Skip to Main content Skip to Navigation
Conference papers

A quadratic energy minimization framework for signal loss estimation from arbitrarily sampled ultrasound data.

Abstract : We present a flexible and general framework to iteratively solve quadratic energy problems on a non uniform grid, targeted at ultrasound imaging. Therefore, we model input samples as the nodes of an irregular directed graph, and define energies according to the application by setting weights to the edges. To solve the energy, we derive an effective optimization scheme, which avoids both the explicit computation of a linear system, as well as the compounding of the input data on a regular grid. The framework is validated in the context of 3D ultrasound signal loss estimation with the goal of providing an uncertainty estimate for each 3D data sample. Qualitative and quantitative results for 5 subjects and two target regions, namely US of the bone and the carotid artery, show the benefits of our approach, yielding continuous loss estimates.
Complete list of metadata

https://hal.inria.fr/hal-01694235
Contributor : Diana Mateus <>
Submitted on : Friday, January 26, 2018 - 10:26:14 PM
Last modification on : Sunday, April 15, 2018 - 8:40:02 PM

Identifiers

  • HAL Id : hal-01694235, version 1
  • PUBMED : 25485401

Citation

Christoph Hennersperger, Diana Mateus, Maximilian Baust, Nassir Navab. A quadratic energy minimization framework for signal loss estimation from arbitrarily sampled ultrasound data.. International Conference on Medical Image Computing and Computer Aided Interventions (MICCAI), Sep 2014, Boston, United States. pp.373-80. ⟨hal-01694235⟩

Share

Metrics

Record views

67