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ABSTRACT

Three dimensional polarized light imaging (3D-PLI) uti-
lizes the birefringence in postmortem tissue to map its spatial
fiber structure at a submillimeter resolution. We propose an
analytical method to compute the fiber orientation distribution
function (ODF) from high-resolution vector data provided by
3D-PLI. This strategy enables the bridging of high resolution
3D-PLI to diffusion magnetic resonance imaging with rela-
tively low spatial resolution. First, the fiber ODF is modeled
as a sum of K orientations on the unit sphere and expanded
with a high order spherical harmonics series. Then, the co-
efficients of the spherical harmonics are derived directly with
the spherical Fourier transform. We quantitatively validate
the accuracy of the reconstruction against synthetic data and
show that we can recover complex fiber configurations in the
human heart at different scales.

Index Terms— fiber orientation distribution function
ODF, 3D-PLI, polarized light imaging, spherical harmonics,
spherical Fourier transform

1. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is the only
imaging technique able to assess the structural architecture
of human fibrous organs, in vivo and non invasively. How-
ever, different imaging methods at multiple scales are nec-
essary to improve our understanding of brain and heart dis-
orders. By providing microscopic fiber orientation measure-
ments, 3D-PLI is not only a potential technique to validate
diffusion magnetic resonance imaging results but also a com-
plementary imaging approach. Therefore, it is compulsory to
bridge the spatial scale information from micro to millimeter
dimensions. The orientation distribution function, which is
widely used in dMRI community [1, 2], is a perfect tool to
compare dMRI and 3D-PLI fiber orientations estimates.

To this end, Axer et al. [3] introduced an estimate of fiber
ODF derived from 3D-PLI high-resolution vector data, which
they called pliODF. Starting from the high-resolution fiber
orientation map (FOM) [4] illustrated in Figure 1, their ap-
proach is implemented as follows: 1. Define super-voxels
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to downsample the high-resolution data measured from histo-
logical tissue sections. Super-voxels are rectangular compart-
ments in one or a series of FOMs. In a super-voxel, there
are K = rows × columns × slices high-resolution ori-
entations. 2. Create a normalized directional histogram on
the unit sphere from discretized distribution of fiber orienta-
tion vectors in each super-voxel. 3. The spherical harmon-
ics (SH) series are used to approximate the discretized di-
rectional histogram within each super-voxel. This is the first
attempt to estimate the fiber ODF from the high-resolution
3D-PLI data and it benefits from the important concept of
super-voxel which allows to estimate the fiber ODF at dif-
ferent spatial scales. However, this technique has two main
limitations. First, it introduces angular errors in the recovered
pliODF due to the discretization of the directional histogram,
which is defined empirically and limits the order of the spher-
ical harmonics expansion. Second, it has no regularization
process and the least square solution approximates a discrete
set of the SH coefficients.

In this work, we overcome these limitations by propos-
ing an analytical procedure to derive the fiber ODF in order
to assess the spatial distribution of fiber orientations within
a super-voxel. Our main contribution is a new approach to
generate fiber ODF within a super-voxel of high-resolution
3D-PLI vector data by:

1. modeling the fiber ODF as a sum ofK Dirac delta func-
tions

2. and deriving its spherical harmonics coefficients using
the spherical Fourier transform.

This serves as a important step towards our major goal
which is the validation of diffusion MRI results such as trac-
tography via 3D-PLI. More specifically, this work leads to the
comparison of 3D fiber organizations resulting from different
imaging modalities and at different scales through the fiber
orientation distribution functions.

The rest of the paper continues as follows: our reconstruc-
tion method of the fiber ODF is described in section 2, then it
is evaluated on both synthetic and human datasets in section
3.



2. FIBER ORIENTATION DISTRIBUTION
FUNCTIONS RECONSTRUCTION

As a function defined on the unit sphere S2, the fiber ODF
can be expanded as linear combination of spherical harmon-
ics. Here we give a brief background information on spherical
harmonics before presenting how we obtain the exact SH co-
efficients that uniquely characterize our 3D-PLI-based fiber
ODF.

2.1. Spherical harmonics

The spherical harmonics (SH) of order l and phase factor m
are defined as

Y ml (θ, φ) = Nm
l P

m
l (cos θ)ejmφ (1)

where Nm
l is a normalization coefficient, Pml are the associ-

ated Legendre polynomials, θ ∈ [0, π] and φ ∈ [0, 2π) are the
colatitude and azimuth, respectively. The SH {Y ml : −l 6
m 6 l, l = 0, 1, ...} form an orthonormal basis over L2(S2)
and any square integrable function f(θ, φ) ∈ L2(S2) can be
expressed as

f(θ, φ) =

∞∑
l=0

l∑
m=−l

clmY
m
l (θ, φ) (2)

where clm are the SH coefficients of f . These coefficients are
obtained by computing the spherical Fourier transform of f
defined as

clm =

∫
S2
f(w)Y ml (w)dw (3)

for w ∈ S2 and the overbar denotes the conjugation. The unit
vector w is related to (θ, φ) by

w(θ, φ) = [sin θ cosφ sin θ sinφ cos θ]t (4)

where ·t indicates transposition. In this paper, both functions
f(θ, φ) and f(w) are assumed to be equal and written inter-
changeably to simplify notations.

2.2. pliODF

As aforementioned, [3] estimate the fiber ODF in a given
super-voxel using SH expansion to approximate the normal-
ized directional histogram. The SH coefficients are deter-
mined with a linear least square method. This problem can
be expressed in matrix format asH = BC, withH the vector
entries of the histogram,B is the basis matrix of the truncated
SH of maximum order or bandlimit Lmax and C is the SH
coefficients vector whose length increases non-linearly with
Lmax [2, 3]. The least square solution for C gives an approx-
imation of a discrete set of the SH coefficients because of the
discretization of the directional histogram, which limits the
Lmax of the SH and the angular resolution of the recovered
fiber ODF.
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Fig. 1. Fiber ODF generation. (A) Simulated dataset shows
the principle of super-voxel definition, adapted from [3]. The
corresponding fiber ODF is reconstructed in (B) with pliODF
technique while in (C) our approach improves the angular res-
olution.

In a previous work [5], we improved this solution by in-
creasing Lmax and regularizing the estimated SH coefficients
using the Laplace-Beltrami operator. The Laplace-Beltrami
operator ∆b is well-known in the dMRI community [2] and
satisfies the relation ∆bY

m
l = −l(l + 1)Y ml . Therefore,

the solution of the regularized SH coefficients writes C =
(BTB + λL)−1BTH where λ is the regularization weight
and L denotes the regularization matrix with entries l2(l+1)2

along the diagonal.
Although [5] improve the angular resolution of the esti-

mated pliODF, this solution still provides a discrete set of the
SH coefficients due to the discretization of the direction his-
togram. We therefore propose, in the next section, to deter-
mine all the exact coefficients of the SH expansion of our new
model of fiber ODF.

2.3. Our fiber ODF as sum of K Diracs

In each voxel of the FOM, we propose to describe the unit
fiber orientation vector as a two dimensional Dirac delta func-
tion δ on the sphere. Therefore, in a super-voxel containingK
orientations, the fiber orientation distribution function f can
be modeled as the sum of K Diracs [6], that is

f(θ, φ) =
1

K

K∑
k=1

δ(cos θ − cos θk)δ(φ− φk) (5)

Note that f(θ, φ) is completely defined by parameters (θk, φk)
of the K orientations located in the super-voxel. In the next
step, the coefficients of the SH expansion of f are determined.

2.4. Computation of the SH coefficients

Unlike [3] who used a linear least square method to get the
coefficients of the spherical harmonics expansion, we directly
recover the coefficients that uniquely define our fiber ODF f
by computing the spherical Fourier transform through Eq. (3)
since we know the parameters (θk, φk) of all fiber orientation
vectors determined from 3D-PLI analysis [7, 4], in a given
super-voxel.

In Eq. (3), when f is replaced by the collection of Diracs
as defined from Eq. (5), the sifting property of the Diracs is
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Fig. 2. Angular separation: Lmax = 10 is enough to detect
crossing fiber populations at acute angle α = 30◦.

applied, and the definition of the spherical harmonics in Eq.
(1) is substituted, then the SH coefficients are given by

clm =
Nm
l

K

K∑
k=1

Pml (cos θk)e−jmφk . (6)

This solution for the clm is the continuous equivalent of the
discrete one approximated for pliODF. Eq. 6 is exact and a
more accurate solution because it requires no discretization
since all the high resolution fiber orientation vectors are taken
into account in the computation. Furthermore, it can be eval-
uated at any Lmax.

We can now appraise the performance of our recovered
fiber ODF in the following section.

3. EVALUATING THE ODF

3.1. Synthetic data

The synthetic data consists of a FOM divided into 5 super-
voxels of size K = 10 × 10 × 1 containing 100 orientations
(θk, φk) each, describing 2 fiber populations crossing each
other at angles α = 30◦, 45◦, 60◦, 75◦ and 90◦ respectively.
We run our algorithm with Lmax = 6, 8, 10 and 12, we recall
that Lmax is the band-limit of the truncated SH expansion.
Although our method is independent of the SH basis used,
the real and symmetric basis defined in [2] is considered in
this section.

Angular separation. We start by demonstrating the abil-
ity of our recovered ODF to resolve crossing fiber populations
at different angles. Figure 2 shows that, with low Lmax = 6,
we are already able to separate fibers crossing at acute α =
45◦. Furthermore, Lmax = 10 is enough to detect and sepa-
rate crossings at α = 30◦. Overall, our algorithm is able to
find all crossing configurations at different angles except for
α 6 30◦ when Lmax 6 8. This result highlights that our
method can improve angular resolution of the reconstructed
fiber ODF in each super-voxel.

Fig. 3. Angular error: with Lmax = 10 our method gives
smallest error.

Angular error. For quantitative validation, we evaluate
our algorithm using the angular error expressed as

β =
1

K

K∑
k=1

arccos(vtkwk) (7)

which is the distance between vk the kth ground truth ori-
entation and wk the corresponding recovered orientation in a
super-voxel. Both orientations are defined as in Eq. 4. Figure
3 displays the angular errors in degrees obtained after ODF re-
construction with our algorithm noted Dirac Lmax = {6, 10}
compared to pliODF at Lmax = 6 as suggested by the authors
in [3] and its regularized version LB reg at Lmax = {6, 10}.
Here, the angular error is plotted against crossing angles α.
Results indicate that our algorithm produces less error than
the pliODF and LB reg even at Lmax = 6. At Lmax = 10,
we outperform LB reg expect at α = 60◦ while pliODF, not
plotted here, produces errors around β = 50◦. Moreover, at
α = 30◦ while the others give errors around β = 15◦, our
fiber ODF at Lmax = 10 gives again the lowest error about
β = 2◦. It should be noted that this error is caused by the
limited angular resolution of the selected Lmax and not by
errors introduced by our method. Indeed, this error decreases
very significantly with high SH orders in all crossing config-
urations when using our algorithm. These results agree with
our observations in the previous simulation.

3.2. Human heart data

We now perform our fiber ODF reconstruction approach on
post-mortem human heart data from a healthy adult. The or-
gan was frozen, sliced and imaged with respect to the PLI
protocol in [7]. Figure 4 (A) presents a coronal slice show-
ing the left and the right ventricles. The imaging procedure,
which does not require any staining of the tissue [7, 4], pro-
duced high-resolution data of 440×620 voxels in each FOM.
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Fig. 4. Fiber ODFs reconstructed from coronal ventricular tissue slices at super-voxels sizes SV 2 × 2 × 2 (B), 5 × 5 × 2 (C)
and 10× 10× 2 (D). Each glyph represents the probability distribution of orientations over S2 and color-coded in RGB space.

Fiber ODFs are computed at different resolutions defined by
the super-voxel size and Figure 4 (B), (C) and (D) display
the results for super-voxels of size 2 × 2 × 2, 5 × 5 × 2 and
10×10×2, respectively, where two consecutive and registered
FOM slices were taken into account. Figure 4 underlines two
important results in a zoomed region of the junction between
the left and the right ventricles in (A). First, crossing fiber
bundles are recovered in this intersection displaying a very
complex structure with mixing orientations that can change
very suddenly. Second, data can be integrated at different
scales as (B), (C) and (D) show the same region at different
spatial resolutions. This can be observed thanks to the down-
sampling of the high-resolution data into super-voxels.

4. DISCUSSION AND CONCLUSION

We proposed a new method to define and reconstruct the fiber
ODF from high-resolution 3D-PLI datasets. To this end, the
fiber ODF is modeled as a sum of K 2D Diracs on the sphere
and the coefficients of its SH expansion are calculated using
the spherical Fourier transform. This constitutes an elegant
solution for fiber ODF reconstruction from 3D-PLI data com-
pared to the pliODF [3] which is limited by the arbitrary dis-
cretization of the directional histogram.

Evaluations on synthetic datasets show that our method
outperforms the pliODF as the angular resolution of recov-
ered fiber ODFs are considerably improved and their angular
error is very low at high SH Lmax. This is very important
because introducing errors in the fiber ODFs limits the use of
3D-PLI as a gold standard. This angular error can be ame-
liorated since it depends on the technique used to find the
peaks of the ODF. Results from human data agree with the
high complex arrangement of the 3D myocytes in the junc-
tion between left and right ventricles as observed in [8] using
X-ray phase-contrast micro-tomography.

Finally our new approach to reconstruct the fiber orien-
tation distribution function opens the door to aligning high-
resolution 3D-PLI data to dMRI data. Therefore, multimodal

data analysis at voxel level will be investigated in our future
works.
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