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Abstract. Elastic net is a popular linear regression tool and has many
important applications, in particular, finding genomic biomarkers for
cancers from gene expression profiles for personalized medicine (elastic
net is currently the most accurate prediction method for this problem).
There is an increasing trend for organizations to store their data (e.g.
gene expression profiles) in an untrusted third-party cloud system in or-
der to leverage both its storage capacity and computational power. Due
to the privacy concern, data must be stored in its encrypted form. While
there are quite a number of privacy-preserving data mining protocols on
encrypted data, there does not exist one for elastic net. In this paper,
we propose the first privacy-preserving elastic net protocol using two
non-colluding servers. Our protocol is able to handle expression profiles
encrypted from multiple medical units using different encryption keys.
Thus, collaboration between multiple medical units are made possible
without jeopardizing the privacy of data records. We formally prove that
our protocol is secure and implemented the protocol. The experimental
results show that our protocol runs reasonably fast, thus can be applied
in practice.

Keywords: privacy-preserving elastic net, multiple encryption keys, en-
crypted gene expression profiles, biomarker discovery

1 Introduction

We motivate our study based on the following biomarker discovery application.
The current cancer treatment based on doctors’ empirical knowledge can be de-
scribed as “one-size-fits-all” - almost all the patients diagnosed with the same
cancer will receive similar treatment. Under this situation, some patients are
likely to be under-treated while others be over-treated. Even worse, not all pa-
tients will benefit from the treatment, a proportion of them may suffer from
severe side effects. By contrast, personalized medicine aims at treating patients
differently with different drugs at the right dose [1]. To achieve personalized
treatment for cancer, we need biomarkers (i.e. a set of genes) to predict a pa-
tient’s response to anticancer drugs (e.g. sensitivity and resistance). With the



advert of bioinformatics technology, we are able to make use of data mining and
statistical methods to discover biomarkers from genomic data. Cancer Genome
Project (CGP) [2] and Cancer Cell Line Encyclopedia (CCLE) [3] are examples
showing the analysis results for discovering biomarkers using genomic features
derived from human tumor samples against drug responses. A typical input for
genomic features is a gene expression profile which is a vector recording the de-
grees of activation of different genes. The number of genes can be up to tens of
thousands. A patient’s response is usually measured by GI50 value (log of drug
concentration for 50% growth inhibition) [4]. Given n gene expression profiles
(e.g. from n patients) of which the dimension is m (n � m), the task is to
perform regression analysis between gene expression profiles and GI50 values.
Elastic net regression was found to be the most accurate predictor [5] among
existing approaches.

Why encrypted by different keys? Due to the huge volume of medical
records and DNA information, there is an increasing trend for medical units to
make use of a third-party cloud system to store the records as well as to leverage
its massive computational power to analyze the data. It is well recognized that
genomic information such as DNA is particularly sensitive and must be well
protected [6]. The privacy of gene expression has been overlooked until Schadt
et al. pointed out that gene contents can be inferred based on expression profiles
alone [7]. Even worse, some expression data is strongly correlated to important
personal indexes such as body mass index and insulin levels. It is likely that an
entire profile can be derived and linked to a specific individual. Therefore, gene
expression profiles stored in cloud should also be encrypted. As medical units
need to retrieve expression profiles when implementing personalized treatment,
profiles from different medical units would be encrypted using different keys to
avoid leaking the details of the records to other medical units.

It is important for different medical units to combine their datasets in order
to increase the size of n (the number of patients) for accurate predication. Collab-
orative data mining on encrypted data is a promising direction for medical units
to “share” data for more accurate prediction without jeopardizing the privacy
of the data. The problem to be tackled in this paper is to design a privacy-
preserving elastic net protocol to predict biomarkers based on gene expression
profiles encrypted by different keys and GI50 values. Our goal is to ensure that
the cloud learns nothing about the patients’ expression profiles beyond what is
revealed by the final result of elastic net regression.

Difficulties of the problem: There is no existing work for elastic net or
lasso (another popular linear regression model) [8] while most of the work was
designed for ordinary least square (OLS) and ridge regression. The difficulty lies
on the fact that unlike solving OLS and ridge regression, the state-of-the-art
solution (e.g. glmnet [9]) for elastic net is based on an iterative algorithm, which
requires information of one training sample in each iteration. It is not clear how to
perform these iterations if all data records are encrypted. Other existing solutions
(e.g. Least Angle Regression (LARS) [10], computing the Euclidean projection



onto a closed convex set [11] and using proximal stochastic dual coordinate
descent [12]) suffer from a similar problem.

Ideas of our proposed solution: Instead of using the iterative algorithms
to solve the elastic net problem directly, it has been proved that elastic net
regression can be reduced to support vector machine (SVM) [13]. An identical
solution as glmnet [9] up to a tolerance level can be obtained with a solver for
SVM. Our main idea is to transform the encrypted training dataset of elastic
net to that of SVM, based on which we compute the gram matrix 1. Then the
gram matrix will be used as input to a modern SVM solver. Once obtaining the
solution to SVM, we reconstruct the solution to elastic net. We make sure that
the cloud server cannot recover patients’ expression profiles based on the gram
matrix, for which we provide a security proof in this paper.

Roughly speaking, there are two ways to achieve privacy preserving SVM.
One is perturbation based approach. Data sent to the cloud is perturbed by a
random transformation [14], which considers only one user (i.e. medical unit).
The other is cryptography based approach, such as secret sharing [15], Oblivi-
ous Transfer (OT) [15, 16] and Fully Homomorphic Encryption (FHE) [15, 17].
The cryptography based approach provides a higher level of privacy compared
to perturbation based approach, but incurs higher computation/communication
overhead. Most of the previous work focused on distributed databases [15, 16,
18–20], while we consider a centralized outsourced encrypted database under mul-
tiple keys. Liu et al. proposed a secure protocol based on FHE for outsourced
encrypted SVM [17], but it requires the users to be online during the whole
process. It has been proved that completely non-interactive multiple party com-
putation cannot be achieved in the single server setting when user-server collu-
sion might exist [21]. Thus, we need at least two non-colluding servers [22] if
we want to keep the medical units offline. This two non-colluding servers model
makes sense in the practical community (e.g. [22, 23]). For example, we set up
two cloud servers which belong to Amazon Web Services (AWS) cloud service
and Google Cloud Platform (GCP) respectively. Considering the consequences
of legal action for breach of contract and bad reputation, it is reasonable to
assume that they will not collude. According to [24], each user can secret-share
its data among the two non-colluding servers. Then the two servers compute
on the shares of the input interactively and send the shares of the result to
the users to reconstruct the final output. Although the secret sharing based ap-
proach is better in terms of computation cost, it incurs higher communication
cost [25] and cannot deal with data encrypted under multiple keys. Moreover,
oblivious transfer focuses on the single key setting, which is not suitable for
the case of multiple keys. Consequently, we focus on homomorphic encryption
based approach in this paper. There indeed exists a multikey FHE primitive
that allows computation on data encrypted under multiple keys [26]. However,
its efficiency is still far from practice and it requires interactions among all the
medical units during the decryption phase. Peter et al. came up with a scheme
that transforms the ciphertexts under different keys into those under the same

1 A matrix that contains dot product of any two training samples.



key [27], incurring a huge amount of interactions between the servers. To reduce
communication overhead, proxy re-encryption [30] can be utilized to transform
ciphertexts [28, 29]. However, the amount of interactions is still heavy. Because
they used partially homomorphic encryption - if the underlying cryptosystem
is additively homomorphic, they need joint work between the two servers to
compute multiplication and vice versa. To further reduce the communication
overhead, we utilize a framework to enable additively homomorphic encryption
to support one multiplication [31]. We choose the BCP Cryptosystem [32] as the
underlying additively homomorphic encryption and modify it to support mul-
tikey additive homomorphism. In this way, we successfully remove the need to
transform the ciphertexts to those under the same key, while it is a must in
[27–29]. To remove the constraint that medical units need to be online during
decryption phase, we divide a medical unit’s secret key s into two shares s1 and
s2, and distribute them to the servers. Final decryption is obtained after two
rounds of partial decryption.

To summarize, our contributions include the following:
1) We construct a homomorphic cryptosystem that supports one multiply

operation under single key and multiple add operations under both single key and
different keys. Compared with the BCP cryptosystem, our scheme only doubles
the encryption time. With 1024-bit security parameter, an add operation takes
less than 1 millisecond while a multiply operation takes about 16 milliseconds.
The size of ciphertext increases linearly from 6138 B to 26 KB with the number
of involved users increasing from 2 to 100. Overall speaking, the proposed scheme
is practical.

2) We propose the first privacy preserving protocol to solve elastic net on gene
expression profiles encrypted by different encryption keys for cancer biomarker
discovery, which encourages cooperation between medical units. Through reduc-
tion from elastic net to SVM, we demonstrate how to train SVM securely based
on the gram matrix. The solution to elastic net is reconstructed based on the
solution to SVM. Moreover, our solution can allow users (medical units) to stay
offline except for the initialization phase.

3) We evaluate our scheme on a real database2 for drug sensitivity in cancer
cell lines [33]. Moreover, our scheme can also be used to solve lasso, based on a
similar reduction from lasso to SVM [34].

2 Model Description

In this paper, we propose a collaborative model for privacy preserving biomarker
discovery for anticancer drugs using encrypted expression profiles extracted from
the tumor samples of patients. As shown in Fig. 1, the involved parties are
patients, medical units, certified institution and the cloud.

1) Patients (P). Cancer patients go to the medical units to receive personal-
ized treatment. We list six patients here labeled as {P1, P2 · · · , P6}.
2 http://www.cancerrxgene.org, accessed on 10 Aug 2016.
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2) Medical Units (MUs). There are different MUs (e.g. cancer hospitals, tu-
mor research centers) in our model. Each MU is able to extract tumor samples
from the patients, observe the effect of 72 hours of anticancer drug treatment on
them, and upload the GI50 values to the cloud. On the other hand, MU sends
the tumor samples to the certified institution.

3) Certified Institution (CI). CI is responsible to perform gene expression
profiling. CI encrypts the gene expression profiles from different MUs with dif-
ferent encryption keys, and sends the encrypted profiles to the cloud. Only the
MU that holds the correct private key can decrypt the encrypted profiles.

4) Cloud (C). It consists of two non-colluding servers S1 and S2, which is
responsible for storage and massive computation.

Threat Model. CI is a trusted party. S1 and S2 are both honest-but-curious,
and they are non-colluding. There might exist collusion between a MU and S1.
However, none of the medical units will collude with S2. We consider two types
of potential attacks: (i) attacker at one MU tries to know the expression profiles
of other MUs (ii) attacker at S1 or S2 in the cloud aims at recovering gene
expression profiles through observing the input, intermediate or final results.

3 Preliminaries

3.1 Elastic Net Regression

Let the input dataset be {(xi, yi)}ni=1, where each xi ∈ Rm is a column vec-
tor representing a gene expression profile, and yi ∈ R is the GI50 value.3 Let
X ∈ Rn×m be a matrix containing all gene expression profiles (the transposed
i-th row of X is xi) and the column vector y ∈ Rn (i-th element of y is yi)
be the responses, the goal of linear regression analysis is to find a column vec-
tor β ∈ Rm such that yi can be approximated by ỹi = βTxi. The ordinary

3 GI50 denotes the log of the drug concentration for 50% growth inhibition.



least squares (OLS) regression works by minimizing the residual sum of squares
minβ ||Xβ − y||22. There are some situations where OLS is not a good solution,
for example, when m is large or the columns of X are highly correlated. One
way to handle this problem is to introduce a penalization term. Ridge regression
uses l2-norm penalization (||β||22), while lasso regression uses l1-norm penaliza-
tion (|β|1). Ridge regression cannot produce a sparse model. By contrast, owing
to the nature of l1 penalty, lasso is able to generate a sparse model. Neverthe-
less, lasso has some limitations - it selects at most n variables in the n � m
case, picks out only one variable from a group of correlated variables not car-
ing which one is selected (the robustness issue: we want to identify all related
variables). In our application, since n� m and genes may be highly correlated,
lasso regression is not the ideal method in this situation and elastic net penalty
(λ1|β|1 + λ2||β||22) is introduced, which is a convex combination of the lasso and
ridge penalty [10]. It performs well under the situation of n� m and correlated
variables. The elastic net regression can be represented as follows.

min
β∈Rm

||Xβ − y||22 + λ||β||22 such that |β|1 ≤ t (1)

where λ > 0 is the l2-regularization constant and t > 0 is the l1-norm budget.

3.2 Support Vector Machine with Squared Hinge Loss

Given that we have a dataset {(xi, yi)}ni=1 where xi ∈ Rm and yi ∈ {+1,−1}, we
aim at finding a separating plane wTx+ b = 0 (w ∈ Rm) to classify the training
samples into two classes. There exists many eligible separating planes. For sake
of robustness, support vector machine maximizes the margin ( 1

||w|| ) between two

classes, which is equivalent to minimize ||w||2. However, sometimes the training
dataset is linearly inseparable. One solution is to allow SVM to make mistakes
on some samples. We use the squared hinge loss max(0, 1 − yi(wTxi + b))2 to
measure the error of sample xi, which need to be minimized. Therefore, the
linear SVM with squared hinge loss can be represented as follows.

min
w

1

2
wTw + C

n∑
i=1

max(0, 1− yi(wTxi + b))2 (2)

where C is the penalty parameter of the error term. The above is the primal
form of SVM, which is often solved in its dual form:

min
αi≥0

f(α) = αTQα+
1

2C

n∑
i=1

α2
i − 2

n∑
i=1

αi (3)

where α ∈ Rn and each αi is the coefficient for xi. Q is a n × n matrix with
Qij = yiyjx

T
i xj . Gram matrix K is defined as K = xTi xj . Once we get α by

solving (3), we can further compute w =
∑n
i=1 αixiyi.



3.3 Reduction from Elastic Net to SVM

Zhou et al. demonstrated that elastic net regression can be reduced to SVM [13].
They do not include any bias item b (they assume that the separating hyperplane
passes through the origin). After a series of transformations, (1) and (3) can be
changed to (4) and (5) respectively.4 We do not provide the transformation steps
(Please refer to [13] for details).

min
β̂i>0
||Ẑβ̂||22 + λ

2m∑
i=1

β̂2
i

2m∑
i=1

β̂i = 1 (4)

where Ẑ = [X̂1,−X̂2] ∈ Rn×2m, X̂1 = X − 1
t yI

T and X̂2 = X + 1
t yI

T (I ∈ Rm
is an identity vector).

min
αi>0

||Z(
α

|α∗|1
)||22 + λ

2m∑
i=1

(
αi
|α∗|1

)2
2m∑
i=1

αi
|α∗|1

= 1 (5)

where Z = yixi, C = 1
2λ and α∗ is the optimal solution. Comparing (4) and (5),

we notice that they have similar form except for two differences. The first one is
that the class labels in elastic net are real valued but binary in SVM. As shown
in Fig. 2, to transform the training dataset X of elastic net to that of SVM, we
compute X̂1 as subtracting each column of X by 1

t y and calculate X̂2 as adding

each column of X by 1
t y, then concatenate X̂1 and X̂2 together and transpose

it. The first m training samples of SVM are of class +1, and the remaining are
of class −1. The second difference is that they have different scale. The optimal
solution β̂∗ can be represented by the optimal solution α∗ as β̂∗ = α∗

|α∗|1 . Finally,

the optimal solution β to elastic net (see (1)) can be recovered from β̂ according

to β = t× (β̂1···m − β̂m+1···2m), where t is the l1-norm budget and β̂i···j denotes

a vector consisting of elements of β̂ from index i to j.

4 Our Scheme

Fully homomorphic encryption can be used to compute arbitrary polynomial
functions over encrypted data. However, the high computational complexity and
communication cost preclude its use in practice. If only focusing on those op-
erations of interest to the target application, more practical homomorphic en-
cryption schemes are possible. For example, Zhou and Wornell [35] proposed an
integer vector encryption scheme which supports addition, linear transformation
and weighted inner product on ciphertexts. Nevertheless, reduction from elastic
net to SVM leads to changes of the training dataset. To be specific, one gene
expression profile of a patient across all genes (i.e. one row) is a training sample
of elastic net. But one training sample of SVM (see Fig. (2)) can be considered as

4 Here we use β̂ ∈ R2m to differentiate from β ∈ Rm, β can be derived from β̂.



gene expression values of a particular gene among all the patients (i.e. one col-
umn). Therefore, if we encrypt gene expression profiles using the integer vector
encryption, there is no way to construct ciphertexts for the training dataset of
SVM. As a result, we restrict our attention to cryptosystems encrypting one ele-
ment of the profile at a time instead of encrypting the whole profile. Recall that
we can use gram matrix as input to train SVM (see Section 3.2) and the basic
operation to compute gram matrix is the dot product of two samples, it requires
a ciphertext to support one multiply operation and multiple add operations. In-
deed, the BGN cryptosystem [36] can compute one multiplication on ciphertexts
using the bilinear maps. However, it does not support multikey homomorphism.
In our setting of collaborative data mining in the cloud, the training dataset of
elastic net is horizontally partitioned (different units holding different records
with the same set of attributes) while the training dataset of SVM is vertically
partitioned (records are partitioned into different parts with different attributes
after the transformation). In order to train SVM on encrypted training dataset,
we thus need a cryptosystem that supports one multiply operation under single
key and multiple add operations under both single key and different keys. In this
paper, we try to let medical units stay offline except for the initialization phase.
Specifically, we use secret sharing to authorize one server (i.e. S1) to decrypt
the encrypted gram matrix without knowing the secret key of any medical unit.

4.1 Building Blocks

Framework to Enable One Multiplication on Cihphertexts Catalano
and Fiore [31] showed a framework to enable existing additively homomorphic
encryption schemes (i.e. Paillier, ElGamal) to compute multiplication on ci-
phertexts. We use E( ) to denote the underlying additively homomorphic en-
cryption. The idea is to transform a ciphertext E(xij) into “multiplication
friendly”. To be specific, we use E(xij) = (xij − bij , E(bij)) (where bij is a ran-
dom number) to represent the “multiplication friendly” ciphertext. Given two
“multiplication friendly” ciphertexts E(x11) = (x11 − b11, E(b11)) and E(x21) =
(x21 − b21, E(b21)), we compute multiplication as E(x11x21) = (α1, β1, β2).

α1 = E[(x11 − b11)(x21 − b21)]E(b11)x21−b21E(b21)x11−b11

= E(x11x21 − b11b21) (6)

β1 = E(b11) β2 = E(b21) (7)

To decrypt E(x11x21), we will add b11b21 to the decryption of α where b11, b21 is
retrieved from β1, β2. The addition of two ciphertexts after multiplication works
by adding the α components and concatenating the β components. Therefore,
the β component will grow linearly with additions after performing a multipli-
cation. To remove this constraint, two non-colluding servers are used to store
E = (xij − bij , E(bij)) and bij respectively. In this way, S1 can throw away the β
component after performing a multiplication, because S2 will operate on the bij ’s
in plaintext. Therefore, the ciphertext contains only the α component after per-
forming a multiplication. This framework has a nice property that it inherits the
multikey homomorphism of the underlying additively homomorphic encryption.



Given two safe primes p and q, we compute N = pq, g = −a2N (a ∈ Z∗N2), the secret

key s ∈ [1, N2

2
], the public key (N, g, h = gs).

Encryption: To encrypt plaintext m ∈ ZN , we select a random r ∈ [1, N
4

] and generate

the ciphertext E(m) = (C
(1)
m , C

(2)
m ) as below:

C(1)
m = grmod N2 and C(2)

m = hr(1 +mN) mod N2 (8)

Decryption:

t =
C

(2)
m

(C
(1)
m )

s m =
t− 1 mod N2

N
(9)

Proxy Re-encryption: If the secret key s is divided into two shares s1, s2 such that

s = s1 + s2, then we can use s1 to partially decrypt E(m) to E(m)′ = (C
(1)
m

′
, C

(2)
m

′
),

which can be considered as a ciphertext under key s2.

C(1)
m

′
= C(1)

m C(2)
m

′
=

C
(2)
m

C
(1)
m

s1 (10)

Single Key Homomorphism: Supposed that we have two plaintexts m1, m2 and
their ciphertexts E(m1) = (C

(1)
m1 , C

(2)
m1) and E(m2) = (C

(1)
m2 , C

(2)
m2) under the same key

s. The ciphertext E(m1+m2) can be computed as E(m1+m2) = (C
(1)
m1C

(1)
m2 , C

(2)
m1C

(2)
m2).

Fig. 3. The BCP Cryptosystem

Multikey Homomorphism of the BCP Cryptosystem The BCP cryp-
tosystem (also known as Modified Paillier Cryptosystem) is an additively ho-
momorphic encryption under single key [32]. We briefly review the BCP cryp-
tosystem in Fig. 3 and discuss how to modify it to support multikey homomor-
phism at the expense of expanding the ciphertext size. Supposed that E(ma) =

(C
(1)
ma , C

(2)
ma) is under key sa, E(mb) = (C

(1)
mb , C

(2)
mb ) is under key sb, then E(ab)(ma+

mb) where E(ab) denotes a ciphertext related to key sa and sb can be computed
as

E(ab)(ma +mb) = (C(1)
ma
, C(1)

mb
, C(2)

ma
C(2)
mb

) (11)

The ciphertext size only depends on the number of involved medical units
(i.e. keys). There are two MUs with key sa and sb respectively in this example,
the addition of their ciphertexts is a 3-tuple. If n MUs cooperate together, the
addition of their ciphertexts should be a (n+1)-tuple. To decrypt E(ab)(ma+mb),
the secret key sa and sb are required.

t =
C

(2)
maC

(2)
mb

(C
(1)
ma)sa(C

(1)
mb )sb

ma +mb =
t− 1 mod N2

N
(12)

Incorporating the above modified the BCP cryptosystem to the framework
that enables additively homomorphic encryption to support one multiplication,
we obtain our final encryption scheme EBCP .5

5 E denotes the framwork and BCP denotes the underlying cryptosystem.



Gram Matrix Computation Gram matrix K is defined as Kij = xi, xj =
xTi xj where xi and xj are any two training samples (see Section 3.2). Recall
that the original training dataset X of elastic net regression is transformed to the
training dataset X̂ of SVM during the reduction process (see Section 3.3), we use
X̂ = {x̂i}2mi=1 to denote the transformed dataset. After dataset transformation,
the horizontally partitioned dataset of the elastic net is converted to vertically
partitioned dataset of SVM. The gram matrix K(X̂) of X̂ is computed as follows.

K(X̂) =


x̂1, x̂1 x̂1, x̂2〉 · · · x̂1, x̂2m〉
x̂2, x̂1〉 x̂2, x̂2〉 · · · x̂2, x̂2m〉

...
...

. . .
...

x̂2m, x̂1〉 x̂2m, x̂2〉 · · · x̂2m, x̂2m〉

 (13)

For ease of description, we firstly consider the case of two medical units
denoted as MUA and MUB . Assume that the cloud store n gene expression
profiles, among which nA records are from MUA and nB records are from MUB .
Then in the transformed dataset of SVM, for each training sample, the first nA
elements are encrypted under key sA, the remaining nB elements are encrypted
under key sB . Assume that we have two training samples x̂1 and x̂2 of SVM,
their dot product x̂1, x̂2 can be computed as follows and their ciphertexts are
denoted as EBCP (x̂1) = (x̂1 − b1, E(b1)), EBCP (x̂2) = (x̂2 − b2, E(b2)).

x̂1, x̂2 =

nA∑
i=1

x̂1ix̂2i +

n∑
i=nA+1

x̂1ix̂2i (14)

Supposed that the ciphertext of
∑nA

i=1 x̂1ix̂2i and
∑n
i=nA+1 x̂1ix̂2i are αA and

αB respectively,6 then S1 will compute αA, αB as follows. The computation of
αA or αB only requires single key homomorphism.

αA = E(

nA∑
i=1

x̂1ix̂2i − b1ib2i) = (C
(1)
A , C

(2)
A ) (15)

αB = E(

nA+nB∑
i=nA+1

x̂1ix̂2i − b1ib2i) = (C
(1)
B , C

(2)
B ) (16)

As αA and αB are encrypted under different keys, adding them together
requires multikey homomorphism.

E( x̂1, x̂2 − b̂1, b̂2 ) = αA + αB = (C
(1)
A , C

(1)
B , C

(2)
A C

(2)
B ) (17)

Keep Medical Units Offline We leverage EBCP ’s proxy re-encryption prop-
erty, which inherits from the underlying the BCP cryptosystem (see (10)). To
keep MUA and MUB offline, we split the secret key s of each involved medical

6 S1 will abandon the β1 and β2 component after a multiplication.



unit into two shares. Specifically, we have sA = sA1
+ sA2

and sB = sB1
+ sB2

.
S1 holds sA1

, sB1
and S2 holds sA2

, sB2
. To compute x̂1, x̂2 , S1 will firstly

decrypt (17) partially.

C
(1)
A

′
= C

(1)
A C

(1)
B

′
= C

(1)
B (18)

C
(2)
A

′
C

(2)
B

′
=

C
(2)
A C

(2)
B

(C
(1)
A )

sA1 (C
(1)
B )

sB1
(19)

Then S1 will send C
(1)
A and C

(1)
B to S2. S2 will compute and return (C

(1)
A )sA2 ,

(C
(1)
B )sB2 , b̂1, b̂2 to S1 afterwards. Finally, S1 is able to decrypt E( x̂1, x̂2 −

b̂1, b̂2 ) completely and get x̂1, x̂2 in plaintext.

C
(2)
A

′′
C

(2)
B

′′
=

C
(2)
A

′
C

(2)
B

′

(C
(1)
A

′
)sA2 (C

(1)
B

′
)sB2

(20)

x̂1, x̂2 =
(C

(2)
A

′′
C

(2)
B

′′
− 1) mod n2

n
+ b̂1, b̂2 (21)

The above shows how to compute x̂1, x̂2 based on two ciphertexts EBCP (x̂1)
and EBCP (x̂2). Similarly, we can compute each element of the gram matrix Kij =
x̂i, x̂j = x̂Ti x̂j based on the ciphertexts EBCP (x̂i) and EBCP (x̂j). Observing

that the gram matrix in (13) is symmetric, we can only compute the upper
triangular half of it. In the end, S1 gets the gram matrix K in plaintext. If
there are more than two medical units, we can easily extend (14), (15) and
(17) to handle the case of multiple medical units. The size of ciphertext of
x̂1, x̂2 increases linearly with the number of involved medical units. Likewise,

the communication overhead also increases linearly during the decryption phase.

4.2 Our Construction

Given the encrypted gene expression profiles EBCP (X) derived from multiple
medical units, the cloud runs privacy preserving elastic net on it to discover
biomarkers to predict a patient’s response to anticancer drugs. As it is not clear
how to design a privacy preserving protocol based on iterative algorithms to
solve elastic net. We resort to reduction to shift our attention from elastic net to
SVM. In Algorithm 1, we firstly demonstrate how to transform the encrypted
dataset of elastic net to that of SVM (see Section 3.3). It is easy to perform
such transformation on the dataset in plaintext. However, once it is encrypted,
we need to rely on the homomorphic properties of our cryptosystem to finish
the transformation. Next, we compute the encrypted gram matrix EBCP (K) of
the transformed training dataset (see Section 4.1). Gram matrix plays a role
as intermediate dataset based on which SVM model can be generated correctly
without breaching the privacy of patients’ gene expression profiles. In order to
keep medical units offline, we authorize S1 to decrypt EBCP (K). Based on K,
we train SVM and obtain the solution α. Finally, we use α to reconstruct β,
which is the solution to elastic net.



Algorithm 1: Protocol for Privacy-preserving Elastic Net.

Input: Encrypted dataset EBCP (X) = {EBCP (xi)}ni=1, where xi ∈ Zm and
response vector in plaintext y ∈ Rn; l1-norm budget t and l2-regularization pa-
rameter λ.
Output: Solution β.

1. Dataset Transformation: Compute EBCP (X̂T
1 ) and EBCP (X̂T

2 ), where
X̂1 = X − 1

t yI
T and X̂2 = X + 1

t yI
T . Given t and y, we might need to scale

EBCP (X) to make sure operations are run on integer domain. The encrypted
training dataset of SVM is EBCP (X̂) = [EBCP (X̂1), EBCP (X̂2)]T and the class
labels ŷ ∈ Z2m where ŷi = +1 if i ∈ [1,m] and yi = −1 if i ∈ [m+ 1, 2m].
2. Gram Matrix Computation: Compute first the encrypted gram matrix
E(K) of SVM based on EBCP (X̂), then authorize S1 to decrypt E(K) and get
the gram matrix K in clear.
3. Train SVM: Solve the dual optimization problem of SVM (see (3)) based
on gram matrix K and C = 1

2λ to get SVM’s solution α (Please refer to the
Appendix if readers are interested in how to train SVM).
4. Reconstruct elastic net’s solution β based on α.

Model Assessment In Algorithm 1, there are two parameters: l1-norm con-
straint t and l2-regularization parameter λ. It is not known beforehand which
t and λ are best for the elastic net. For different combinations of (t, λ), the
predictive power of the derived solution varies. We do “grid search” on t and
λ using k-fold cross validation [37] to assess the goodness-of-fit of our model
under different parameters. The grid-search is straightforward. We specify the
range of t and λ respectively. Then we try various pairs of (t, λ). As it might be
time-consuming to do a complete grid-search, we recommend using a coarse grid
first. Once a “better” region is identified, we will conduct a finer grid search on
that region. We divide our training dataset EBCP (X) into k subsets satisfying
EBCP (X) = EBCP (X1) ∪ · · · ∪ EBCP (Xk), EBCP (Xi) ∩ EBCP (Xj) = ∅ (i 6= j).
We use EBCP (Xi) where i ∈ [1, k] as the validation set and the remaining k − 1
subsets as the training dataset each time. In order to measure the performance
of regression, we choose Rooted Mean Squared Error (RMSE). An RMSE value
closer to 0 indicates the regression model is more useful for prediction. In the
setting of k-fold cross validation, we need to compute the average of k RMSE
values. Supposed that there are d samples in the validation set, the predicted
GI50 value of gene expression profile xi is ỹi and the true value is yi, then RMSE
is computed as

RMSE =

√√√√(
1

d

d∑
i=1

(ỹi − yi)2) (22)



Recall that each gene expression profile is encrypted, we can compute the
ciphertext of the predicted GI50 value ỹi as EBCP (ỹi) = (βT (xi − bi), βTE(bi))
where β is the solution to elastic net. To get ỹi in plaintext, we make the two
non-colluding servers work together. S1 reveals β to S2. S2 return βT bi to S1.
Then S1 computes ỹi = βT (xi − bi) + βT bi = βTxi. For each (t, λ) pair, S1

computes RMSE with each predicted value ỹi. Finally, S1 will pick the optimal
(t, λ) which achieves the smallest RMSE and get the optimal solution β∗.

5 Security Analysis

We consider the honest-but-curious model, meaning that all the medical units,
S1 or S2 will follow our protocol but try to gather information about the inputs
of MUs. There might exist collusion between a medical unit and S1. We analyze
the security of our model with the Real and Ideal paradigm and Composition
Theorem [38]. The main idea is to use a simulator in the ideal world to simulate
the view of a semi-honest adversary in the real world. If the view in the real world
is computationally indistinguishable from the view in the ideal world, then the
protocol is believed to be secure. According to the Composition Theorem, the
entire scheme is secure if each step is proved to be secure. Due to page limit, the
proof of Theorem 1 is given in the Appendix.

Theorem 1. In Algorithm 1, it is computationally infeasible for S1 to distin-
guish the gene expression profiles encrypted under multiple keys as long as EBCP
is semantically secure and the two servers are non-colluding.

Theorem 2. No encryption scheme is secure against known-sample attack if
dot products are revealed.

Proof: We define known-sample attack as an attacker obtaining the plaintexts
of a set of records of the encrypted database but not knowing the correspon-
dence between the plaintexts and the encrypted records. According to [39], no
encryption scheme is secure against known-sample attack if distance informa-
tion is revealed. As distance computation can be decomposed into dot products,
revealing dot products equals to revealing distance. Given n encrypted samples
whose dimension is m, if an attacker knows the plaintexts of m linearly indepen-
dent samples, the attacker can obtain the plaintext of any encrypted samples
even without the decryption key. The idea is to construct m linear equations,
whose unique solution corresponds to the desired sample.

Fortunately, in the following theorem, we show that it is impossible for the
attackers to make use of Theorem 2 to launch the attack.

Theorem 3. S1 cannot reconstruct gene expression profile of a patient with
gram matrix K known, considering the impossibility that an attacker collects
enough samples of SVM to launch the attack mentioned in Theorem 2.

Proof: According to Section 3.3, one gene expression profile of a patient across
all genes (i.e. one row) is a training sample of elastic net. But the training



sample of SVM can be considered as gene expression values of a particular gene
among all the patients (i.e. one column). If S1 colludes with MU1, it only brings
minor advantage that some of the elements from MU1 of a training sample are
revealed. Unless the attacker cracks our cryptosystem and obtains all the private
keys of the involved medical units, he cannot set up linear equations to launch
known-sample attack.

6 Experimental Evaluation

The configuration of our PC is Windows 7 Enterprise 64-bit Operating System
with Intel(R) Core(TM) i5 CPU (4 cores), 3.4 GHz and 16 GB memory. We use a
public database for drug sensitivity in cancer cell lines [33]. To provide platform
independence, we use Java to implement our scheme together with open-source
IDE. We use BigInteger class to process big numbers which offers all basic oper-
ations we need. We utilize SecureRandom class to produce a cryptographically
strong random number. As for the generation of safe prime numbers, we use
the probablePrime method provided by BigInteger class. The probability that
a BigInteger returned by this method is composite does not exceed 2−100. The
performance of our scheme depends heavily on the size of modulus N , and the
number of additions and multiplications performed. During the initialization
phase, public and private key pair are generated. The runtime of generating a
key pair varies with the bit length of N , as it depends a lot on the random
number generator. A typical value for N is 1024 and it takes about 2 second
in average to generate one key pair. We firstly compare the encryption time
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Fig. 6. Ciphertext size

of two training samples when using the BCP Cryptosystem and our proposed
cryptosystem EBCP . We vary the dimension of each sample from 1000 to 10000.
The bit length of modulus N is set to 1024 and 1536 respectively (following the
same setting as in [27]). As shown in Fig. 4, the encryption time scales linearly
as the dimension increases. We use E(x) and (x− b, E(b)) where b is a random
number to denote the ciphertext of x under BCP and EBCP cryptosystem re-
spectively. Leveraging the framework proposed in [31], the encryption time of
EBCP doubles that of the BCP Cryptosystem. The additional encryption time is
caused by generating the random number b. Moreover, we measure the time to



compute dot product of two encrypted training samples. We focus on vertically
partitioned dataset of SVM. To facilitate understanding, we encrypt the first
half (belonging to Alice) of a sample using secret key sA and the second half
(belonging to Bob) using secret key sB . We show the runtime of dot product
computation on the ciphertexts in Fig. 5. Similarly, time to calculate dot prod-
uct increases linearly with the dimension of samples. For vectors of dimension
m, one dot product operation includes m multiplications and m − 1 additions,
among which one addition is multikey homomorphic. It takes only 1 millisecond
to run a multikey homomorphic addtition. For operations under single key, ad-
dition is much faster than multiplication. With a 1024-bit modulus, the runtime
of additions is less than 1 second. The runtime of multiplications varies from
16 seconds to 185 seconds with the dimension of a sample increasing from 1000
to 10000. Therefore, multiplications are the bottleneck of dot product compu-
tation. To decrypt one encryted dot product, it takes 285 milliseconds and 572
milliseconds with and without secret sharing separately. Recall that the multi-
key homomorphism property is achieved at the expense of expanding ciphertext
size, we also measure the effect of the number of involved users on the increase
of ciphertext size. As shown in Fig. 6, the ciphertext size increases linearly from
6138 B to 26 KB when the number of involved users increasing from 2 to 100.

The public database for drug sensitivity in this paper consists of 1002 cancer
cell lines, 265 anticancer drugs. For each drug, GI50 values of around 300 to 1000
cell lines are available. As for gene expression profiling, it contains the RMA-
normalized expression values of 17737 genes of 1018 cell lines. We preprocess
them in MATLAB, keeping those cell lines that belong to the intersection of gene
expression profiles and GI50 values. For example, considering drug PD-0325901,
we get 843 expression profiles and GI50 values. As our cryptosystem only sup-
ports operations on the integer domain, we need to preprocess the database. To
be specific, we first select a system parameter p to represent the number of bits
for the fractional part of expression values. We next multiply each expression
value by 10p to get its integer value. Then, we need to divide each element of the
gram matrix by 102p to remove the influence of scaling up. After running our
privacy-preserving elastic net, we successfully pick out 165 genomic biomarkers.

Comparison with existing schemes: We focus on the homomorphic en-
cryption based schemes [27–29, 17], of which the setting is outsourced encrypted
database under multiple keys. According to the experimental evaluation of [31],
using their proposed framework to enable one multiplication on additively ho-
momorphic ciphertexts outperforms the BGV homomorphic encryption [40] (in
terms of ciphertext size, time of encryption/decryption/homomorphic opera-
tions). As shown in the experiments above, modification to the BCP Cryptosys-
tem for multikey homomorphism only doubles the encryption time. Therefore,
addition and multiplication can be run more efficiently in our scheme compared
to [17], which deals with only two users (i.e. keys). Besides, they require the
users to be online while we keep the users offline in this paper. Under two
non-colluding servers model, the schemes in [27–29] can be used to compute
addition/multiplication. The main drawback of their schemes is that they have



to transform the ciphertexts under multiple keys to those under the same key,
which is a heavy workload for the cloud server. Moreover, computing multiplica-
tion incurs interactions between the two servers. By contrast, our cryptosystem
enables calculating multiplication without interactions.

7 Discussion and Conclusions

In practical scenarios, a gene expression profile typically has dimension of order
104. We can only collect hundreds of patients’ profiles of different cancers. If we
store gram matrix K in the memory, it is of order 108 in our case, which requires
a lot of memory. Keerthi et al. [41] proposed to restrict the support vectors to
some subset of basis vectors J ⊂ {1, · · · , n} in order to reduce the memory
requirement. This method requires O(|J |n) space where |J | � n. However,
the derived α using this method can be different from the one we get using
the entire gram matrix K. It is a trade-off between accuracy and efficiency. For
genomic biomarker discovery, it is obviously more important to pick out accurate
biomarkers. Therefore, it makes sense to maintain the gram matrix in memory.
Furthermore, each element of the gram matrix can be calculated independently.
To accelerate the computation of gram matrix, we can utilize existing parallel
computing frameworks.

To conclude, in this paper, by assuming the existence of two non-colluding
servers, we proposed a privacy preserving collaborative model to conduct elastic
net regression through reduction to SVM on encrypted gene expression profiles
and GI50 values of anticancer drugs. To compute the gram matrix on ciphertexts,
we successfully construct a cryptosystem that supports one multiply operation
under single key and multiple add operations under both single key and different
keys. Besides, we use secret sharing to allow one of the cloud server to get the
gram matrix. Our scheme keeps the medical units offline and is proved to be
secure in the semi-honest model or even if a medical unit colludes with one cloud
server. The experimental results highlight the practicability of our scheme. The
proposed protocol could also be applied to other applications that use elastic
net or lasso for linear regression. Our future work is to extend our scheme to
malicious adversaries (either S1 or S2 is malicious). One promising direction is
to use commitment scheme [42] and zero-knowledge protocols.
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Appendix

Train SVM: We do not include any bias item in this paper, according to Section
3.3. Therefore, efficient dual coordinate descent method [43] can be used, of which
the main idea is to optimize one variable once at a time, reducing memory
requirements. However, coordinate descent methods are inherently sequential
and hard to parallelize. To utilize the parallel properties of SVM, we also seek to
find an solution which can be parallelized [44]. As shown in [45], optimizing on
either the primal problem or the dual problem is in fact equivalent. Linear SVM
can be considered as non-linear SVM with a linear kernel k and an associated
Reproducing Hilbert Space H.

min
f∈H

1

2
||f ||2H + C

n∑
i=1

max(0, 1− yif(xi))
2 (23)

According to the representer theorem, the minimizer of (23) can be represented
by f∗(x) =

∑n
i=1 θik(xi, x). Note that these coefficients θi are different from the

Lagrange multipliers αi in standard SVM literature. The relationship between
θi and αi is θi = yiαi. (23) can be rewritten as

min
θ

1

2
θTKθ + C

n∑
i=1

max(0, 1− yiθTKi)
2 (24)

where K is also the gram matrix with Kij = xTi xj and Ki is the ith row of K.
The Newton optimization algorithm of the above problem can be expressed as
dense linear algebra operations. When combined with highly optimized libraries



such as Intel’s MKL for multicores, Jacket, and CuBLAS for GPUs, we can
largely speedup the training of SVM.

Proof of Theorem 1: We discuss the security of each step in Algorithm 1.
Step 1 Dataset Transformation: Given EBCP (X), it requires homomorphic
addition to compute EBCP (X̂1) and EBCP (X̂2). Therefore, we need to prove the
security of addition over ciphertexts against a semi-honest adversary ASH

S1
in the

real world. We set up a simulator FSH in the ideal world to simulate the view of
ASH
S1

. Considering one operation EBCP (Xij+ 1
t y), The view of ASH

S1
in this step in-

cludes input {EBCP (Xij), EBCP ( 1
t y)} and output EBCP (Xij + 1

t y). Without loss
of generality, we assume that simulator FSH computes EBCP (m1) and EBCP (m2)
where m1 = 1 and m2 = 2. Then the simulator computes EBCP (m1 + m2) and
returns {EBCP (m1), EBCP (m2), EBCP (m1 +m2)} to ASH

S1
. Since the view of ASH

S1

are ciphertexts generated under EBCP cryptosystem and ASH
S1

has no knowledge

of the private key. If ASH
S1

could distinguish the real world from the ideal world,

then it indicates ASH
S1

is able to distinguish ciphertexts generated by EBCP , which

contradicts to the assumption that EBCP is semantically secure. Therefore, ASH
S1

is computationally infeasible to distinguish the real world from the ideal world.
For the case where a medical unit (denoted as MU1) colludes with S1, we use
ASH

(S1,MU1)
to denote the corresponding adversary. ASH

(S1,MU1)
cannot learn any-

thing beyond gene expression values of MU1.
Step 2 Gram Matrix Computation: Recall that the basic operation of gram
matrix computation is dot product of two training samples x̂1 and x̂2. The secu-
rity of addition has been proved in step 1. As for the security of multiplication,
computing α component is implemented over ciphertexts on S1 (see (6)). Simi-
lar to the proof above, we can prove the security of multiplication with the real
and ideal paradigm. Moreover, the multikey homomorphic addition of the BCP
Cryptosystem is based on ciphertexts (see (11)). As long as the BCP Cryptosys-
tem is semantically secure, the multikey homomorphic addition is secure. As
for decrypting the encrypted dot product, S1 interacts with S2. S1 sends CA1

and CB1 to S2 (see (18)). S2 returns (CA1)sA2 , (CB1)sB2 to S1. Based on the
hardness of computing discrete logarithm, it is infeasible for S1 to deduce sA2

or sB2
. Therefore, S1 cannot recover sA or sB .

For the case of collusion between S1 and MU1, {x̂1i}na
i=1 and {x̂2i}na

i=1 are both
revealed to ASH

(S1,MU1)
. Even though the adversary can know

∑n
j=na+1 x̂1j x̂2j ,

the value of {x̂1j}nj=na+1 and {x̂2j}nj=na+1 remains unknown. According to The-
orem 3, it is secure to reveal gram matrix to S1.
Step 3 Train SVM: Given the gram matrix K, we train SVM to get α. ASH

S1

cannot infer anything about gene expression profiles based on α.
Step 4 Reconstruct β based on α: If gene expression profiling microarray is
known to the public, then ASH

S1
will know which genes are picked out as biomark-

ers corresponding to non-zero elements of β. We can remedy this vulnerability
through permuting the gene expression profile before uploading.


