In: ICT Systems Security and Privacy Protection - 31st
IFIP TC 11 International Conference, SEC 2016, Ghent, Belgium, May 30 - June
1, 2016, Proceedings. pp. 119–132 (2016)

A RENP Protocol

Table 4. RENP protocol

vloc
vrec

non
variable

variable
pubpre

variable
pripre

proposed value
(vp)

non
variable

(vrec = vloc)
→ accept(vrec)

(vrec 6= vloc)
→ refuse

({vloc} ⊆ {pubprerec})
→ propose(vloc)

({vloc} * {pubprerec})
→ refuse

propose(vloc) -

variable
pubpre

({vrec} ⊆ {pubpreloc})
→ accept(vrec)

({vrec} * {pubpreloc})
→ refuse

(({pubpreloc} ∩ {pubprerec}) 6= ∅)
→ propose(x)

x = ({pubpreloc} ∩ {pubprerec})

(({pubpreloc} ∩ {pubprerec}) = ∅)
→ refuse

propose(x)
x = pubpreloc

({vprec} ⊆ {pubpreloc})
→ accept(vprec)

({vprec} * {pubpreloc})
→ refuse

variable
pripre

({vrec} ⊆ {pripreloc})
→ accept(vrec)

({vrec} * {pripreloc})
→ refuse

(({pripreloc} ∩ {pubprerec}) 6= ∅)
→ propose(x)

x = ({pripreloc} ∩ {pubprerec})

(({pripreloc} ∩ {pubprerec}) = ∅)
→ refuse

propose(x)
x ∈ {pripreloc}

({vprec} ⊆ {pripreloc})
→ accept(vprec)

((({vprec} ∩ {pripreloc}) = ∅)
∧ ¬negotiate)
→ refuse

((({vprec} ∩ {pripreloc}) = ∅)
∧negotiate)
→ propose(x)
x ∈ {pripreloc}

((({vprec} ∩ {pripreloc}) 6= ∅)
∧({vprec} * {pripreloc})

∧negotiate)
→ propose(x)

x ∈ ({vprec} ∩ {pripreloc})

	Firewall Policies Provisioning through SDN in the Cloud
	Related Work
	SDN firewall policy provisioning model
	Scenario Description
	Expression of Firewall Policies
	Assessment of Firewall Policies
	Element-Element relation.
	Policy-Policy relations.
	NSP Ranking.

	Establishment of contract
	Negotiation Protocol.
	General Agreement.

	Enforcement of Security Policy
	Policy Transformation.
	Policy Deployment.

	Evaluation
	Conclusion and Perspectives
	RENP Protocol

