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Abstract. Methods based on Discontinuous Finite Element approximation (DG
FEM) are basically well-adapted to specifics of wave propagation problems in
complex media, due to their numerical accuracy and flexibility. However, they still
lack of computational efficiency, by reason of the high number of degrees of freedom
required for simulations.

The Trefftz-DG solution methodology investigated in this work is based on a
formulation which is set only at the boundaries of the mesh. It is a consequence
of the choice of test functions that are local solutions of the problem. It owns the
important feature of involving a space-time approximation which requires using
elements defined in the space-time domain.

Herein, we address the Trefftz-DG solution of the Elastodynamic System. We
establish its well-posedness which is based on mesh-dependent norms. It is worth
noting that we employ basis functions which are space-time polynomial. Some
numerical experiments illustrate the proper functioning of the method.

Introduction

Among the different possible approaches to solve partial differential equations
there exists a distinct family of methods based on the use of trial functions in
the form of exact solution of the governing equations (but not the boundary
conditions). The idea was first proposed by Trefftz in 1926 [1], and since
then it has been largely developed and generalized. The main step for its
implementation as an efficient computational tool was achieved in 1978 when
Jirousek and his collaborators proposed the Hybrid-Trefftz (HT) finite element
model [2]. The results of their work allowed solving different boundary value
problems, thus giving roots to multiple applications in different fields such as
potential problems, plane elasticity, plate bending (thin, thick, post-buckling),
heat conduction as well as advective-diffusive transport (see [3] and the
references therein).

Trefftz type methods have been widely used with time-harmonic formulations
by Farhat, Tezaur, Harari, Hetmaniuk (2003 - 2006) (see [4,5]), Gabard (2007)
(see [6]), Badics (2014) (see [7]), Hiptmair, Moiola, Perugia (2011 - 2013) (see
[8–10]) and others, while studies are still limited for reproducing temporal
phenomena. Only few papers are interested in Maxwell equations in time [11–
14]. They are mostly devoted to a theoretical analysis of the method, showing
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the convergence and stability. To the best of our knowledge, numerical tests
involving plane wave approximation are restricted to 1D + time dimensional
case. Space-time Trefftz approximation by Lagrange multipliers for the second
order formulation of the transient wave equation was explored in [15,16]. A
Trefftz-DG method for the first-order transient acoustic wave equations in
arbitrary space dimensions has been introduced in a recent paper of Moiola
and Perugia (2017) [17]. It is an extension of the one-dimensional scheme of
Kretzschmar et al. [14]. The authors provide a complete a priori error analysis
in both mesh-dependent and mesh-independent norms.

In this work we develop a theory for Trefftz-DG method applied to the
Elastodynamic System (ES) of wave propagation. We confirm well-posedness
of the variational problem based on the estimates in mesh-dependent norms.
We consider a space-time Trefftz polynomial basis and provide some numerical
results for 2D ES. We give a short conclusion and discuss the perspectives in
the end of this paper.

1 Trefftz-DG formulation for elastodynamics

The Elastodynamic System is based on three fundamental laws of continuum
mechanics: movement equations, constitutive equations (Hooke’s law), and
geometric equations (infinitesimal strain tensor definition) [18].

We consider a global space-time domain Q = Ω × I, where Ω ⊂ Rd is a
bounded Lipschitz physical space domain and I = (0, T ) is a time interval.

The Lamé coefficients λ ≡ λ(x), µ ≡ µ(x) and solid density ρ ≡ ρ(x) are
the solid parameters, assumed to be piecewise constant and positive.

We consider the first order ES in terms of velocity v ≡ v(x, t) and stress
σ ≡ σ(x, t) fields: 

∂tσ −C ε(v) = 0 in Q,

ρ∂tv − divσ = 0 in Q,

v(·, 0) = v0, σ(·, 0) = σ0 in Ω,

σ = gD in ∂Ω × I.

HereC is the elastic coefficient tensor, ε(v) = (∇v+∇vT )/2 is the infinitesimal
strain tensor. The boundary conditions gD ≡ gD(x, t), the velocity v0 and
the stress σ0 are the initial data.

By symmetry and positivity of the tensor C, the application ε 7−→ C ε is
an isomorphism in the symmetrical tensor space [18]. Thus, we may consider
the corresponding inverse application A, verifying the same properties of
symmetry and positivity:

A∂tσ − ε(v) = 0 in Q,

ρ∂tv − divσ = 0 in Q,

v(·, 0) = v0, σ(·, 0) = σ0 in Ω,

σ = gD in ∂Ω × I.

(1)
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1.1 Space-time Trefftz-DG formulation

We choose a Lipschitz sub-domain K ⊂ Q such that λ, µ and ρ are constant
in K. We define nK ≡ (nxK , n

t
K) as the outward pointing unit normal vector

on ∂K and (v,σ) ∈ H1(K)d × H1(K)d
2

, where d is the dimension of the
physical space Ω.

Multiplying both equations of (1) by the test functions (ω, ξ) ∈ H1(K)d×
H1(K)d

2

respectively, and integrating by part in space and time twice, we
obtain:

−
∫
K

[
σ(A∂tξ − ε(ω)) + v · (ρ∂tω − divξ)

]
dv

+

∫
∂K

[
Aσ : ξntK − v · nxKξ + ρvntK · ω − σnxK · ω

]
ds = 0.

(2)

Without losing generality with respect to the classical space DG methods,
we introduce a non-overlapping mesh Th on Q, whose elements are right
prisms, with vertical sides parallel to the time axis. All solid parameters
inside the elements K are supposed to be constant, so that all discontinuities
lie on the inter-element boundaries.

The mesh skeleton Fh = ∪K∈Th∂K can be decomposed into the families
of element faces:

FIh internal I-faces (x - fixed)
FΩh internal Ω-faces (t - fixed)
FDh external Dirichlet boundary faces (∂Ω × [0, T ])
F0
h external initial time faces (Ω × {0})
FTh external final time faces (Ω × {T})

The space-time DG formulation for (1) consists in searching (vhp,σhp) ∈
V(Th) ⊂ H1(Th)d ×H1(Th)d

2

such that, for all K ∈ Th and for all (ω, ξ) ⊂
V(Th) the following identity holds true:

−
∫
K

[
σhp : (A∂tξ − ε(ω)) + vhp · (ρ∂tω − divξ)

]
dv

+

∫
∂K

[
Aσ̂hp : ξntK − v̂hp · nxKξ + ρv̂hpn

t
K · ω − σ̂hpnxK · ω

]
ds = 0.

(3)

The numerical fluxes v̂hp, σ̂hp are defined in the standard DG notations
[19] on the mesh skeleton Fh as follows:

Here δ ∈ L∞(FI
h ∪FD

h ) and γ ∈ L∞(FI
h) are positive penalty parameters.

This choice is recommended in order to improve the numerical stability of
the scheme.

We define the Trefftz approximation space, such that the chosen test
functions (ω, ξ) satisfy the initial elastodynamic system in the homogeneous
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FIh
(
v̂hp
σ̂hp

)
≡

(
{{vhp}} − δ[[σhp]]x
{{σhp}} − γ[[vhp]]x

)
FΩh

(
v̂hp
σ̂hp

)
≡

(
vhp
−

σhp
−

)
FDh

(
v̂hp · nxK
σ̂hpn

x
K

)
≡

(
vhp · nxK − δ(σhp − gD)nxK
gDn

x
K

)
FTh

(
v̂hp
σ̂hp

)
≡

(
vhp
σhp

)
F0
h

(
v̂hp
σ̂hp

)
≡

(
v0
σ0

)

sense (without source term and boundary conditions):

T(Th) ≡
{

(ω, ξ) ∈ V(Th) s. t. ρ∂tω − divξ = A∂tξ − ε(ω) = 0 in all K ∈ Th
}
.

Thanks to this choice of discrete space we remove a volume integration
term in (3). Summing over all elements K ∈ Th, we obtain a space-time
Trefftz-DG formulation for (1):

Seek (vhp,σhp) ∈ V(Th) such that, for all (ω, ξ) ∈ T(Th), it holds true:

−
∫
FI
h

[
{{σhp}}[[ω]]x + {{vhp}}[[ξ]]x − γ[[vhp]]x[[ω]]x − δ[[σhp]]x[[ξ]]x

]
ds

+

∫
FΩ
h

[
Aσhp

− : [[ξ]]t + ρvhp
−[[ω]]t

]
ds−

∫
FD
h

[
vhp · nxKξ − δσhp : ξ

]
ds

+

∫
FT
h

[
Aσhp : ξ + ρvhp · ω

]
ds− 1

2

∫
F0
h

[
Aσhp : ξ + ρvhp · ω

]
ds =

1

2

∫
F0
h

[
Aσhp : ξ + ρvhp · ω

]
ds +

∫
FD
h

[
gDn

x
K · ω + δgD : ξ)

]
ds,

or, by introducing bilinear ATDG(· ; ·) and linear `TDG(·) operators:
Seek (vhp,σhp) ∈ V(Th) such that, for all (ω, ξ) ∈ T(Th), it holds true:

ATDG((vhp,σhp); (ω, ξhp)) = `TDG(ω, ξhp). (4)

It is worth mentioning that in addition to its setting at the boundaries
of the elements only, the Trefftz-DG formulation does not involve differential
operators. It is thus straightforward to implement.

1.2 Well-posedness of Trefftz-DG formulation

In this section we show the coercivity and continuity estimates proving well-
posedness of the obtained Trefftz-DG method for ES in mesh-dependent
norms. We refer to the Appendix B in [21] for more details. The analysis
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is carried out inside the framework developed in [14] for the time-dependent
Maxwell problem.

We introduce two mesh-dependent norms in T(Th):

|||(ω, ξ)|||2TDG ≡
1

2

∥∥∥(A)
1/2 [[ξ]]t

∥∥∥2
L2(FΩ

h
)

+
1

2

∥∥∥ρ1/2 [[ω]]t

∥∥∥2
L2(FΩ

h
)

+
∥∥∥γ1/2 [[ω]]x

∥∥∥2
L2(FI

h
)

+
∥∥∥δ1/2 [[ξ]]x

∥∥∥2
L2(FI

h
)

+
1

2

∥∥∥(A)
1/2ξ

∥∥∥2
L2(FT

h
)

+
1

2

∥∥∥ρ1/2ω
∥∥∥2
L2(FT

h
)

+
∥∥∥δ1/2ξ∥∥∥2

L2(FD
h

)
,

|||(ω, ξ)|||2TDG∗ ≡ |||(ω, ξ)|||2TDG + ‖ρ
1/2ω−‖2L2(FT

h
)FΩ
h

+ ‖(A)
1/2ξ−‖2L2(FT

h
)FΩ
h

+ ‖δ−
1/2{{ω}}‖2L2(FI

h
) + ‖γ−

1/2{{ξ}}‖2L2(FI
h
) + ‖δ−

1/2ξ‖2L2(FT
h

)FD
h
.

Thus, for the bilinear ATDG(·, ·) and linear `TDG(·) forms we obtain the
following coercivity

ATDG((ω, ξ); (ω, ξ)) = |||(ω, ξ)|||2TDG, ∀(ω, ξ) ∈ T(Th),

and continuity properties with respect to the chosen norms.

|ATDG((v,σ); (ω, ξ))| ≤ 2 |||(v,σ)|||TDG∗ |||(ω, ξ)|||TDG,

|`TDG(ω, ξ)| ≤
√

2
[
‖ρ

1/2v0‖2L2(F0
h
) + ‖A

1/2σ0‖2L2(F0
h
)

]1/2
(gD ≡ 0).

The above estimates confirm the well-posedness of the Trefftz-DG problem
for ES, moreover:

|||(v − vhp,σ − σhp)|||TDG ≤ 3 inf
(ω,ξ)∈V(Th)

|||(v − ω,σ − ξ)|||TDG∗ .

2 Numerical implementation

In this Section we discuss the choice of the discrete approximation space, and
provide some numerical tests for 2D + time elastic model.

2.1 Polynomial basis

The flexibility in the choice of basis functions is one of the advantages of
Trefftz-type methods. The main condition is to satisfy the governing equations
inside each element. The natural choice in the case of harmonic problems can
be the plane wave trigonometric basis. However, when applied to the space-
time formulations, it demands a high number of trigonometric functions of
different frequencies, in order to provide a better approximation order. Thus,
it increases the number of degrees of freedom, and as a result - the global
numerical cost of the algorithm.

We have computed a space-time polynomial basis, using generating exponential
functions - local solutions of the initial systems of equations (see [20,21] for
more details). Numerically speaking, this basis generates a lower computational
bound than the standard trigonometric ones. It contains the couples of polynomial
functions for velocity - stress, of degrees less or equal to n (n = 0, 1, 2, 3),
satisfying the initial ES, to provide an approximation of order n.
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2.2 Numerical results

In order to explore the method and its algorithm in general, and to perform
some basic numerical tests for its validation, we have developed a prototype
MATLAB R© code, which is, technically speaking, quite limited.

We consider the elastic medium, represented by a unit square with the
Dirichlet conditions at the boundaries. The final time of propagation is T = 1.
The medium parameters are ρS = 1, λ = 1, µ = 2. All model parameters are
dimensionless quantities. We introduce a source term in the center of the
medium. The source signal is represented by the Gaussian function, so that
it takes approximately 5 elements per wavelength. Zero initial conditions are
imposed for the tests.

Figure 1 shows some results of convergence of the (a) P -velocity and
(b) S-velocity. The convergence curves have been computed for different
approximation orders (n = 0, 1, 2, 3), and they represent the numerical error
as a function of cell size in logarithmic scale.

Fig. 1. Convergence of velocities vP and vS in function of cell size h = ∆x.

(a) velocity vP (b) velocity vS
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Even though the initial model is limited (large mesh of 30 × 30 × 30
elements, Dirichlet boundaries, which causes many reflections), the numerics
reproduce the expected propagation characteristics quite well, and the convergence
in both cases is of order higher than the corresponding approximation order.

Conclusion

We have applied the theory for Trefftz-DG method to the Elastodynamic
System, and we have studied the well-posedness of the problem. The new
polynomial basis has been computed for numerical implementation of the
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method. The computed numerical solutions have been validated by the analytical
ones. The convergence results are of higher order, compared with the classical
DG methods.

Even though the obtained results are very promising, from the optimisation
point of view, it seems necessary to study the alternative to a global matrix
inversion, which brings the main computational cost. We have also in perspective
to pass from simple rectangular meshes to more complicate forms (in space
domain) - which is one of main advantages of Trefftz-DG methods. It gives
the possibility of developing a hybrid method, based on numerical coupling
of Trefftz-DG method in Elastics, with less expensive Finite Volume Method
(FVM) in Acoustics, in order to create a software able to solve more realistic
problems.
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