B. Antolin-fontes, J. L. Ables, A. Görlich, and I. Ibañez-tallon, The habenulo-interpeduncular pathway in nicotine aversion and withdrawal, Neuropharmacology, vol.96, pp.213-222, 2015.
DOI : 10.1016/j.neuropharm.2014.11.019

M. E. Avale, P. Faure, S. Pons, P. P. Robledo, T. T. Deltheil et al., Interplay of ??2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion, Proceedings of the National Academy of Sciences, vol.20, issue.3, pp.15991-15996, 2008.
DOI : 10.1111/j.1460-9568.2004.03532.x

M. R. Banghart, K. Borges, E. Y. Isacoff, D. Trauner, and R. H. Kramer, Light-activated ion channels for remote control of neuronal firing, Nature Neuroscience, vol.417, issue.12, pp.1381-1386, 2004.
DOI : 10.1038/417523a

M. R. Banghart, A. Mourot, D. L. Fortin, J. Z. Yao, R. H. Kramer et al., Photochromic Blockers of Voltage-Gated Potassium Channels, Angewandte Chemie International Edition, vol.40, issue.48, pp.9097-9101, 2009.
DOI : 10.1002/anie.200904504

D. M. Barber, M. Schönberger, J. Burgstaller, J. Levitz, C. D. Weaver et al., Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO), Chemical Science, vol.16, issue.3, pp.2347-2352, 2016.
DOI : 10.1038/nn.3346

E. Bartels, N. H. Wassermann, and B. F. Erlanger, Photochromic Activators of the Acetylcholine Receptor, Proceedings of the National Academy of Sciences, vol.68, issue.8, pp.1820-1823, 1971.
DOI : 10.1073/pnas.68.8.1820

S. Berlin and E. Y. Isacoff, Synapses in the spotlight with synthetic??optogenetics, EMBO reports, vol.18, issue.5, pp.677-692, 2017.
DOI : 10.15252/embr.201744010

S. Berlin, S. Szobota, A. Reiner, E. C. Carroll, M. A. Kienzler et al., Author response, eLife, vol.111, issue.2, 2016.
DOI : 10.7554/eLife.12040.024

M. Borowiak, W. Nahaboo, M. Reynders, K. Nekolla, P. Jalinot et al., Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death, Cell, vol.162, issue.2, pp.403-411, 2015.
DOI : 10.1016/j.cell.2015.06.049

URL : https://hal.archives-ouvertes.fr/hal-01234187

J. P. Bourgeois, V. Meas-yeadid, A. M. Lesourd, P. Faure, S. Pons et al., Modulation of the Mouse Prefrontal Cortex Activation by Neuronal Nicotinic Receptors during Novelty Exploration but not by Exploration of a Familiar Environment, Cerebral Cortex, vol.18, issue.5, pp.1007-1015, 2012.
DOI : 10.1093/emboj/18.5.1235

URL : https://hal.archives-ouvertes.fr/hal-01463685

K. Brejc, W. J. Van-dijk, R. V. Klaassen, M. Schuurmans, J. Van-der-oost et al., Crystal structure of an ACh-binding protein reveals the ligandbinding domain of nicotinic receptors, Nature, vol.411, issue.6835, pp.269-276, 2001.
DOI : 10.1038/35077011

J. Broichhagen, A. Damijonaitis, J. Levitz, K. R. Sokol, P. Leippe et al., Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand, ACS Central Science, vol.1, issue.7, pp.383-393, 2015.
DOI : 10.1021/acscentsci.5b00260

N. Caporale, K. D. Kolstad, T. Lee, I. Tochitsky, D. Dalkara et al., LiGluR Restores Visual Responses in Rodent Models of Inherited Blindness, Molecular Therapy, vol.19, issue.7, pp.1212-1219, 2009.
DOI : 10.1038/mt.2011.103

E. C. Carroll, S. Berlin, J. Levitz, M. A. Kienzler, Z. Yuan et al., Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics, Proceedings of the National Academy of Sciences, vol.5, issue.4, pp.776-785, 2015.
DOI : 10.1039/C4CC06612J

P. H. Celie, S. E. Van-rossum-fikkert, W. J. Van-dijk, K. Brejc, A. B. Smit et al., Nicotine and Carbamylcholine Binding to Nicotinic Acetylcholine Receptors as Studied in AChBP Crystal Structures, Neuron, vol.41, issue.6, pp.8-8, 2004.
DOI : 10.1016/S0896-6273(04)00115-1

L. D. Chabala and H. A. Lester, Activation of acetylcholine receptor channels by covalently bound agonists in cultured rat myoballs., The Journal of Physiology, vol.379, issue.1, pp.83-108, 1986.
DOI : 10.1113/jphysiol.1986.sp016242

L. D. Chabala, A. M. Gurney, and H. A. Lester, Dose-response of acetylcholine receptor channels opened by a flash-activated agonist in voltage-clamped rat myoballs., The Journal of Physiology, vol.371, issue.1, pp.407-433, 1986.
DOI : 10.1113/jphysiol.1986.sp015983

N. Champtiaux, Z. Han, A. Bessis, F. M. Rossi, M. Zoli et al., Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice, J Neurosci, vol.22, pp.1208-1217, 2002.

J. Changeux, Allosteric Receptors: From Electric Organ to Cognition, Annual Review of Pharmacology and Toxicology, vol.50, issue.1, pp.1-38, 2010.
DOI : 10.1146/annurev.pharmtox.010909.105741

URL : http://www.annualreviews.org/doi/pdf/10.1146/annurev.pharmtox.010909.105741

J. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nature Reviews Neuroscience, vol.153, issue.6, pp.1-13, 2010.
DOI : 10.1016/j.molmed.2008.01.001

A. Damijonaitis, J. Broichhagen, T. Urushima, K. Hüll, J. Nagpal et al., AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks, ACS Chemical Neuroscience, vol.6, issue.5, pp.701-707, 2015.
DOI : 10.1021/acschemneuro.5b00030

A. Damijonaitis, D. M. Barber, and D. Trauner, The photopharmacology of nicotinic acetylcholine receptors, 2016.

J. A. Dani and M. De-biasi, Mesolimbic Dopamine and Habenulo-Interpeduncular Pathways in Nicotine Withdrawal, Cold Spring Harbor Perspectives in Medicine, vol.3, issue.6, pp.12138-12146, 2013.
DOI : 10.1101/cshperspect.a012138

URL : http://perspectivesinmedicine.cshlp.org/content/3/6/a012138.full.pdf

W. J. Deal, B. F. Erlanger, and D. D. Nachmansohn, PHOTOREGULATION OF BIOLOGICAL ACTIVITY BY PHOTOCHROMIC REAGENTS, III. PHOTOREGULATION OF BIOELECTRICITY BY ACETYLCHOLINE RECEPTOR INHIBITORS, Proceedings of the National Academy of Sciences, vol.64, issue.4, pp.1230-1234, 1969.
DOI : 10.1073/pnas.64.4.1230

K. Deisseroth, Optogenetics: 10 years of microbial opsins in neuroscience, Nature Neuroscience, vol.257, issue.9, pp.1213-1225, 2015.
DOI : 10.1038/311756a0

M. Dong, A. Babalhavaeji, S. Samanta, A. A. Beharry, and G. A. Woolley, Red-Shifting Azobenzene Photoswitches for in Vivo Use, Accounts of Chemical Research, vol.48, issue.10, pp.2662-2670, 2015.
DOI : 10.1021/acs.accounts.5b00270

R. M. Drenan and H. A. Lester, Insights into the Neurobiology of the Nicotinic Cholinergic System and Nicotine Addiction from Mice Expressing Nicotinic Receptors Harboring Gain-of-Function Mutations, Pharmacological Reviews, vol.64, issue.4, pp.869-879, 2012.
DOI : 10.1124/pr.111.004671

R. M. Drenan, S. R. Grady, P. Whiteaker, T. Mcclure-begley, S. Mckinney et al., In Vivo Activation of Midbrain Dopamine Neurons via Sensitized, High-Affinity ??6??? Nicotinic Acetylcholine Receptors, Neuron, vol.60, issue.1, pp.123-136, 2008.
DOI : 10.1016/j.neuron.2008.09.009

R. M. Drenan, S. R. Grady, A. D. Steele, S. Mckinney, N. E. Patzlaff et al., Cholinergic Modulation of Locomotion and Striatal Dopamine Release Is Mediated by ??6??4* Nicotinic Acetylcholine Receptors, Journal of Neuroscience, vol.30, issue.29, pp.9877-9889, 2010.
DOI : 10.1523/JNEUROSCI.2056-10.2010

G. C. Ellis-davies, Caged compounds: photorelease technology for control of cellular chemistry and physiology, Nature Methods, vol.44, issue.8, pp.619-628, 2007.
DOI : 10.1113/jphysiol.1996.sp021475

R. Exley, N. Maubourguet, V. David, R. Eddine, A. Evrard et al., Distinct contributions of nicotinic acetylcholine receptor subunit ??4 and subunit ??6 to the reinforcing effects of nicotine, Proceedings of the National Academy of Sciences, vol.50, issue.21, pp.7577-7582, 2011.
DOI : 10.1073/pnas.93.21.11382

D. L. Fortin, T. W. Dunn, A. Fedorchak, D. Allen, R. Montpetit et al., channels in mammalian neurons, Journal of Neurophysiology, vol.21, issue.1, pp.488-496, 2011.
DOI : 10.1523/JNEUROSCI.0311-10.2010

C. D. Fowler, Q. Lu, P. M. Johnson, M. J. Marks, and P. J. Kenny, Habenular ??5 nicotinic receptor subunit signalling controls nicotine intake, Nature, vol.42, issue.7340, pp.597-601, 2011.
DOI : 10.1016/S0028-3908(01)00194-0

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079537/pdf

J. A. Frank, M. Moroni, R. Moshourab, M. Sumser, G. R. Lewin et al., Photoswitchable fatty acids enable optical control of TRPV1, Nature Communications, vol.14, pp.1-11, 2015.
DOI : 10.1113/jphysiol.2013.261180

S. D. Glick, E. M. Sell, S. E. Mccallum, and I. M. Maisonneuve, Brain regions mediating ??3??4 nicotinic antagonist effects of 18-MC on nicotine self-administration, European Journal of Pharmacology, vol.669, issue.1-3, pp.71-75, 2011.
DOI : 10.1016/j.ejphar.2011.08.001

C. Gotti, B. Balestra, M. Moretti, G. E. Rovati, L. Maggi et al., Bungarotoxin receptors, British Journal of Pharmacology, vol.20, issue.1, pp.1197-1206, 1998.
DOI : 10.1113/jphysiol.1963.sp007040

S. Granon, P. Faure, and J. Changeux, Executive and social behaviors under nicotinic receptor regulation, Proceedings of the National Academy of Sciences, vol.3, issue.3, pp.9596-9601, 2003.
DOI : 10.3109/15622970209150616

URL : http://www.pnas.org/content/100/16/9596.full.pdf

K. Guillem, B. Bloem, R. B. Poorthuis, M. Loos, A. B. Smit et al., Nicotinic Acetylcholine Receptor ??2 Subunits in the Medial Prefrontal Cortex Control Attention, Science, vol.272, issue.5259, pp.888-891, 2011.
DOI : 10.1126/science.272.5259.263

URL : https://hal.archives-ouvertes.fr/hal-01153665

A. M. Gurney and H. A. Lester, Light-flash physiology with synthetic photosensitive compounds., Physiological Reviews, vol.67, issue.2, pp.583-617, 1987.
DOI : 10.1152/physrev.1987.67.2.583

L. Harrington, X. Viñals, A. Herrera-solís, A. Flores, C. Morel et al., Role of ??4* Nicotinic Acetylcholine Receptors in the Habenulo???Interpeduncular Pathway in Nicotine Reinforcement in Mice, Neuropsychopharmacology, vol.19, issue.7, pp.1790-1802, 2016.
DOI : 10.1016/j.cub.2013.09.041

URL : https://hal.archives-ouvertes.fr/hal-01542255

K. J. Jackson, S. S. Sanjakdar, P. P. Muldoon, J. M. Mcintosh, and M. I. Damaj, The ??3??4* nicotinic acetylcholine receptor subtype mediates nicotine reward and physical nicotine withdrawal signs independently of the ??5 subunit in the mouse, Neuropharmacology, vol.70, pp.228-235, 2013.
DOI : 10.1016/j.neuropharm.2013.01.017

H. Janovjak, S. Szobota, C. Wyart, D. Trauner, and E. Y. Isacoff, A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing, Nature Neuroscience, vol.52, issue.8, pp.1027-1032, 2010.
DOI : 10.1038/nn.2589

J. Jeong, J. G. Mccall, G. Shin, Y. Zhang, R. Al-hasani et al., Wireless Optofluidic Systems for Programmable In??Vivo Pharmacology and Optogenetics, Cell, vol.162, issue.3, pp.662-674, 2015.
DOI : 10.1016/j.cell.2015.06.058

J. Kang, D. Kawaguchi, I. Coin, Z. Xiang, D. D. O-'leary et al., In??Vivo Expression of a Light-Activatable Potassium Channel Using Unnatural Amino Acids, Neuron, vol.80, issue.2, pp.358-370, 2013.
DOI : 10.1016/j.neuron.2013.08.016

M. A. Kienzler, A. Reiner, E. Trautman, S. Yoo, D. Trauner et al., A Red-Shifted, Fast-Relaxing Azobenzene Photoswitch for Visible Light Control of an Ionotropic Glutamate Receptor, Journal of the American Chemical Society, vol.135, issue.47, pp.17683-17686, 2013.
DOI : 10.1021/ja408104w

C. K. Kim, A. Adhikari, and K. Deisseroth, Integration of optogenetics with complementary methodologies in systems neuroscience, Nature Reviews Neuroscience, vol.5, issue.4, pp.222-235, 2017.
DOI : 10.1002/emmm.201000100

R. H. Kramer, A. Mourot, and H. Adesnik, Optogenetic pharmacology for control of native neuronal signaling proteins, Nature Neuroscience, vol.76, issue.7, pp.816-823, 2013.
DOI : 10.1002/anie.201205475

URL : https://hal.archives-ouvertes.fr/hal-01542261

F. Krieger, A. Mourot, R. Araoz, F. Kotzyba-hibert, J. Molgó et al., Fluorescent Agonists for the Torpedo Nicotinic Acetylcholine Receptor, ChemBioChem, vol.87, issue.7, pp.1146-1153, 2008.
DOI : 10.1017/CBO9780511626203

URL : https://hal.archives-ouvertes.fr/hal-00289840

M. E. Krouse, H. A. Lester, N. H. Wassermann, and B. F. Erlanger, Rates and equilibria for a photoisomerizable antagonist at the acetylcholine receptor of Electrophorus electroplaques, The Journal of General Physiology, vol.86, issue.2, pp.235-256, 1985.
DOI : 10.1085/jgp.86.2.235

C. Labarca, J. Schwarz, P. Deshpande, S. Schwarz, M. W. Nowak et al., Point mutant mice with hypersensitive ??4 nicotinic receptors show dopaminergic deficits and increased anxiety, Proceedings of the National Academy of Sciences, vol.62, issue.2, pp.2786-2791, 2001.
DOI : 10.1016/S0091-3057(98)00157-9

URL : http://www.pnas.org/content/98/5/2786.full.pdf

L. Laprell, E. Repak, V. Franckevicius, F. Hartrampf, J. Terhag et al., Optical control of NMDA receptors with a diffusible photoswitch, Nature Communications, vol.42, pp.1-11, 2015.
DOI : 10.1016/j.neuron.2004.04.003

L. Novère, N. Corringer, P. Changeux, and J. , The diversity of subunit composition in nAChRs: Evolutionary origins, physiologic and pharmacologic consequences, Journal of Neurobiology, vol.54, issue.4, pp.447-56, 2002.
DOI : 10.1124/mol.54.6.1124

D. Lemoine, R. Durand-de-cuttoli, and A. Mourot, Optogenetic Control of Mammalian Ion Channels with Chemical Photoswitches, Methods Mol Biol, vol.1, issue.26, pp.177-193, 2016.
DOI : 10.1038/nprot.2006.86

URL : https://hal.archives-ouvertes.fr/hal-01542254

M. M. Lerch, M. J. Hansen, G. M. Van-dam, W. Szymanski, and B. L. Feringa, Emerging Targets in Photopharmacology, Angewandte Chemie International Edition, vol.17, issue.37, pp.10978-10999, 2016.
DOI : 10.3390/molecules17066605

H. A. Lester, M. E. Krouse, M. M. Nass, N. H. Wassermann, and B. F. Erlanger, Light-activated drug confirms a mechanism of ion channel blockade, Nature, vol.76, issue.5722, pp.509-510, 1979.
DOI : 10.1038/266373a0

H. A. Lester, M. E. Krouse, M. M. Nass, N. H. Wassermann, and B. F. Erlanger, A covalently bound photoisomerizable agonist. Comparison with reversibly bound agonists at electrophorus electroplaques, The Journal of General Physiology, vol.75, issue.2, pp.207-232, 1980.
DOI : 10.1085/jgp.75.2.207

URL : http://jgp.rupress.org/content/jgp/75/2/207.full.pdf

J. Levitz, C. Pantoja, B. Gaub, H. Janovjak, A. Reiner et al., Optical control of metabotropic glutamate receptors, Nature Neuroscience, vol.17, issue.4, pp.507-516, 2013.
DOI : 10.1186/gb-2007-8-s1-s10

J. Levitz, A. T. Popescu, A. Reiner, and E. Y. Isacoff, A Toolkit for Orthogonal and in vivo Optical Manipulation of Ionotropic Glutamate Receptors, Frontiers in Molecular Neuroscience, vol.280, issue.6, p.163, 2016.
DOI : 10.1038/nature08323

W. Lin, C. M. Davenport, A. Mourot, D. Vytla, C. M. Smith et al., Receptor for Optical Control of Neural Inhibition, ACS Chemical Biology, vol.9, issue.7, pp.1414-1419, 2014.
DOI : 10.1021/cb500167u

URL : https://hal.archives-ouvertes.fr/hal-01542257

W. Lin, M. Tsai, C. M. Davenport, C. M. Smith, J. Veit et al., A Comprehensive Optogenetic Pharmacology Toolkit for In??Vivo Control of GABA A Receptors and Synaptic Inhibition, Neuron, vol.88, issue.5, pp.879-891, 2015.
DOI : 10.1016/j.neuron.2015.10.026

M. Mameli-engvall, A. Evrard, S. Pons, U. Maskos, T. H. Svensson et al., Hierarchical Control of Dopamine Neuron-Firing Patterns by Nicotinic Receptors, Neuron, vol.50, issue.6, pp.911-921, 2006.
DOI : 10.1016/j.neuron.2006.05.007

URL : https://hal.archives-ouvertes.fr/pasteur-00176372

L. M. Marubio, A. M. Gardier, S. Durier, D. David, R. Klink et al., Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors, European Journal of Neuroscience, vol.18, issue.7, pp.1329-1337, 2003.
DOI : 10.1007/BF00429192

U. Maskos, B. E. Molles, S. Pons, M. Besson, B. P. Guiard et al., Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors, Nature, vol.47, issue.7047, pp.103-107, 2005.
DOI : 10.1016/0165-0270(93)90026-N

URL : https://hal.archives-ouvertes.fr/pasteur-00162546

C. L. Morales-perez, C. M. Noviello, and R. E. Hibbs, X-ray structure of the human ??4??2 nicotinic receptor, Nature, vol.71, issue.7625, pp.411-415, 2016.
DOI : 10.1107/S1399004714026698

C. Morel, L. Fattore, S. Pons, Y. A. Hay, F. Marti et al., Nicotine consumption is regulated by a human polymorphism in dopamine neurons, Molecular Psychiatry, vol.4, issue.8, pp.930-936, 2013.
DOI : 10.1016/S0896-6273(00)00042-8

URL : https://hal.archives-ouvertes.fr/hal-01541366

A. Mourot, J. Rodrigo, F. Kotzyba-hibert, S. Bertrand, D. Bertrand et al., Probing the Reorganization of the Nicotinic Acetylcholine Receptor during Desensitization by Time-Resolved Covalent Labeling Using [3H]AC5, a Photoactivatable Agonist, Molecular Pharmacology, vol.69, issue.2, pp.452-461, 2006.
DOI : 10.1124/mol.105.017566

A. Mourot, M. A. Kienzler, M. R. Banghart, T. Fehrentz, F. M. Huber et al., Tuning Photochromic Ion Channel Blockers, ACS Chemical Neuroscience, vol.2, issue.9, pp.536-543, 2011.
DOI : 10.1021/cn200037p

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401033/pdf

A. Mourot, T. Fehrentz, Y. Le-feuvre, C. M. Smith, C. Herold et al., Rapid optical control of nociception with an ion-channel photoswitch, Nature Methods, vol.59, issue.4, pp.396-402, 2012.
DOI : 10.1038/nature719

URL : https://hal.archives-ouvertes.fr/hal-01542262

A. Mourot, I. Tochitsky, and R. H. Kramer, Light at the end of the channel: optical manipulation of intrinsic neuronal excitability with chemical photoswitches, Frontiers in Molecular Neuroscience, vol.6, pp.1-15, 2013.
DOI : 10.3389/fnmol.2013.00005

URL : https://hal.archives-ouvertes.fr/hal-01542260

A. Mourot, C. Herold, M. A. Kienzler, and R. H. Kramer, Understanding and improving photo-control of ion channels in nociceptors with azobenzene photoswitches, Brit J Pharmacol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578413

J. Nargeot, H. A. Lester, N. J. Birdsall, J. Stockton, N. H. Wassermann et al., A photoisomerizable muscarinic antagonist. Studies of binding and of conductance relaxations in frog heart, The Journal of General Physiology, vol.79, issue.4, pp.657-678, 1982.
DOI : 10.1085/jgp.79.4.657

M. M. Nass, H. A. Lester, and M. E. Krouse, Response of acetylcholine receptors to photoisomerizations of bound agonist molecules, Biophysical Journal, vol.24, issue.1, pp.135-160, 1978.
DOI : 10.1016/S0006-3495(78)85352-1

J. Naudé, S. Tolu, M. Dongelmans, N. Torquet, S. Valverde et al., Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking, Nature Neuroscience, vol.78, issue.3, pp.471-478, 2016.
DOI : 10.1016/S0166-2236(03)00177-2

C. Naylor, D. Quarta, C. Fernandes, and I. P. Stolerman, Tolerance to nicotine in mice lacking ??7 nicotinic receptors, Psychopharmacology, vol.29, issue.3, pp.558-563, 2005.
DOI : 10.1007/978-1-4613-3967-0_8

Á. Nemecz, M. S. Prevost, A. Menny, and P. Corringer, Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels, Neuron, vol.90, issue.3, pp.452-470, 2016.
DOI : 10.1016/j.neuron.2016.03.032

M. Nys, D. Kesters, and C. Ulens, Structural insights into Cys-loop receptor function and ligand recognition, Biochemical Pharmacology, vol.86, issue.8, pp.1042-1053, 2013.
DOI : 10.1016/j.bcp.2013.07.001

M. R. Picciotto, M. J. Higley, and Y. S. Mineur, Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior, Neuron, vol.76, issue.1, pp.116-129, 2012.
DOI : 10.1016/j.neuron.2012.08.036

URL : https://doi.org/10.1016/j.neuron.2012.08.036

A. Polosukhina, J. Litt, I. Tochitsky, J. Nemargut, Y. Sychev et al., Photochemical Restoration of Visual Responses in Blind Mice, Neuron, vol.75, issue.2, pp.271-82, 2012.
DOI : 10.1016/j.neuron.2012.05.022

S. Pons, L. Fattore, G. Cossu, S. Tolu, E. Porcu et al., Crucial Role of ??4 and ??6 Nicotinic Acetylcholine Receptor Subunits from Ventral Tegmental Area in Systemic Nicotine Self-Administration, Journal of Neuroscience, vol.28, issue.47, pp.12318-12327, 2008.
DOI : 10.1523/JNEUROSCI.3918-08.2008

I. Posadas, B. López-hernández, and V. Ceña, Nicotinic Receptors in Neurodegeneration, Current Neuropharmacology, vol.11, issue.3, pp.298-314, 2013.
DOI : 10.2174/1570159X11311030005

URL : http://europepmc.org/articles/pmc3648781?pdf=render

G. Quandt, G. Höfner, J. Pabel, J. Dine, M. Eder et al., First Photoswitchable Neurotransmitter Transporter Inhibitor: Light-Induced Control of ??-Aminobutyric Acid Transporter 1 (GAT1) Activity in Mouse Brain, Journal of Medicinal Chemistry, vol.57, issue.15, pp.6809-6821, 2014.
DOI : 10.1021/jm5008566

A. Rullo, A. Reiner, A. Reiter, D. Trauner, E. Y. Isacoff et al., -substituted azobenzene derivative, Chem. Commun., vol.49, issue.93, pp.14613-14615, 2014.
DOI : 10.1016/S0040-4020(01)96272-6

R. Salas, F. Pieri, B. Fung, J. A. Dani, and M. De-biasi, Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor, J Neurosci, vol.23, pp.6255-6263, 2003.

R. Salas, F. Pieri, and M. De-biasi, Decreased Signs of Nicotine Withdrawal in Mice Null for the ??4 Nicotinic Acetylcholine Receptor Subunit, Journal of Neuroscience, vol.24, issue.45, pp.10035-10039, 2004.
DOI : 10.1523/JNEUROSCI.1939-04.2004

R. Salas, R. Sturm, J. Boulter, and M. De-biasi, Nicotinic Receptors in the Habenulo-Interpeduncular System Are Necessary for Nicotine Withdrawal in Mice, Journal of Neuroscience, vol.29, issue.10, pp.3014-3018, 2009.
DOI : 10.1523/JNEUROSCI.4934-08.2009

G. Sandoz, J. Levitz, R. H. Kramer, and E. Y. Isacoff, Optical Control of Endogenous Proteins with a Photoswitchable Conditional Subunit Reveals a Role for TREK1 in GABAB Signaling, Neuron, vol.74, issue.6, pp.1005-1014, 2012.
DOI : 10.1016/j.neuron.2012.04.026

URL : https://hal.archives-ouvertes.fr/hal-00731896

M. Schönberger and D. Trauner, A Photochromic Agonist for ??-Opioid Receptors, Angewandte Chemie International Edition, vol.39, issue.12, pp.3264-3267, 2014.
DOI : 10.1016/S0896-6273(03)00402-1

M. Schönberger, M. Althaus, M. Fronius, W. Clauss, and D. Trauner, Controlling epithelial sodium channels with light using photoswitchable amilorides, Nature Chemistry, vol.82, issue.8, pp.712-719, 2014.
DOI : 10.1165/2009-0335OC

R. E. Sheridan and H. A. Lester, Functional stoichiometry at the nicotinic receptor. The photon cross section for phase 1 corresponds to two bis-Q molecules per channel, The Journal of General Physiology, vol.80, issue.4, pp.499-515, 1982.
DOI : 10.1085/jgp.80.4.499

B. C. Shields, E. Kahuno, C. Kim, P. F. Apostolides, J. Brown et al., Deconstructing behavioral neuropharmacology with cellular specificity, Science, vol.356, issue.6333, p.356, 2017.
DOI : 10.1126/science.1093490

I. Silman and A. Karlin, Acetylcholine Receptor: Covalent Attachment of Depolarizing Groups at the Active Site, Science, vol.164, issue.3886, pp.1420-1421, 1969.
DOI : 10.1126/science.164.3886.1420

M. Stein, S. J. Middendorp, V. Carta, E. Pejo, D. E. Raines et al., Receptors, Angewandte Chemie International Edition, vol.29, issue.42, pp.10500-10504, 2012.
DOI : 10.1523/JNEUROSCI.3481-08.2009

URL : https://hal.archives-ouvertes.fr/hal-01482816

M. Stein, A. Breit, T. Fehrentz, T. Gudermann, and D. Trauner, Optical Control of TRPV1 Channels, Angewandte Chemie International Edition, vol.287, issue.37, pp.9845-9848, 2013.
DOI : 10.1074/jbc.M112.408617

S. Szobota, P. Gorostiza, F. Del-bene, C. Wyart, D. L. Fortin et al., Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor, Neuron, vol.54, issue.4, pp.535-545, 2007.
DOI : 10.1016/j.neuron.2007.05.010

A. Taly, P. Corringer, D. Guedin, P. Lestage, and J. Changeux, Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system, Nature Reviews Drug Discovery, vol.325, issue.9, pp.1-18, 2009.
DOI : 10.1113/jphysiol.1957.sp005838

A. R. Tapper, S. L. Mckinney, R. Nashmi, J. Schwarz, P. Deshpande et al., Nicotine Activation of ??4* Receptors: Sufficient for Reward, Tolerance, and Sensitization, Science, vol.306, issue.5698, pp.1029-1032, 2004.
DOI : 10.1126/science.1099420

I. Tochitsky, M. R. Banghart, A. Mourot, J. Z. Yao, B. Gaub et al., Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors, Nature Chemistry, vol.2, issue.2, pp.105-111, 2012.
DOI : 10.1002/(SICI)1097-0134(19981115)33:3<367::AID-PROT6>3.0.CO;2-W

URL : https://hal.archives-ouvertes.fr/hal-01542264

I. Tochitsky, A. Polosukhina, V. E. Degtyar, N. Gallerani, C. M. Smith et al., Restoring Visual Function to Blind Mice with a Photoswitch that Exploits Electrophysiological Remodeling of Retinal Ganglion Cells, Neuron, vol.81, issue.4, pp.800-813, 2014.
DOI : 10.1016/j.neuron.2014.01.003

S. Tolu, R. Eddine, F. Marti, V. David, M. Graupner et al., Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement, Molecular Psychiatry, vol.160, issue.3, pp.382-393, 2012.
DOI : 10.1016/j.neuron.2011.01.020

URL : https://hal.archives-ouvertes.fr/hal-01541329

A. Vaziri and V. Emiliani, Reshaping the optical dimension in optogenetics, Current Opinion in Neurobiology, vol.22, issue.1, pp.128-137, 2012.
DOI : 10.1016/j.conb.2011.11.011

M. Volgraf, P. Gorostiza, R. Numano, R. H. Kramer, E. Y. Isacoff et al., Allosteric control of an ionotropic glutamate receptor with an optical switch, Nature Chemical Biology, vol.49, issue.1, pp.47-52, 2005.
DOI : 10.1038/nchembio756

M. Volgraf, P. Gorostiza, S. Szobota, M. R. Helix, E. Y. Isacoff et al., Reversibly Caged Glutamate:?? A Photochromic Agonist of Ionotropic Glutamate Receptors, Journal of the American Chemical Society, vol.129, issue.2, pp.260-261, 2007.
DOI : 10.1021/ja067269o

C. L. Walters, S. Brown, J. Changeux, B. Martin, and M. I. Damaj, The ??2 but not ??7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice, Psychopharmacology, vol.18, issue.3-4, pp.339-344, 2006.
DOI : 10.1007/s00213-005-0295-x

URL : https://hal.archives-ouvertes.fr/pasteur-00161485

N. H. Wassermann and B. F. Erlanger, Agents related to a potent activator of the acetylcholine receptor of Electrophorus electricus, Chemico-Biological Interactions, vol.36, issue.3, pp.251-258, 1981.
DOI : 10.1016/0009-2797(81)90069-7

N. H. Wassermann, E. Bartels, and B. F. Erlanger, Conformational properties of the acetylcholine receptor as revealed by studies with constrained depolarizing ligands, Proceedings of the National Academy of Sciences, vol.76, issue.1, pp.256-265, 1979.
DOI : 10.1073/pnas.76.1.256

S. Wonnacott and J. Barik, Nicotinic ACh Receptors, Tocris Reviews, vol.28, pp.1-20, 2007.

J. Wu, Q. Liu, P. Tang, J. D. Mikkelsen, J. Shen et al., Heteromeric ??7??2 Nicotinic Acetylcholine Receptors in the Brain, Trends in Pharmacological Sciences, vol.37, issue.7, pp.562-574, 2016.
DOI : 10.1016/j.tips.2016.03.005

C. Wyart, F. Del-bene, E. Warp, E. K. Scott, D. Trauner et al., Optogenetic dissection of a behavioural module in the vertebrate spinal cord, Nature, vol.293, issue.7262, pp.407-410, 2009.
DOI : 10.1007/BF00228963

W. Xu, S. Gelber, A. Orr-urtreger, D. Armstrong, R. A. Lewis et al., Megacystis, mydriasis, and ion channel defect in mice lacking the ??3 neuronal nicotinic acetylcholine receptor, Proceedings of the National Academy of Sciences, vol.41, issue.2, pp.5746-51, 1999.
DOI : 10.1002/ajmg.1320410224

J. W. Young, K. Finlayson, C. Spratt, H. M. Marston, N. Crawford et al., Nicotine Improves Sustained Attention in Mice: Evidence for Involvement of the ??7 Nicotinic Acetylcholine Receptor, Neuropsychopharmacology, vol.17, issue.Suppl, pp.891-900, 2004.
DOI : 10.1046/j.1460-9568.1999.00685.x

L. Yue, M. Pawlowski, S. S. Dellal, A. Xie, F. Feng et al., Robust photoregulation of GABAA receptors by allosteric modulation with a propofol analogue, Nature Communications, vol.85, issue.1, p.1095, 2012.
DOI : 10.1016/j.exer.2007.06.005

X. X. Zhou, M. Pan, and M. Z. Lin, Investigating neuronal function with optically controllable proteins, Frontiers in Molecular Neuroscience, vol.5, issue.e92917, p.37, 2015.
DOI : 10.1038/nchembio.210

URL : https://doi.org/10.3389/fnmol.2015.00037

M. Zoli, F. Pistillo, and C. Gotti, Diversity of native nicotinic receptor subtypes in mammalian brain, Neuropharmacology, vol.96, pp.302-311, 2015.
DOI : 10.1016/j.neuropharm.2014.11.003

C. Zussy, X. Gómez-santacana, X. Rovira, D. De-bundel, S. Ferrazzo et al., Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4, Molecular Psychiatry, vol.268, 2016.
DOI : 10.1016/j.neuropharm.2008.05.007