Z. Aslanyan and F. Nielson, Pareto Efficient Solutions of Attack-Defence Trees, POST. LNCS, pp.95-114, 2015.
DOI : 10.1007/978-3-662-46666-7_6

URL : http://orbit.dtu.dk/en/publications/pareto-efficient-solutions-of-attackdefence-trees(351165da-3d91-4ea8-9131-7aa0962b34ba).html

Z. Aslanyan and F. Nielson, Model Checking Exact Cost for Attack Scenarios, International Conference on Principles of Security and Trust, 2017.
DOI : 10.1007/978-3-642-37075-5_23

URL : http://orbit.dtu.dk/en/publications/model-checking-exact-cost-for-attack-scenarios(a58a7343-819c-47c2-99b9-3fafb73ef26b).html

M. Audinot and S. Pinchinat, On the Soundness of Attack Trees, Graphical Models for Security, pp.25-38, 2016.
DOI : 10.1016/0304-3975(76)90061-X

M. Audinot, S. Pinchinat, and B. Kordy, Is my attack tree correct? (extended version) CoRR abs/1706, 2017.
DOI : 10.1007/978-3-319-66402-6_7

E. M. Clarke and E. A. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, Workshop on Logic of Programs, pp.52-71, 1981.
DOI : 10.1007/978-3-540-69850-0_12

URL : http://repository.cmu.edu/cgi/viewcontent.cgi?article=1451&context=compsci

S. A. Cook, The complexity of theorem-proving procedures, Proceedings of the third annual ACM symposium on Theory of computing , STOC '71, pp.151-158, 1971.
DOI : 10.1145/800157.805047

D. Giacomo, G. Vardi, and M. Y. , Linear temporal logic and linear dynamic logic on finite traces, IJCAI'13 Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, pp.854-860, 2013.

O. Gadyatskaya, R. R. Hansen, K. G. Larsen, A. Legay, M. C. Olesen et al., Modelling Attack-defense Trees Using Timed Automata, FORMATS. LNCS, pp.35-50, 2016.
DOI : 10.1145/310889.310900

URL : https://hal.archives-ouvertes.fr/hal-01406706

R. Horne, S. Mauw, and A. Tiu, Semantics for Specialising Attack Trees based on Linear Logic, Fundamenta Informaticae, vol.153, issue.1-2, pp.57-86, 2017.
DOI : 10.3233/FI-2017-1531

M. G. Ivanova, C. W. Probst, R. R. Hansen, and F. Kammüller, Transforming Graphical System Models to Graphical Attack Models, Graphical Models for Security, pp.82-96, 2015.
DOI : 10.1007/978-3-319-29968-6_6

URL : http://orbit.dtu.dk/files/127220821/GramSec2015_Ivanova_et_al.pdf

R. Jhawar, B. Kordy, S. Mauw, S. Radomirovi´cradomirovi´c, and R. Trujillo-rasua, Attack Trees with Sequential Conjunction, In: SEC. IFIP AICT, vol.455, pp.339-353, 2015.
DOI : 10.1007/978-3-319-18467-8_23

URL : https://hal.archives-ouvertes.fr/hal-01197256

A. Jürgenson and J. Willemson, Serial Model for Attack Tree Computations, ICISC. LNCS, pp.118-128, 2009.
DOI : 10.1007/978-3-642-14423-3_9

B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer, Attack-defense trees, Journal of Logic and Computation, vol.176, issue.1, pp.55-87, 2014.
DOI : 10.1016/j.ins.2005.08.004

B. Kordy, L. Piètre-cambacédès, and P. Schweitzer, DAG-based attack and defense modeling: Don???t miss the forest for the attack trees, Computer Science Review, vol.13, issue.14, pp.13-14, 2014.
DOI : 10.1016/j.cosrev.2014.07.001

B. Kordy, M. Pouly, and P. Schweitzer, Probabilistic reasoning with graphical security models, Information Sciences, vol.342, pp.111-131, 2016.
DOI : 10.1016/j.ins.2016.01.010

URL : https://hal.archives-ouvertes.fr/hal-01289186

R. Kumar, E. Ruijters, and M. Stoelinga, Quantitative Attack Tree Analysis via Priced Timed Automata, FORMATS. LNCS, pp.156-171, 2015.
DOI : 10.1007/978-3-319-22975-1_11

K. Leyton-brown, H. H. Hoos, F. Hutter, and L. Xu, -complete problems, Communications of the ACM, vol.57, issue.5, pp.98-107, 2014.
DOI : 10.1145/2594413.2594424

S. Mauw and M. Oostdijk, Foundations of Attack Trees, ICISC. LNCS, pp.186-198, 2005.
DOI : 10.1109/DISCEX.2001.932182

C. A. Phillips and L. P. Swiler, A graph-based system for network-vulnerability analysis, Proceedings of the 1998 workshop on New security paradigms , NSPW '98, pp.71-79, 1998.
DOI : 10.1145/310889.310919

URL : http://oneweb.utc.edu/~Li-Yang/CPSC461/graph-vulnerability.pdf

W. Pieters, J. Padget, F. Dechesne, V. Dignum, and H. Aldewereld, Effectiveness of qualitative and quantitative security obligations, Journal of Information Security and Applications, vol.22, pp.3-16, 2015.
DOI : 10.1016/j.jisa.2014.07.003

S. Pinchinat, M. Acher, and D. Vojtisek, ATSyRa: An Integrated Environment for Synthesizing Attack Trees ? (Tool Paper) In: Graphical Models for Security, LNCS, vol.9390, pp.97-101, 2015.

N. T. Research, Improving Common Security Risk Analysis, Tech. Rep. AC, vol.323193, 2008.

A. Roy, D. S. Kim, and K. S. Trivedi, Attack countermeasure trees (ACT): towards unifying the constructs of attack and defense trees, Security and Communication Networks, vol.1, issue.1, pp.929-943, 2012.
DOI : 10.1002/sec.299

B. Schneier, Attack Trees, Journal of Software Tools, vol.24, issue.12, pp.21-29, 1999.
DOI : 10.1002/9781119183631.ch21

P. Schnoebelen, The complexity of temporal logic model checking Advances in modal logic, pp.393-436, 2002.

O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing, Automated generation and analysis of attack graphs, Proceedings 2002 IEEE Symposium on Security and Privacy, pp.273-284, 2002.
DOI : 10.1109/SECPRI.2002.1004377

Y. Thierry-mieg, Symbolic Model-Checking Using ITS-Tools, TACAS. LNCS, pp.231-237, 2015.
DOI : 10.1007/978-3-662-46681-0_20

URL : https://hal.archives-ouvertes.fr/hal-01213324

R. Vigo, F. Nielson, and H. R. Nielson, Automated Generation of Attack Trees, 2014 IEEE 27th Computer Security Foundations Symposium, pp.337-350, 2014.
DOI : 10.1109/CSF.2014.31

URL : http://doi.org/10.1109/csf.2014.31