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Abstract

Recent research reveals that personalized
medicine is one major way to treat cancer. In
order to develop personalized medicine, char-
acterizing the genomic alterations is a vital
component. Several methods have been pro-
posed to this end. One of the �rst meth-
ods is the Genome Alteration Print (GAP) by
Popova et al, which uses a deterministic ap-
proach. We follow this approach and develop
a parametric probabilistic model for GAP, to-
gether with its statistical estimation, based on
a preliminary segmentation of SNP measure-
ments obtained from microarray experiments.
For estimation, we implement the expectation-
maximization (EM) algorithm to maximize the
likelihood of this model and get the parameter
estimation which characterizes the genomic al-
terations. In our approach, the tumoral ploidy
is deduced from penalized model selection. Our
model is tested on simulated data and real
data.

Keywords EM algorithm, penalized maxi-
mum likelihood, tumoral genomic alterations,
GAP, SNP

Recent research reveals that personalized
medicine is arguably one major way to treat
cancer because of, for example, the immense
diversity of underlying genomic alterations. In
order to develop personalized medicine, charac-
terizing the genomic alterations is a vital com-
ponent. One way to characterize this alteration
is to use a Single Nucleotide Polymorphism

(SNP) microarray. A SNP is a nucleotide show-
ing variability in the population. In theory,
there are four possible variations. However
in practice, only two variations are observed
which are called A-allele and B-allele, one be-
ing common in a large proportion of the popu-
lation. Since the chromosomes in human come
in pairs, it is possible for a SNP to have the
genotype AA, BB, AB, or BA. The two former
cases are called homozygous SNP, and the two
latter, which are indistinguishable, are called
heterozygous SNP.

Using microarrays, one can detect genomic
alterations such as copy-number variation and
allele-imbalance. Having at hand two microar-
rays, one for the tumor, the other for the nor-
mal tissue, one can get rid of the unknown
proportion p of normal tissues in the tumor
sample which acts as a confusing parameter in
the tumoral alteration characterization. How-
ever, clinicians are expecting to retrieve this
information from only a single tumor sam-
ple microarray. Several methods have already
been developed for this goal. GenoCNA[1],
OncoSNP[2], and GPHMM[3] employ a Hid-
den Markov Model (HMM) integrating both
segmentation and mutation characterization in
a single step. GAP[4] and ASCAT[5] adopt a
two-step approach in which the data are �rst
segmented and then the mutation types are es-
timated. Both methods are based on an opti-
mization step with respect to p of a determinis-
tic quality criterion. Taking into account allelic
imbalance and copy number aberration, the cri-
terion used in ASCAT[5] measures a weighted
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discrepancy based on several heuristics. Notic-
ing that, for a given p, the possible mutations
are precisely localized in the a bi-dimensional
plane to be detailed later, the GAP[4] criterion
is de�ned as the number of segmented obser-
vations that are close to these locations within
a prede�ned proximity value. Comparison of
these methods [6] shows that, the two-step ap-
proaches have better performance.
Using the mutation localization in the bi-

dimensional plane introduced in [4], we develop
a parametric probabilistic model and realize
the estimation of its parameters, providing
not only the most probable mutation types
of each segment, but also a probabilistic dis-
tribution of these mutations. The estimation
uses an optimization with respect to p based
on the maximization of the log-likelihood
function together with the estimation of the
other parameters such as the variances of the
observations. Moreover, our approach does
not use any heuristic or any given tuning
parameter. We expect our strategy to be
not only satisfying from a mathematical
point-of-view but also bring to the clinicians
the expected probabilistic model for mutations.

Biological model for tumoral

mutations with SNP

For a given SNP s, the tumoral mutation type
is characterized by the number of replicates of
each strand denoted u and v, with u, v ≥ 0 (the
value 0 corresponding to a deletion). Depend-
ing on the zygosity (AA, AB, BA, or BB) of
the germline cells (i.e. normal tissue), one can
compute, as shown in Table. 1, the number of
each allele ngA, n

g
B in the germline cells and ntA,

ntB in the tumor. From these numbers, we have
access to the two quantities of interest, namely
the copy number

cn = 2p+(1−p)(ntA+ntB) = 2p+(1−p)(u+v),

and the B-allele frequency

baf =
p ngB + (1− p)ntB

2p + (1− p)(ntA + ntB)
.

In microarray experiment, measurements pro-
vide direct access to the B-allele frequency and

to the log-R-ratio, which is linked to the copy
number by the relation

lrr = α log2 cn + β,

where α is a contraction factor depending on
the microarray platform and β is a constant
shift due to tumor ploidy.

Table 1: Allele counts from u and v replicates
of each strand

germline → tumoral ngA ngB ntA ntB
(AA→ uAvA) 2 0 u+ v 0
(BA→ uBvA) 1 1 v u
(AB→ uAvB) 1 1 u v
(BB→ uBvB) 0 2 0 u+ v

Since neighboring SNP's tend to have the
same mutation process, the baf and lrr sig-
nals obtained in microarray experiment are as-
sumed to follow piecewise constant distribu-
tions. Hence, they can be segmented into ho-
mogeneous intervals with same tumoral muta-
tion. On one interval characterized by u and v,
one can remark that the copy number is con-
stant, however the B-allele frequency takes two
pairs of symmetrical values around baf = 0.5:
the homozygous SNP take value 0 (AA) or 1
(BB) and the heterozygous SNP (AB and BA)
take two symmetrical values in (0, 1), as soon as
p > 0. As labels A and B have been attributed
at random for each SNP, their order is non in-
formative, so that we use the symmetry and
aggregate the information to have baf ≥ 0.5.
After the symmetry, one interval with a mu-

tation k, characterized by 0 ≤ u ≤ v, is asso-
ciated with two centers c0k = (baf0k, lrrk) and
c1k = (baf1k, lrrk) in the (baf, lrr) plane. The
point c0k, which corresponds to heterozygous
SNP, satis�es

baf0k =
p+ (1− p)v

2p+ (1− p)(u+ v)

and is shown in Figure 1 by point (AB,uAvB).
Similarly, the point c1k corresponds to homozy-
gous SNP with baf1k = 1 and correspond to
the point (BB,(u + v)B). Two mutations k
and k′ leading to same copy number share
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Figure 1: Schematic illustration of the correspondence between the tumoral mutation and the
(baf, lrr) values assuming 0 ≤ u ≤ v. Mutations of germ line homozygous are in red. Mutations
of germ line heterozygous are in black and blue. The mutation of the latter being characterized
by a Loss of Heterozygosity (LOH). Mutations are characterized by (nhA, n

h
B, n

t
A, n

t
B).

the same homozygous center on the (baf, lrr)
plane c1k = c1k′ . For example, the mutations
(u = 2, v = 2) and (u = 1, v = 3) share the
same cn = 4 − 2p and correspond to the het-
erozygous mutation centers (AB, 2A2B) and
(AB,A3B) respectively in Figure 1, however
they are associated with the same homozygous
mutation center (BB, 4B).

Note that the positions of the points
(AB,uAvB) and (BB,(u+ v)B) in the (baf, lrr)
plane are uniquely de�ned by the unknown pa-
rameters p, α, and β.

Probabilistic model for tumoral

mutations with SNP

Having at hand a segmentation into n inter-
vals with homogenous mutation type, for the
i-th interval (i = 1, . . . , n) with Ni SNP's, we
denote the number of heterozygous SNP's by
N0
i and the number of homozygous SNP's by

N1
i = Ni − N0

i . Three summary variables are
extracted from the SNP's of the i-th interval:
LRRi the average over the Ni lrr observations,
BAF0

i (resp. BAF1
i ) the average over the N0

i

heterozygous (resp. N1
i homozygous) baf ob-

servations. According to Central Limit The-
orem, these variables follow asymptotically a
Gaussian distribution

BAF0
i = baf0k(i) + σ

ε0i√
N0
i

,

BAF1
i = baf1k(i) + σ

ε1i√
N1
i

,

LRRi = lrrk(i) + η
ξi√
Ni
,

where ε0i , ε
1
i , and ξi are Gaussian random vari-

ables with zero mean and unit standard devia-
tion, and k(i) denotes the mutation type of the
i-th interval. The simple underlying assump-
tion for this modelization is that the measure-
ments coming from individual SNP in an ho-
mogenous interval follow a distribution having
�nite �rst two moments.

The triplet (BAF0
i ,BAF1

i ,LRRi) is split into
two independent observations:

Cji = (BAFji ,LRR) = cjk(i) + ζji , j = 0, 1

corresponding respectively to the heterozygous
and homozygous observations. Here ζji is a
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bi-dimensional centered Gaussian distribution
with covariance matrix

Σj
i :=

(
σ2
/
N j
i 0

0 η2
/
Ni

)
.

Let us assume that we face at most K mu-
tations, corresponding to L ≤ 2K mutation
centers cjk(i) that we label as c` := (baf`, lrr`),
` = 1, . . . , L. We modelize the split obser-
vations with a Gaussian mixture model with
probability density function (pdf):

f(Cji ;N
j
i , Ni) =

L∑
`=1

π`φ(Cji ; c`,Σ
j
i )

where φ(., c,Σ) is the pdf of a bi-dimensional
Gaussian random variable centered on c with
covariance matrix Σ and where π`, ` =
1, . . . , L, are the mixture proportions.

In this modelization, the parameter to esti-
mate is

θ = (p, σ2, η2, α, β, {π`, ` = 1, . . . , L})

and the log-likelihood of the observations is

LL
(
θ; {Cji ;N

j
i , Ni}i=1,...,n, j=0,1

)
=

1∑
j=0

n∑
i=1

log

(
L∑
`=1

π`φ(Cji ; c`,Σ
j
i )

)
.

Maximum Likelihood Estima-

tion

We use a maximum likelihood approach to es-
timate the parameter. For our mixture model,
we propose an expectation-maximization (EM)
algorithm [7] and introduce the latent variables
zji` which equals 1 if (BAFji ,LRRi) is from mu-
tation center c`, 0 otherwise. The EM is known
to maximize the expectation, conditionally to
the observations, of the complete log-likelihood
de�ned by

LLc(θ; {Cji ;N
j
i , Ni}, {zji`})

=

n∑
i=1

1∑
j=0

L∑
`=1

zji`

[
log π` + log φ(Cji ; c`,Σ

j
i )
]
.

This leads in turn to maximize the log-
likelihood.

The parameter p, unlike the other parame-
ters (σ2, η2, α, β), cannot be straightforwardly
optimized inside the maximization step of the
EM, hence the optimization procedure is de-
signed into two nested levels using that

max
p,σ2,η2,α,β

= max
p

max
σ2,η2,α,β

.

Hence, we use an EM to deal with the maxi-
mization over (σ2, η2, α, β) nested in a gradient
descent over p.

The above estimation is done with a
�xed number of mutation centers correspond-
ing to copy numbers con�ned in the inter-
val [cnmin, cnmax]. We adopt a penalized
log-likelihood approach to select the range
[cnmin, cnmax] comparing AIC and BIC criteria.

EM for �xed p and �xed range of mu-

tations

Given a �xed number of mutation centers cor-
responding to copy numbers con�ned in the in-
terval [cnmin, cnmax] and a �xed p value, the
EM iterates two steps: one expectation and one
maximization.

The expectation step computes the expected
value of zji` given the parameter obtained in the

previous iteration denoted θ̆ = (σ̆2, η̆2, ᾰ, β̆),

τ ji` ← E(zji`|θ̆) =
π̆`φ(Cji ; c̆`, Σ̆

j
i )∑

` π̆`φ(Cji ; c̆`, Σ̆
j
i )
.

Using this updated value of τ ji`, the maxi-
mization leads to update the parameters ac-
cording to

π` ←
∑

i,j τ
j
i`∑

i,j,` τ
j
i`

,

σ2 ←
∑

i,j,` τ
j
i`N

j
i (BAFji − baf`)

2∑
i,j,` τ

j
i`

,

α ← CD −BE
AC −B2

,

β ← BD −AE
B2 −AC ,

η2 ←
∑

i,j,` τ
j
i`Ni(LRRi − α log2 cn` − β)2∑

i,j,` τ
j
i`

,
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where

A =
∑
i,j,`

τ ji`Ni(log2 cn`)
2,

B =
∑
i,j,`

τ ji`Ni log2 cn`,

C =
∑
i,j,`

τ ji`Ni,

D =
∑
i,j,`

τ ji`NiLRRi log2 cn`,

E =
∑
i,j,`

τ ji`NiLRRi.

The above two steps are repeated until conver-
gence criterion is met.

Initialization of parameters

Because the log-likelihood function in the mix-
ture model is not globally convex, the perfor-
mance of the EM algorithm is sensitive to the
choice of initial values of parameters. In our im-
plementation, the parameters (σ2, η2, α, β) are
initialized with di�erent values according to

(σ2)0 = var(BAF),

(η2)0 = var(LRR).

α0 =
LRRmax − LRRmin

log2 cnh − log2 cnl
,

β0 = LRRmax − α0 log2 cnh,

with cnmin ≤ cnl < cnh ≤ cnmax, being all pos-
sible combinations. Using the knowledge of p,
α0 and β0, we compute the centers c` and a�ect
each Cji to the closest c` in order to compute
the parameters π0` for ` = 1, . . . , L.

Maximization with respect to p

The behaviour of the expectation, condition-
ally to the observations, of the complete
log-likelihood viewed as a function of p is
smooth though not necessarily convex glob-
ally. Hence we use a grid search algorithm
to �nd the optimal value of p on the grid
p ∈ {0.025, 0.05, 0.075, . . . , 0.975}.

Model selection with penalized log-

likelihood

Our model depends on the K considered mu-
tations constraint to the interval [cnmin =

0, cnmax]. We select the values cnmax using a
penalized maximum likelihood approach [8, 9]
by miniimizing

−2LL(θ̂; {Cji ;N
j
i , Ni}) + pen(L)

where L is the number of parameters used in
the model and pen is the BIC penalty with the
form pen(L) = L log 2n.

Finally, the tumoral ploidy is computed as
the weighted average of the copy numbers de-
duced from our estimation:∑

i,j,` τ
j
i`N

j
i cn`∑

i,j,` τ
j
i`N

j
i

.

Results

Simulated data

To evaluate the performance of the algorithm,
we devised a strategy to generate simulated
data and compared the estimation results with
the real parameter used to generate the data
sets. The data generation strategy is as fol-
lows: 1) generate randomly 200 segments on a
microarray measurements of 261976 SNP's (the
number of SNP's used in a real microarray ex-
periment), 2) for each segment, generate inde-
pendently the number of two alleles following
a multiple Bernoulli distribution with P (n =
0) = 0.15, P (n = 1) = 0.5, P (n = 2) = 0.2,
P (n = 3) = 0.1, and P (n = 4) = 0.05, 3)
calculate the baf and lrr correspondingly and
symmetrize baf into the interval [0.5, 1], 4) on
each segment generate the number of homozy-
gous SNP's following a binomial distribution of
P (homozygous) = 0.8, and 5) add noise to the
baf and lrr values and form the �nal observa-
tions with given α and β. With this strategy,
we can generate simulated data with a maxi-
mum copy number of 8 for the tumor tissues.

First the implementation was tested on a sin-
gle simulated data set. The data set was gen-
erated with the parameter θ = (p = 0.1, α =
1, β = 0, σ2 = 0.04, η2 = 0.25) with the max-
imum copy number 8. Models with cnmax ∈
[3, 10] were used for the estimation. Using the
BIC criterion, the model with maximum copy
number 8 is selected, corresponding to the un-
derlying parameter. With this model, the pa-
rameter estimation gives θ̂ = (p̂ = 0.1, α̂ =

5



p p̂ σ̂2 η̂2 α̂ β̂

0.1 0.1 0.0350 0.215 0.999 0.00180
0.2 0.2 0.00342 0.216 0.999 0.00191
0.3 0.3 0.0342 0.216 0.999 0.00202
0.4 0.4 0.0347 0.216 0.999 0.00216
0.5 0.5 0.0349 0.216 0.999 0.00235
0.6 0.6 0.0348 0.218 0.998 0.00271
0.7 0.7 0.0340 0.215 0.997 0.00353
0.8 0.8 0.0334 0.208 0.996 0.00466
0.9 0.9 0.0306 0.207 0.998 0.00231

Table 2: Estimation result on simulated diluted
data sets.

1, β̂ = −0.00316, σ̂2 = 0.0404, η̂2 = 0.255),
which is in good agreement with the underlying
data. Also, the classi�cation error rate based
on maximum a posterior (MAP) probability is
0.025. The estimation result is show in Figure
2.

Next, to test the coherence of the algorithm,
we generated a series of tumor sample with the
same mutation type but with di�erent propor-
tions of normal tissues, similar to a diluted cell
line samples. Nine samples were generated with
p = (0.1, 0.2, . . . , 0.9) respectively. The other
parameters were set to be σ2 = 0.04, η2 = 0.25,
α = 1, and β = 0 in all the data sets. The algo-
rithm chooses the model with maximum copy
number 8 in all nine data sets with the BIC cri-
terion. And the parameter estimation is good
even in the data sets with normal tissues pro-
portion 0.9 (see TABLE 2). Even in the strong
contamination case with p = 0.9, the algorithm
still shows relatively coherent behavior and the
MAP classi�cation error is 0.13.

To evaluate the robustness of the algorithm,
we introduced more variability in the data gen-
eration strategy and tested on di�erent param-
eter values. The modi�ed strategy is as fol-
lows: 1) generate the number of segments on
the SNP`s n following a Poisson distribution
Poisson(λ = 200), 2) generate n − 1 break
points on the 261976 SNP`s (the number of
SNP`s used in a real microarray experiment),
3)

In�uence of p

We used three values of normal tissues pro-
portion in the Monte Carlo sampling p =

0.1125, 0.5125, 0.8125. The result is shown in
Table 3. It is evident that the algorithm is
rather robust against the normal tissue contam-
ination. And a moderate degree of normal tis-
sues contamination might be conducive to the
estimation of genomic mutations, which is in
accordance with Popova et al.[4].

In�uence of σ

We used three values σ = 0.2, 1.5, 3 in the
Monte Carlo sampling to determine its in�u-
ence on the estimation. The result is shown
in Table 4. This parameter has a large in�u-
ence on the quality of estimation result. This
is because, contrary to the LRR measurements
which is �xed not only by the underlying muta-
tion type and p, but also by α and β, BAF mea-
surements is uniquely determined by p and the
mutation type. Thus a large variance of BAF
will deteriorate greatly the estimation result. η
does not in�uence greatly the estimation result
because the BAF measurements still provide
enough information for the mutation types and
normal tissues proportion in the data sets.

In�uence of η

The in�uence of η was tested with three di�er-
ent values η = (0.5, 5, 10). The result for the
Monte Carlo simulation is listed in Table 5.

Cancer sample data

The implementation is also tested on real can-
cer sample data. The BIC criterion chooses
the model with maximum copy number 12,
among the models with maximum copy num-
ber {3, 4, . . . , 14}. However, using the slope
heuristic criterion[10, 11, 12], the model with
maximum copy number 4 is preferred, which
agrees with the result obtained by GAP. The
estimation results of the two models are shown
in Figure 3.

Discussion

We developed a parametric probabilistic model
for the characterization of genomic alterations
in tumors for segmented SNP microarray data,
using a Gaussian mixture model. The model is
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Figure 2: Top left: representation of the simulated data with θ = (p = 0.1, σ = 0.2, η = 0.5, α =
1, β = 0) in the (baf, lrr) plane. Black crosses represent the independent observations, blue
dots the mutation centers used to generate the observations, cyan dots non-occupied centers
in the complete model. Top right: parameter estimation on the simulated data. Blue crosses
represent the position of the mutation centers and the relative proportion with its size. Red
circles represent the estimated position of the mutation centers and their relative proportion.
Bottom left: the class label of the simulated data. Bottom right: the class label based on
maximum a posterior probability.

p |p̂− p| Number of error classes Error classi�cation rate

0.1125 0.0125(1.80e− 18) 8.67(2.87) 0.0278(9.20e− 3)
0.5125 0.0125(5.10e− 17) 6.67(2.77) 0.013(0.0032)
0.8125 0.0125(5.10e− 17) 7.27(2.15) 0.056(0.014)

Table 3: The estimation results for Monte Carlo simulation of di�erent p values. The values are
shown in the format mean(standard-deviation).
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Figure 3: Application of the implementation to a real cancer sample. Top left: visualization of
the model with maximum copy number 12. Top right: visualization of the model with maximum
copy number 4. Bottom left: optimal log-likelihood obtained by models with di�erent maximum
copy numbers. Bottom right: optimal log-likelihood divided by the number of parameters for
models with di�erent maximum copy numbers.
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σ |p̂− p| Number of error classes Error classi�cation rate

0.2 0.0125(1.80e− 18) 8.67(2.87) 0.0278(9.20e− 3)
1.5 0.281(0.353) 14.53(9.65) 0.520(0.383)
3 0.21(0.34) 12.27(8.94) 0.64(0.26)

Table 4: The estimation results for Monte Carlo simulation of di�erent σ values. The values are
shown in the format mean(standard-deviation).

η |p̂− p| Number of error classes Error classi�cation rate

0.5 0.0125(1.80e− 18) 8.67(2.87) 0.0278(9.20e− 3)
5 0.0225(0.0387) 7.667(2.77) 0.222(0.202)
10 0.0125(1.796e−18) 6.067(1.223) 0.291(2.055e− 2)

Table 5: The estimation results for Monte Carlo simulation of di�erent η values. The values are
shown in the format mean(standard-deviation).

based on the GAP[4] method, which employs
pattern recognition method on the (baf, lrr)
plane. It takes into account the normal tis-
sue contamination, the contraction factor of
LRR measurements, and the shift in LRR due
to tumor ploidy. The parameter estimation
is achieved by maximum likelihood estimation
and no tuning parameter is needed. There is
no limit on the numbers of mutation type in
the model, and theoretically we can consider
as many mutation types as necessary. This is
particularly useful in the case where the tumor
sample has genomic alterations with very large
copy number. And a model selection procedure
is applied to choose the right model complexity.
The algorithms is robust against severe normal
tissue contamination and measurement noises.

In developing the model, we made the fol-
lowing assumptions: (i) the noises in BAF and
LRR measurements have a �nite second mo-
ments, (ii) the contraction factor and shift con-
stant of LRR is the same for all measurements.
The �rst assumption is very weak in that no
assumptions about the form of the underly-
ing distributions are used, and is thus applica-
ble to a wide range of measurement platforms.
The Gaussian mixture model follows from the
central limit theorem when obtaining the seg-
mented data by averaging over the homoge-
neous intervals. In the second assumption, the
correction of GC content is neglected since this
can be treated in segmentation step[13].

Although an important and common phe-
nomenon in tumor development, tumor hetero-

geneity is not considered in this model.
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A Algorithm in summary

Based on the preceding discussion, the algorithm with a grid search of optimal p value for a given model is
shown as follows. The gradient descent method is similar, the only difference being that the loop on p values
(the red part in the algorithm) is replaced by a gradient descent on p.

input : Micro-array data
output: Finding the best parameters: (p, α, β, (σ2

k), (η2k), (πk))

begin
for CNmax in CNrange do

for CNmin in 0 : CNmax − 1 do
for p in pvals do

Calculate the theoretical centers on the grid;
(BAFk, LRRk);

/* Use EM algorithm to find the optimal values of (α, β, (σ2
k), (η2k), (πk)) */

Initialization of θc = (α, β, (σ2), (η2), (πk));
σ2 = var(BAF );
α = (maxLRR−minLRR)/(max log2 CN −min log2 CN);
β = maxLRR− αmax log2 CN ;
η2 = αvar(LRR) ;
π` = 1/L;

while Log-likelihood not converged do
E-step:

τ ji` =
π`φ

c(Cj
i ;c`,N

j
i )∑

l φ
c(Cj

i ;c`,N
j
i )

M-step:

π` =
∑

i

∑
j τ

j
i`∑

i

∑
j

∑
` τ

j
i`

σ2 =
∑

i

∑
`

∑
j τ

j
i`N

j
i (BAFi−baf`)2∑

i

∑
`

∑
j τ

j
i`

(α, β) = solve linear equations

η̄2 =
∑

i

∑
`

∑
j τ

j
i`Ni(LRRi−αlrr`−β)2∑
i

∑
`

∑
j τ

j
i`

θc = θ

end

end
Choose the model with optimal log-likelihood;
Calculate the BIC and AIC of the corresponding model;

end

end
Choose the best model based on BIC and AIC;

end

Algorithm 1: Algorithm of the estimation with a grid search on p
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