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A critical advantage of additive manufacturing is its abil-
ity to fabricate complex small-scale structures. These mi-
crostructures can be understood as a metamaterial: they
exist at a much smaller scale than the volume they fill, and
are collectively responsible for an average elastic behavior
different from that of the base printing material making
the fabricated object lighter and/or flexible along specific
directions. In addition, the average behavior can be graded
spatially by progressively modifying the microstructure ge-
ometry.

The definition of a microstructure is a careful trade-off
between the geometric requirements of manufacturing and
the properties one seeks to obtain within a shape: in our
case a wide range of elastic behaviors. As geometric require-
ments become stricter, it becomes increasingly difficult to
design microstructures. This explains why most existing
microstructures target stereolithography (SLA) and laser
sintering (SLS) processes where requirements, while strict,
are still more relaxed than that of continuous deposition
systems such as fused filament fabrication (FFF).

In this work we introduce a novel type of microstructures
that strictly enforce all the requirements of FFF-like pro-
cesses: continuity, support and overhang angles. They of-
fer a wide range of orthotropic elastic responses that can be
freely graded spatially. This allows to fabricate parts usu-
ally reserved to the most advanced technologies on widely
available inexpensive printers that also benefit from a con-
tinuously expanding range of materials.

1 Introduction

Novel capabilities of additive manufacturing processes are
challenging the traditional separation between shape and
material. Tool accessibility and mold extraction constraints
no longer apply, and shapes with intricate internal details
can be fabricated. These internal microstructures modify
the large-scale material properties, making parts lighter,
porous or flexible and resilient. In addition, these mi-
crostructures can be spatially graded: the same object may
be rigid where external stresses apply, and lighter in other
regions.

This has spawned an intense research effort towards the
geometric design of microstructures that can be embedded
into volumes while triggering varying properties. The mi-
crostructures are typically considered as a metamaterial:
at large-scale they behave equivalently to a uniform mate-
rial characterized by a homogeneous elasticity tensor. This
average behavior can be analyzed, abstracting away the
fine-scale details, in a process called numerical homogeniza-
tion. In addition, the microstructures are often paramet-
ric: the geometry of their fine scale details is controlled
through high-level parameters, such as thickness or ori-
entation. These parameters impact the large-scale elas-
tic behavior, and thus the observed elasticity tensor can
be controlled by manipulating these parameters directly.
The main interest in using such parametric metamaterials

is that their elasticity can be spatially controlled – graded
– by a control field, varying mechanical properties within
the shape volume. The control field can be either manually
painted through a dedicated user interface [12] or automat-
ically computed through, e.g. topology optimization [41].

In this paper we focus on defining a novel class of para-
metric metamaterials. A key challenge – besides triggering
the desired elastic behavior – is to enforce constraints due to
the additive manufacturing processes. Most existing works
on the topic have focused on processes such as selective laser
sintering (SLS) and stereolithography (SLA). These tech-
nologies have different constraints than the widely available
and inexpensive fused filament fabrication (FFF) 3D print-
ers. In particular, most recent works produce geometries
exhibiting truss structures (detailed in Section 2). After
slicing, these structures produce many isolated ellipses in
each slice. These are extremely challenging to print on
FFF systems, where continuity of deposition, low overhang
angles, and support from below are strict requirements (for
examples of actual trials we recommend the online article
by Zhou [40]).

This is especially unfortunate, as FFF is not only widely
available but allows to fabricate in a wide spectrum of mate-
rials, from inexpensive plastics, food-safe materials, nylons,
to metal-polymer compounds and carbon fiber reinforced
materials (see filament by e.g. Proto-Plasta). In addition,
other technologies such as wire arc metal printing 1 and
contour crafting 2 share the same constraints. These con-
straints are very restrictive and have so far prevented the
development of metamaterials for these processes.

Contributions. Our paper aims at filling this gap, defin-
ing a novel parametric metamaterial with the following
properties:

• closed-cell, stochastic foam-like geometry readily print-
able on FFF-like systems, with strictly enforced over-
hang angles and that is everywhere supported from
below,

• density and anisometry controllable through user pro-
vided fields that can vary arbitrarily,

• defines orthotropic materials that can be freely ori-
ented in the plane orthogonal to the fabrication di-
rection,

• a purely procedural computation that scales to arbi-
trarily large shapes.

This is made possible by defining procedural Voronoi dia-
grams based on polyhedral distances. We identify a class
of parameterized polyhedral distances providing guarantees
on the maximum overhang angles, and ensuring that all

1See e.g. https://waammat.com/about/waam
2See https://en.wikipedia.org/wiki/Contour_crafting
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Figure 1: Left: We propose a novel type of microstructures well suited for fabrication on continuous deposition processes
such as fused filament fabrication. Our microstructures afford for a wide range of elastic behaviors, from isotropic to
orthotropic. As illustrated their geometry can be spatially graded. Right: We model the foams as Voronoi diagrams of
a special kind, which contrary to Euclidean Voronoi diagrams produce geometry enforcing all fabrication constraints.

deposited material is supported from below. These con-
straints remain enforced when varying density and orien-
tation parameters. We detail the procedural generation of
our foams, analyze their elastic behavior and the link be-
tween the underlying parameters and the obtained elastic-
ity tensors, and produce a variety of results demonstrating
applications.

2 Related work

Researchers in additive manufacturing have recognized the
need for internal fill patterns early on [26]. Indeed, by
avoiding densely filling an interior, the print time and ma-
terial use are greatly reduced. Thus, early infill patterns
were essentially targeted at reducing material density, while
being fast to generate and efficient to fabricate. Typi-
cal patterns for continuous deposition encompass parallel
lines with varying spacing, but more elaborate patterns
have been devised in an effort to achieve better strength
to weight ratios [19].

In the recent years, the focus has shifted to produc-
ing infill patterns with controllable mechanical properties.
Most approaches cast the problem as a two-scale optimiza-
tion [41]. A parametric metamaterial is defined either as
a set of (parametric) periodic microstructures [34, 31, 30]
or as a random process producing geometry [23, 24]. The
link between the microstructure parameters and their aver-
age elastic behavior is analyzed, defining a material space.
Each entry of the material space relates a choice of struc-
ture parameters to an elasticity tensor. Thus, a user or an
algorithm can directly work at a coarser scale and spec-
ify the desired elastic behavior in different regions of space.
This is then translated into microstructure parameters used
to produce a final geometry. The definition of the geom-
etry is often procedural, such that it is instantiated only
when sent to the printer, slice by slice [32, 36]. Our work
is inscribed in this direction of research.

Interestingly, most results in this area use SLS and SLA
processes. This is largely explained by the fact that these
technologies are less constrained than continuous deposi-
tion approaches, such as FFF. The challenges in designing
infill patterns for continuous deposition are threefold. First,
material can only be deposited on top of already solidified
layers: it is not possible to start a new feature in ’mid-air’.
Similarly, while slanted walls can be fabricated, there is a
limit to the maximum overhang angle (typically around 45
degrees, varies with layer and deposition thicknesses). Sec-
ond, the extrusion process should be interrupted as little
as possible, as each start/stop produces small deposition
defects. Third, the deposition head is typically a relatively
heavy device, and acceleration rates are limited by mechan-
ical capabilities.

The first constraint (overhangs, support) relates to

the geometry of the patterns and requires defining self-
supporting fill patterns (e.g. that do not require auxil-
iary support for fabrication). The two other constraints
(continuity, acceleration) relate to deposition efficiency and
quality. In particular, truss structures which print well on
SLA/SLS are ill-suited for continuous deposition due to
the last two constraints: they require printing many small
discs spread throughout each layer. This triggers a large
number of start/stop and abrupt speed changes – the low
acceleration limiting the maximum reachable speed. As a
consequence, the beams have lower quality and print slower
than their volumes would indicate. Therefore, unsurpris-
ingly, most patterns for FFF are comprised of as long as
possible continuous lines.

Nevertheless, recent research has considered improved fill
patterns for continuous deposition. Leary et al. [14] advo-
cate for the use of self-supported spatial tessellations, con-
sidering maximum overhang angles. Wu et al. [38] explore
how sub-dividable rhombic fill patterns [17] can be opti-
mized for rigidity. Lee and Lee [15] optimize similar pat-
terns to produce parts that are as empty as possible – while
producing self-supported structures. Hornus et al. [8], Xie
et al. [39] and Wang et al. [37] consider how to maximally
carve parts while producing self-supported inner cavities.
Lu et al. [20] optimize the positions of the point sites of
a Voronoi diagram to strengthen an object. Interestingly,
a soluble support material had to be used within the cells
(page 6, paragraph Physical test of [20]) – that is because
usual Voronoi diagrams cannot form self-supported struc-
tures (see Section 3). Lee et al. [16] pack many ellipses
within a volume interior to obtain a self-supported interior
fill.

However, none of these techniques afford for the defini-
tion of a material space, in the same sense as the microstruc-
tures employed with SLS/SLA [34, 31, 23]. One exception is
the work of Martinez et al. [24] on orthotropic foams, where
orthotropic 2D patterns are fabricated on FFF printers.
However, this only applies to 2D patterns extruded verti-
cally, not 3D structures. Subdivisible infills [27, 38] come
close, but these cannot produce smooth spatial variations
in orientation and density due to their underlying regular
nature. We discuss them in more details and provide ele-
ments of comparison in Section 5.4.

Our work aims at introducing infill patterns which are
well suited for fabrication by continuous deposition, can
be graded spatially, and provide a wide material space for
design.

3 Overview

The microstructures we explore belong to the family of
closed-cell foams. They are defined as a stochastic process,
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which parameters drive the small-scale material arrange-
ment, and ultimately the average elastic behavior.

Our foams are defined as the thickening of the facets of
Voronoi diagrams of a special kind. We give below some
more specific background on the use of Voronoi diagrams
to represent foams and microstructures, explain the chal-
lenges and give some intuition on our technique. The pre-
cise definition and analysis of our microstructures are given
in Section 4.

3.1 Voronoi foams in additive manufacturing
In material science, naturally occurring cellular solids are
often idealized as sets of Voronoi edges (open-cell) or facets
(closed-cell) [6]. These have been well studied as they ex-
hibit desirable properties such as an isotropic elastic behav-
ior [21] with a quasi-linear link between density and Young’s
modulus [6, 33].

Voronoi open-cell foams are used for fabrication on
SLA/SLS processes, as they form fully connected truss net-
works well suited to resin and powder solidification. They
are amenable to efficient procedural synthesis [23]. Open-
cell foams are however not very suitable for continuous de-
position, due to the constraints mentioned in Section 2. For
continuous deposition, closed-cell foams are more promis-
ing: they form walls that would afford for continuous de-
position and are also known to exhibit good mechanical
behaviors – in fact, closed-cell foams are more rigid that
open-cell foams (see [6, Formulas 5.6 and 5.13]). The rea-
son closed-cell foams are not used with SLA/SLS is that
they would trap non solidified material in closed cells. This,
however, is not an issue on FFF-like processes.

Unfortunately, as we discuss next, the usual Voronoi di-
agrams do not define self-supporting closed-cell structures.
Besides, their elastic behavior would remain limited to
isotropic elasticity, while we seek a wider material space.

3.2 Challenges of usual Voronoi diagrams
We now discuss why usual (Euclidean) Voronoi diagrams
cannot be readily used. Let us consider such a diagram
defined from a uniformly randomly distributed set of point
sites si ∈ S. Each Euclidean Voronoi cell is defined by:

VP (si) =
{
p ∈ R3 : ||si − p||2 < ||sj − p||2, ∀si ̸= sj ∈ S

}

(1)
The closed-cell foam is formed by thickening the facets of
the diagram. Figure 2 shows 2D examples where facets
are edges. In these side views, the build direction goes
upward. As can be seen in the Euclidean diagram (left-
most), the facets/edges can take an arbitrary orientation
and many of them violate the overhang constraint: they
cannot be printed on continuous deposition systems. In ad-
dition, when the point sites are uniformly distributed, the
cells tend to be isotropic, which prevents the emergence of
anisotropic elastic behaviors (see [24]).

3.2.1 Changing the distance

Voronoi diagrams can be defined using different distances.
Figure 2 shows the diagram obtained using the L1 and L∞
distances on the same point sites.

While these diagrams are not printable – due to the hori-
zontal facets – an interesting emerging property is that the
facets take only a fixed number of different angles. This,
in fact, is a property of any Voronoi diagram under a poly-
hedral distance: a distance induced by a convex polyhe-
dron [22, 9].

Euclidean ⃝ L1 ♢ L∞ □ Cone △

Figure 2: The Voronoi diagram of a set of points under
various distances, with their unit ball drawn next to the
name.

Our intuition is that some specific convex polyhedron
must exist that induces polyhedral Voronoi diagrams whose
facet set is fully fabricable. Figure 2 (rightmost) shows an
initial test that confirmed this intuition: using a cone dis-
tance produces a fully printable diagram. This idea forms
the basis of our approach.

We detail how we build upon this initial intuition to de-
fine parameterized 3D Voronoi foams in Section 4. We ana-
lyze the mechanical behavior of the structures in Section 5
and demonstrate applications to additive manufacturing in
Section 6.

4 Method

We now describe the use of polyhedral Voronoi diagrams for
producing microstructures with spatially varying elasticity,
well suited for continuous deposition (FFF-like processes).

Let Bd = {p : pz = d} be a plane orthogonal to the print-
ing direction z, and B−

d = {p : pz < d} be a half-space be-
low Bd. We call slope of a facet or slope of a plane the
dihedral angle between the plane supporting the facet and
any horizontal (xy) plane. For example a vertical wall has
slope π/2, the printing plane slope zero.

Our microstructure is defined by a mesh K that must sat-
isfy the following two fabrication constraints (see Figure 3):

1. Angle constraint: Each facet f of K has to be “suf-
ficiently close to vertical” so that it is printable with
FFF. We model this constraint by imposing a lower-
bound θ⋆ ∈ [0, π/2] on the slope of facet f . If n is the
normal vector of facet f , it must satisfy |nz| ≤ cos θ⋆.
Reasonable values of θ⋆ may range, say, from π/6 to
π/3 and depends on the fabrication hardware at hand.

2. No-local-minimum constraint: Each point p ∈ K
has to be “supported from below” so that it does not
appear mid-air during fabrication; i.e. we have that K∩
N(p)∩B−

pz ̸= ∅ where N(p) is any open neighborhood
of p.

These two constraints are well-suited for FFF-like pro-
cesses, as they capture the requirement that deposited ma-
terial has to be well supported from below. For our pur-
pose in this paper, we model the mesh K as the union of
the facets of a polyhedral Voronoi diagram, namely, the
Voronoi diagram of a set of point sites that arises when us-
ing a specific polyhedral distance instead of the usual Eu-
clidean one (Section 4.1.1). We show that some choices of
distance polytopes guarantee that K satisfies both fabrica-
tion constraints. In particular, we show how one can easily
check that a given polyhedral distance entails a fabricable
mesh K (Section 4.1.3) and we exhibit a simple family of
such polytopes (cones, Section 4.2). We discuss which pa-
rameters can be spatially graded and how (Section 4.3). Fi-
nally, in Section 4.4 we detail a simple algorithm to extract
the deposition paths delineating to the Voronoi facets.
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Printing direction

Figure 3: Illustration of fabrication constraints. The plane
Bd is shown in gray. The slope of all facets of K is greater
than 45◦. The no-local-minimum constraint is satisfied ev-
erywhere in K.

4.1 Polyhedral Voronoi diagrams

We now recall the definition of polyhedral distances and
their use in Voronoi diagrams. For simplicity, some of the
following illustrations consider a planar polygonal distance.

4.1.1 Polyhedral distances

Let P ⊂ R3 be a compact convex polyhedron of combi-
natorial size k containing the origin in its interior. The
polyhedral distance induced by P from a point p to q is
(e.g., [29]):

dP (p, q) = min {t ≥ 0 : q ∈ p+ tP} . (2)

The value of dP (p, q) is the minimal scaling factor t ap-
plied to P so that p + tP touches q (Figure 4). Note that
the L1 and L∞ distances are particular cases of polyhedral
distances. Since P is convex, the triangle inequality holds:
0 ≤ dP (p, r) ≤ dP (p, q)+ dP (q, r). However, dP is symmet-
ric if and only if P is centrally symmetric with respect to
the origin.

The distance dP (p, q) can be computed as follows [10].
Let q′ be the unique point of p + P intersected by the ray
from p to q (see Figure 4). Then dP (p, q) =

∥q−p∥
∥q′−p∥ .

In our implementation, we compute the closest intersec-
tion of the ray with the planes supporting the facets of P .

Figure 4: A polygonal distance function.

4.1.2 Polyhedral Voronoi diagrams

Equipped with the polyhedral distance, we now describe
their use in Voronoi diagrams. Let S be a set of n point
sites in R3. The polyhedral Voronoi diagram VorP (S) is the

decomposition of R3 into Voronoi cells. A cell VP (si) for a
site si ∈ S is defined as:

VP (si) =
{
p ∈ R3 : dP (si, p) ≺ dP (sj , p), ∀si ̸= sj ∈ S

}

(3)
where the lexicographical distance relation ≺ is necessary
to deal with cases where a full region space belongs to the
bisector (non-general position cases [13]), see Figure 5:

dP (si, p) ≺ dP (sj , p) ⇐⇒
dP (si, p) < dP (sj , p) ∨ (dP (si, p) = dP (sj , p) ∧ (i < j))

(4)

Figure 5: A non-general position case: the line passing
through s1s2 is parallel to the line containing the facet H1

of P . The gray region are points of the polyhedral bisec-
tor B(s1, s2). The lexicographical distance of Equation (4)
selects one of the boundaries of the gray region.

The Voronoi facets form the boundary set of Voronoi
cells. Due to the triangle inequality, the Voronoi cells are
star-shaped polyhedrons [4]: for all q ∈ VP (s) the line seg-
ment from s to q is in VP (s). Regarding the combinatorial
complexity, assuming the complexity k of P is constant, the
worst case complexity of the Voronoi diagram is Θ(n2) [9]
(n = |S|).

The bisector between two point sites p and q is the set
of points equidistant to p and q under the distance dP . An
important property for our purpose is that the facets of
VorP (S) form a subset of the arrangement of the bisectors
of each pair of sites in S × S (see, e.g., [22]). Thus, if all
the bisectors satisfy both fabricability constraints then the
facets of the Voronoi diagram form a fabricable mesh as
well. We now analyse polyhedral bisectors in more detail.

4.1.3 Polyhedral bisectors

In this section, we recall known facts about polyhedral bi-
sectors and explain how these properties can be used to
check whether the geometry of P induces fabricable bisec-
tors.

The polyhedral bisector between two point sites p and q
is:

B(p, q) =
{
r ∈ R3 : dP (p, r) = dP (q, r)

}
(5)

Note that the polyhedral distance is taken from p and q to
r because dP is not symmetric. Various works have already
studied this kind of polyhedral bisectors [5, 11, 25]. For a
more detailed exposition, we refer the reader to the thesis
of Ma [22] and the references therein.

For simplicity, we assume that p and q are in general po-
sition with respect to P . That is, the line through p and q is
not parallel to any line segment contained in the boundary
of P [1]. Then, B(p, q) is piecewise linear and homeomor-
phic to a plane [22]. We give a method to construct the
bisector of two point sites in the supplemental material.
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We say that two features (vertex, edge or facet) X ⊂
P and Y ⊂ P on the boundary of the distance polytope
P generate a feature B of the bisector B(p, q) when B =
{(p + λX) ∩ (q + λY ) | λ > 0}. B is either empty or does
not depend on the relative position of the point sites p and
q. It follows from the constructions of polyhedral bisector
(detailed in the supplemental material) and Proposition 1
below, that each linear feature of a bisector is generated by
two features on P .

To determine fabricability, we have to analyse the slope
of these linear features. This builds upon the following
property. Let Bij be a facet of the bisector B(p, q) gener-
ated by the facets fi and fj of P . Let ni be the outward
normal vector to facet fi. Let αi > 0 be the distance from
the origin to the plane Hi supporting fi. (In particular, if
r is a point of fi then αi = r · ni.)

Proposition 1. Write Hij for the plane that spans the ori-
gin and the line Hi∩Hj. Then, the bisector facet Bij (gen-
erated by fi and fj) is parallel to the plane Hij (Figure 6).
The normal vector of Bij is proportional to αjni − αinj.

The proof is in [9]. The derivation of the formula for the
normal vector can be found in the supplemental material.
Given Proposition 1, we now explain how to check if both
fabrication constraints are respected.

Verifying the angle constraint Each planar facet Bij

of the bisector B(p, q) is defined through the interaction
between two facets fi and fj of P (see Figure 6). Proposi-
tion 1 tells us that the normal vector of Bij depends only
on fi and fj and is independent of the relative position of
p and q. Thus, there are at most

(
k
2

)
different orientations

for the bisector facets. We can check that they satisfy the
angle constraint by enumerating all pairs of facets of P .

Figure 6: Let fi, fj be facet of P . Let Hi and Hj be the
supporting planes of fi and fj , respectively. The feature of
B(p, q) generated by fi and fj is drawn bold and green. A
construction for its supporting plane is shown. Lines with
the same color are parallels. The bold green bisector fea-
ture is indeed parallel to the top green line, as constructed
in Proposition 1. See Lemma 3.2.1.2 in [22].

Verifying the no-local-minimum constraint Simi-
larly, the vertices of all bisectors exhibit only a finite num-
ber of configurations that we can also enumerate in time
O(k2), to verify that no vertex of any bisector is a local
minimum with respect to the build direction. Each bisec-
tor vertex is generated by either an edge-edge pair or a
vertex-facet pair (see Figure 7). Details are given in the
supplemental material.

In summary, for a given polyhedral distance dP induced
by a polytope P of size k, we can check if the polyhedral
bisectors under dP satisfy both fabrication constraints.

Figure 7: Polygonal bisector between two point sites p and
q. Each facet Bij of the bisector is generated by facets fi on
p+P and fj on q+P . The dark-red bisector vertex is gen-
erated by the two light-red features of P . The dark-green
bisector edge is generated by the two light-green features
of P . A section in the supplemental material details this
geometric construction.

4.2 Polyhedral cone distances
We now describe our choice of a particular family of poly-
hedral distances that induce fabricable Voronoi diagrams.
The ideal family has few parameters and the influence of
each parameter should be well understood, and easy to re-
late to the final elastic behavior. We prefer a distance that
is symmetric around the z-axis so that it is easier to reason
about. The most difficult property to achieve is the absence
of local minimum.

We determined that a polyhedral cone achieves these ob-
jectives, and we now describe our family of cone distances.
Given the parameterized cone geometry (Section 4.2.1), we
explain how the fabrication constraints are satisfied (Sec-
tion 4.2.2) and extend the family with anisotropic cones
(Section 4.2.3). We highlight the influence of the parame-
ters on the induced Voronoi diagram in Section 4.3.

Size: k Slopes: θ, µ Anisotropy: σ, ζ
3 ≤ k θ⋆ ≤ θ < π/2 0 < µ < 1 0 < σ < 1 ζ ∈ R

O

A

θ

α

1

Az

k = 8

y

x

r

`

`

` = tan(π/2− θ)
= r cos(π/k)

φ

α = ` cosφ Az

1+Az

= `µ

z

x

Figure 8: Top. The parameters describing our family of
distances. Bottom. The geometry of the cone for k = 8.
The right triangle is the half of the cone cutaway in the
plane (O, x, z). We indicate remarkable quantities used in
computations.

4.2.1 Geometry of the cone

The base facet of the cone is a horizontal regular k-gon
(Figure 8-bottom-left). The cone has k side facets (typically
k = 8). The scale of the distance polytope does not affect
the Voronoi diagram that it induces, so we assume that
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k = 4 θ = 25◦ σ = 0.4

µ = 0.2 µ = 0.8

σ = 0.7 θ = 65◦ k = 16

Figure 9: Illustration of cone parameters and effect in the corresponding polyhedral Voronoi diagram. For better
understanding, the boundary of the cube is highlighted in orange color. The central sample has parameters k = 8,
θ = 45◦, σ = 1.0 , and µ = 0.5. Each neighbouring sample vary a single parameter. We provide in the supplementary
material illustrations for a wider variation of parameters.

the base facet lies at z = −1. The cone has apex A =
(0, 0, Az) with Az > 0. (Figure 8-right). The vertices of
the base facet have y,−x-coordinates: r cos ai and r sin ai

where ai = (2i+ 1) π
k

for i = 0..k − 1, and r is the radius.
We parameterize the cone with parameters k, θ, µ and σ,

ζ for the anisometric case (Figure 8-top). All other quanti-
ties are determined from these parameters to enforce fabri-
cation constraints (Section 4.2.2). Examples of cones within
our family are shown in Figure 9.

4.2.2 Cones for fabricable Voronoi diagrams

We now consider constraints on the slopes of the bisector
features to determine the geometry of the cone from its
parameters.

All the side facets contain the apex A of the cone, thus if
Hi and Hj are planes supporting two side facets fi and fj ,
their intersection line contains A as well. By Proposition 1,
Hij contains both A and the origin O, so that it is a vertical
plane. We conclude that any bisector feature generated by
two side facets is vertical and therefore satisfies the angle
constraint.

Let us now consider a feature generated by a side facet

and the base facet. By Proposition 1, this feature is parallel
to a plane spanning an edge of the base facet and the origin.
Its slope θ (Figure 8-bottom) is the same for all side facets.
In order to satisfy the angle constraint, we choose the value
of θ in the range [θ⋆, π/2), where θ⋆ is the angle constraint
bound. This fixes the value of ℓ = tan(π/2 − θ) and the
radius r = ℓ/ cos(π/k) of the base facet.

The last value to determine is Az. It comes from our pa-
rameter µ, which controls the distance α from the origin to
a side facet. By expressing the sine of angle ϕ, we compute
α = ℓ cosϕ Az

1+Az
. In order to decouple parameters θ and µ,

we interpret our parameter µ as µ = α/ℓ. Then, by express-
ing the squared tangent of angle ϕ as α2

A2
z−α2 = ℓ2

(1+Az)2
, we

obtain Az = µ
1−µ2

(
µ+

√
1 + ℓ2(1− µ2)

)
. Figure 10 shows

a 2D example cone (a triangle). The table of possible bi-
sector vertices shows the impossibility of a local minimum.
We provide in the supplementary material an interactive
applet illustrating the induced bisectors in 3D.
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Figure 10: Polygonal distance defined by a triangle. The
three different bisector vertex configurations are shown in
the table, and in context below. The polygonal bisectors
do not exhibit any local minimum, and form an angle of at
least 45◦ with respect to the x axis.

4.2.3 Anisotropic cones

We vary the anisotropy of the polyhedral Voronoi diagram
by shrinking the distance cone along the x axis prior to
rotating it around the z axis. We do not allow other axes
of rotation so as to guarantee that the Voronoi mesh stays
fabricable: the base of the cone becomes a polygonal ap-
proximation of an ellipse and stays horizontal. The shrink
is obtained by applying to the cone the linear transforma-
tion diag(σ, 1, 1) where 0 < σ < 1. 3 The rotation angle is
specified by an angle ζ. The analysis in Section 4.2.2 still
applies. A pair of side facets generate a vertical bisector
feature and the base facet generates features with slopes
that vary for each side facet, but are always larger than or
equal to θ. Figure 9 illustrates how the parameterization
impacts the corresponding polyhedral Voronoi facets.

4.3 Spatial variations
The capacity to obtain gradients of properties within fabri-
cated shapes is a major advantage offered by additive man-
ufacturing. In this section we discuss how the geometric
properties of our microstructures can vary spatially.

4.3.1 Varying the point sites density

The microstructures that we fabricate are materializations
of the Voronoi mesh K. We control their density by chang-
ing the set of point sites S on which the Voronoi diagram is
computed, following an input density field R3 → D where
D ⊂ R is a range of fabricable densities. In practice we fol-
low the implementation of Martínez et al. [23] to produce
point sites in a multi-resolution jittered grid.

4.3.2 Varying the polyhedral distance

We now consider that each of the parameters θ, µ, σ and
ζ are fields in R3. The value of the parameter is picked
at the location of a point site s ∈ S, and used to define
the distance polyhedron at s. Thus, we are effectively us-
ing a different distance for each site in S. We discuss two

3 Let η be the minimal slope of the bisector facets. In order to
have η stay constant when we shrink the cone along the x axis, we
generate the circle in the y,−x frame so that the cone has at least
one side facet perfectly parallel to the x axis.

subsets of parameters that can be spatially varied together
while still guaranteeing fabricability in Section 4.3.3 and
Section 4.3.4. We always consider k ≥ 3 and θ ≥ θ⋆ con-
stant.

Remark. When changing the distance at each site, the
fact that the bisector between two sites p and q is home-
omorphic to a plane does not hold anymore. In fact, in
such a situation, the bisector can have more that one con-
nected component [11]. We never observed this behavior
in our experiments. This is due to the fact that point sites
are distributed all over space so that pieces of bisectors that
may appear far from their two parent sites are “taken over”
by the Voronoi cells of other sites.

4.3.3 Varying µ

The apex of the cone moves vertically from just above the
origin when µ ≈ 0 to infinitely high as µ approaches 1. Con-
sider two side facets of two identical cones and start raising
the apex of one cone (but not the other). Then, the feature
that those facets generate becomes increasingly horizontal.
The slope decreases but fortunately never reaches below θ.

While we do not have a formal proof, we can verify it
numerically. Consider a side facet fi of a cone with a value
µ < 1 together with each side facet fj of a cone with µ = 1,
i.e., fj is vertical. Each pair generates the lowest possible
angle for this “side j” of the cone. For each pair, the con-
struction of Hij from Proposition 1 lets us compute this
lowest slope. We did check numerically that it is indeed
always greater than θ.

µ ≈ 0 µ = 0.5 µ ≈ 1

Figure 11: Varying parameter µ with θ = 45◦.

Changes in the Voronoi mesh A 2D illustration of
how the Voronoi diagram changes is shown in Figure 11.
Varying the parameter µ modifies the distribution of the
slopes of the facets of the Voronoi diagram, from “all facets
have slope θ” to “most facets are vertical.” Indeed, when
µ = 0 every bisector features are generated by a base facet
and have slope θ. When µ is close to 1 the situation is
exactly the opposite, most bisector features are generated
by side facets resulting in vertical walls.

4.3.4 Varying σ and ζ

The parameters σ and ζ, that control anisotropy and rota-
tion, can vary spatially together; the fabricability is main-
tained. Indeed, other parameters being fixed, the cones in
this 2-parameters family all share the same apex point. As
we mentioned before, this implies that a bisector feature
generated by side facets of two different cones remains ver-
tical. The features generated by a base facet are the same
as in Section 4.2.3.

Changes in the Voronoi mesh Geometrically, as σ de-
creases, the Voronoi cells become flatter in a direction spec-
ified by ζ. This flattening also increases the slope of some
bisectors (as we have seen in Section 4.2.3), especially those
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parallel to the anisotropy direction. Compare, for example,
Figure 9 center and top-right.

4.3.5 Varying σ, ζ, µ and θ

It is possible to vary all four parameters simultaneously.
In that case however, µ and θ are interdependent, and
function as a single parameter. The supplemental mate-
rial gives more details. We have not experimented with
this 3-parameters family yet, and set it as future work.

4.4 Algorithm and implementation
For fabrication we seek to efficiently generate single slices
of the microstructures. In order to print with the small-
est available thickness, we produce paths delineating the
Voronoi cells – these paths have no thickness, since the
thickening comes from the physical material deposition. To
guarantee scalability, we devise a procedural approach rely-
ing on discretization, as illustrated in Figure 12. We over-
lay a 2D regular grid over the slice, called the labels grid
and label each grid square with the site of S closest to
the square center, as measured by the polyhedral distance.
Then, we extract all the boundary edges between adjacent
grid squares with different labels and simplify the extracted
jagged paths in order to produce the final deposition paths
for fabricating the slice of microstructure. This affords for
a simple space-tiling approach, limiting required memory
and enabling parallelism.

There are many interesting details on how to implement
this efficiently, and we refer the interested reader to the
supplemental material. Our implementation uses OpenCL
for parallel grid labeling, and C++ for path extraction. On
a GeForce GTX 1080 and an Intel i7-6800K, the V oronoi
labeling for 10002 labels takes around 20ms and the path
extraction 1600ms (the cone parameters are θ = 45◦, k = 8,
µ = 0.6, σ = 1). The current bottleneck lies in the path
extraction since we use an unoptimized sequential method.

We provide in the supplementary material a simple C++
implementation (non-parallel) of grid square labeling.

5 Elastic behavior

We analyze the elasticity of polyhedral Voronoi diagrams
with numerical periodic homogenization akin to [34, 31, 23].
Periodic homogenization seeks to find the elasticity tensor
characterizing a periodic composite material defined from
a unit periodic cell. We do not reproduce here all the de-
tails, and refer the interested reader to the aforementioned
publications and our supplemental material.

One difference with prior works is that we use the CrAFT
software [2], based on the fast Fourier transform (FFT)
[28]. In comparison to finite element methods, it allows us
to scale to high resolution volumes and to achieve higher
precision. CrAFT has been employed by Boittin et al. [3]
for homogenization of closed-cell Voronoi foams.

After analysis, we consider the parameters of the fit-
ted orthotropic material, primarily the Young’s moduli
Ex, Ey, Ez along respectively the x,y and z axis (measure
of stiffness). We provide analysis of the shear moduli and
Poisson’s ratio in supplemental material, as well as the ho-
mogenized tensors obtained by this procedure.

We are also interested in evaluating the overall compres-
sive strength. To do so, we consider the bulk modulus
K, that characterizes the tendency of a material to de-
form in all directions when uniformly loaded in all direc-
tions. A high bulk modulus implies higher incompressibil-

(a) Current intersection. (b) Voronoi labeling.

(c) Boundary extraction. (d) Path generation.

Figure 12: Overview of the path extraction. The input solid
C is a bishop chess piece (https://www.thingiverse.com/
thing:378322/). (a) The bishop cut by the plane Bd. (b)
We label each square in the labels grid with its closest site
in S. Each Voronoi cell is shown with a different color. (c)
We extract the axis-aligned edges between Voronoi cells.
(d) We generate simplified deposition paths inside C.

ity. We consider the Voigt-Reuss average of the bulk mod-
ulus bounds [7] (details in supplemental material).

All analysis is performed with a base isotropic material
with Young’s modulus 1 (normalized) and Poisson’s ratio
0.3. Thus, it is expected that Ei ∈ [0, 1]. However, no
bounds exist for the Poisson’s ratio of an orthotropic mate-
rial [35]. The convergence threshold of CrAFT is set such
that the modulus of the divergence of the stress field is
lower than 0.005.

5.1 Material space exploration
We explore the material space spanned by the parameter-
ized cone distance (Section 4.2). The unit periodic cell is
discretized into 2003 voxels, we fix the thickness of Voronoi
facets to 0.03, and use a point density of 125 point sites per
unit cell (given by a 5 × 5 × 5 jittered grid point distribu-
tion). We evaluate the Cartesian product of the following
cone parameters, for 5 different random realizations of point
sites, performing in total 2205 tests:

• θ ∈ {25◦, 45◦, 65◦}

• µ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

• σ ∈ {1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4}

• k ∈ {4, 8, 16}

The material space we explored spans a range of relative
volumes V ∈ [0.413, 0.634] for unit cells. The results for
the Young’s moduli are shown in Figure 13, offering a wide
range of possibilities along each orthotropy axis. The re-
sults for Poisson’s ratio and shear moduli are shown in the
supplemental material, spanning a variable range of elastic
behaviors, with an always positive Poisson’s ratio.
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We observe a good correlation between the cone parame-
ters and the orthotropic elastic constants, as detailed in Sec-
tion 5.2. In addition, we verified that zero entries of the
ideal elasticity orthotropic tensor differ by at most 0.005
from the homogenized one, indicating that an orthotropic
material constitutes a plausible approximation.

5.2 Influence of parameters
We now consider how each parameter of the polyhedral
distance impacts the mechanical response.

Influence of θ Increasing θ increases further Ez, since
the Voronoi facets become closer to being vertical (see Fig-
ure 9).

Influence of µ Increasing µ mainly increases Ez, since
the area of vertical Voronoi facets increases (see Figure 9).
In addition, increasing µ mainly decreases vyz, increases
vzx, and decreases Gyz, Gzx in a different degree depending
on θ (see supplemental material).

Influence of σ Decreasing σ decreases Ex and increases
Ey, Ez, since the Voronoi facets become comparatively
more elongated in the y and z direction than in the x di-
rection (see Figure 9). In addition, decreasing σ mainly
increases vzx, decreases vxy, and increases Gxy (see supple-
mental material).

Influence of k We observe that the value of k impacts
on the following two properties:

• Increasing k decreases the variance of the homogenized
elasticity under different random distributions of the
point sites. For each five random realizations with
same parameters, the average logarithmic Euclidean
distance between any pair of tensors is 11% lower for
k = 8 (similar for k = 16) with respect to k = 4.

• Increasing k increases the Voigt-Reuss average bulk
modulus. In particular, for k = 4 the average unit
cell volume is V = 0.481 and KVR = 0.107, for k = 8
we have V = 0.469 and KVR = 0.11. Thus, k = 8 ex-
hibits a higher average KVR (similar for k = 16) while
having an even lower V.

Thus, a value of k ≥ 8 is encouraged to achieve better
strength to weight ratio, and being closer to the homoge-
nized analysis.

Influence of point density Increasing the point den-
sity increases the overall elastic moduli, since the unit cell
volume V increases [6]. This is illustrated in Figure 14.

5.3 Experimental verification
We performed experimental verification of the predicted
elastic behavior. We print three samples with varying or-
thotropy and measure their linear elastic response (Young’s
modulus) using a compression test along each axis. The re-
sults are reported in Figure 16. To mitigate the impact of
the choice of printer, we use three different machines (see
Figure for details).

The experimental results are consistent with numerical
results, even though there are differences. The main one is
a lower stiffness along the build direction, on average. This
is to be expected since layered materials are anisotropic.

As future work, we would like to investigate homogeniza-
tion with an anisotropic material for AM [18]. Neverthe-
less, the discrepancies are limited and we observe a direct
correlation between control parameters (µ, σ) and the mea-
sured Young’s moduli. We provide curves for one sample
in Figure 17, revealing the non-linear behavior under large
compressions. The curve reveals a smooth response with
the expected flattening. We also performed a repeatability
test, taking five measurements along each axis of a same
sample. We observe variations of ± 3% without any no-
ticeable trend.

5.4 Comparison to tessellations by planes

Self-supported structures made of interleaved sets of paral-
lel planes have become a popular choice for filling volumes
in the context of FFF [17, 38, 15]. 4 To the best of our
knowledge, the material space spawned by these infills has
not been studied in the context of microstructures. Never-
theless, we provide here some elements of comparison.

A first important limitation of rhombic structures is
that they cannot be graded spatially in orientation or
anisotropy, due to their regular structure. Therefore, they
offer significantly less control than our approach. Their
density can be varied by subdivision, for instance maxi-
mizing rigidity [38]. However, as illustrated in Figure 24,
grading by subdivision introduces sudden jumps that im-
pair the smoothness of the final elastic behavior.

Figure 15 compares the bulk modulus of the structures,
for the two typical cases of using three or fours sets of par-
allel planes. Rhombic structures are 20% stiffer for a same
volume, but this advantage vanishes if orthotropy is desired:
our structures become significantly stiffer in the preferred
directions for a same volume.

The rhombic structures, thanks to the use of straight
lines, print slightly faster than our structures (14% differ-
ence on a Prusai3 on default settings, may vary with accel-
eration settings).

6 Applications

In this section we present several designs modeled with our
technique. The control fields are created either through
a dedicated painting interface, or procedurally (we use a
domain specific language for this purpose).

The designs we present are illustrations, demonstrating
the versatility of our technique. To reveal the foam we print
them without an external perimeter – this means that some
small unsupported regions on the sides exists. In practice
we observe no detrimental impact. Real designs could add
an external thin skin where needed.

A striking difference between our designs and those pro-
duced with SLA/SLS is the ease of production – thanks to
the use of FFF printers – as well as the robustness of the
final part. In particular, parts printed with filaments hav-
ing varying degrees of elasticity (Ninjatek SemiFlex and
Cheetah) can flex very significantly without breaking. In
our experience, foams are much more difficult to produce
on SLA printers, require a careful choice of printer and pa-
rameters [40] and are more fragile after curing.

Our first example is a bar with varying orthotropy, shown
in Figure 18. An abrupt change in orthotropy direction in
the middle of the bar triggers very different behavior on
both sides.

4See also cubic/tetrahedral infill in software Cura.
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θ = 25◦

θ = 45◦

θ = 65◦

Figure 13: Material space for k = 8. Each row corresponds to a different minimal bisector slope θ. Each plot dot denotes
a single test. The plot axes correspond the three orthogonal Young’s moduli. The color of dots either depicts µ (left
column) or σ (right column). For better interpretation, each dot is projected in gray color to the Ez and Ey planes.

Our second example is a cylinder with a direction of or-
thotropy that rotates 90 degrees along the main axis, shown
Figure 19. This creates an interesting case where, under
rotation in the proper orientation, the cylinder twists and
flatten across its section. It is otherwise rigid vertically.

Our third example is an illustration of a prosthetic finger,
reproducing a result from [23]. The two joints are obtained
by a strong orthotropy aligned with the joint “axis.” Den-
sity also varies between the outside (denser) and the inside
of the bend. The result offers a preferred direction of flex
that corresponds better to a natural joint, in particular it

is harder to bend sideways (by orthotropy) or reverse (by
density). See Figure 20.

Our fourth example is a wheel that can be mounted on
an actual RC car (a Monster Beetle by Tamiya), see Fig-
ure 21. The wheel prints as a single part, is lighter than the
original (109 g versus 130 g), and deforms radially (shock
absorbent). Of course, the design would have to be refined
to act as an efficient tire. Our technique makes such appli-
cations accessible to hobbyists.

Our fifth example, Figure 22, illustrates how orthotropy
can be arranged radially to achieve different properties in
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Figure 14: Material space for k = 8 and θ = 45◦. We
consider the same range of parameters σ and µ used in Fig-
ure 13, while varying in addition the point density for {64,
125, 512, 1728, 4096} point sites per unit cell. The data
for 125 point sites per unit cell (green points) corresponds
exactly to θ = 45◦ in Figure 13 (middle row). For better
interpretation, each dot is projected in gray color to the Ez

and Ey planes.

a pipe design.
Our final example is a shoe sole with controlled elastic-

ity, shown in Figure 23. By modifying density, angle and
anisotropy we are able to control both the “softness” and
“bending” of the sole. While this is a purely illustrative ex-
ample, we hope our method will help produce orthopaedic
footwear at much lower price points than those produced
on high end SLS/SLA printers.

7 Limitations, future work

To the best of our knowledge, the presented microstructures
form the first metamaterial that is well suited for FFF and
offers a wide range of controllable elastic behaviors. Their
properties can be graded following custom control fields,
while still satisfying strict guarantees on manufacturability.

There are however a number of limitations and areas
of improvement. In terms of overall rigidity (bulk mod-
ulus), our structures are less effective than plane tessella-
tions (see Figure 15). It remains an open question whether
there exists other polyhedral distances that improve bulk
modulus, while still enforcing the fabrication constraints.

The stochastic geometry has an impact on printing speed
(about 15% slower than straight line infill on our printers).
This possibly could be mitigated by optimizing the traversal
of the paths; our slicer currently uses a simple “go to next
closest path” heuristic.

A minor issue related to design is that the point sites
are not always close to the centroid of the Voronoi cell.
Therefore, at low densities and high anisotropy, there can
be an offset between the control field and its actual effect
of the structure. It would be interesting to compensate for
this.

Finally, while we efficiently extract slices, we did not
investigate interactive visualization of the microstructures
– one possible approach is ray-marching. Efficient ray-
traversal of the structures is an interesting topic for future
work.

8 Conclusions

By carefully choosing the distance functions used to model
Voronoi diagrams, we are able to produce stochastic closed-
cell foams that enforce all manufacturability constraints on
continuous deposition processes. We proposed a parame-
terized polyhedral distance based on cones, that provides
good correlation between well understood geometric prop-
erties and observed elastic behaviors.

We envision that our method could also be helpful in op-
timizing periodic microstructures [34, 31] since it provides
a space of geometric structures that are certain to be fabri-
cable. It may also be interesting to use it as a replacement
in approaches that optimize Voronoi diagrams for additive
manufacturing, such as the work of Lu et al. [20].

There is no direct way to interpret our structures as open-
cell foams. The Voronoi edges could be considered but they
do not enforce fabrication constraints. Therefore, our tech-
nique is complementary to existing works targeting powder
and resin based systems, as it answers the need for parame-
terized metamaterials applicable to continuous deposition.
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V KVR

(a) 0.426 0.119
(b) 0.353 0.118

(b) / (a) 82.7% 99.4%
(c) 0.421 0.114
(d) 0.329 0.115

(d) / (c) 78.0% 100.5% (a) (b) (c) (d) (e)
V Ey Ez

(e) 0.328 0.258 0.244
(b) 0.353 0.152 0.258

(e) / (b) 93.0% 169.7% 94.57%
(d) 0.329 0.199 0.199

(e) / (d) 99.7% 129.6% 122.6%

Figure 15: We compare infills made of tessellations made of planes with polyhedral Voronoi diagrams. We set a minimal
slope of θ = 45◦ for all tests. We give in the supplemental material the full expression of the homogenized elasticity
tensors of each test. Left table: We determine the volume V required to achieve similar KVR values (±0.001). Since
polyhedral Voronoi diagrams span a wide space of material, we select the closest sample (with respect to KVR) in the
database of Figure 13. However, note that other samples having similar KVR are possible. (a) and (c) correspond,
respectively, to the closest match for (b) and (d). As seen in the third and sixth row, our infills require 20% more
material for the same KVR. Right table: When orthotropy is desired, for instance to mimic a laminate much stiffer in y, z
than in x, polyhedral Voronoi diagrams are better suited. As seen in the third row, for a lower volume (e) is significantly
more stiff in y than (b), while in the fifth row (e) is significantly stiffer in both y, z than (d) for a similar volume.

µ = 0.6, σ = 1 µ = 0.6, σ = 0.4 µ = 0.85, σ = 1

V = 0.22 V = 0.27 V = 0.25

Ex Ey Ez Ex Ey Ez Ex Ey Ez

Homogen. 0.048 0.049 0.049 0.009 0.131 0.128 0.043 0.043 0.135
Ratio (×) 0.68 0.69 0.69 0.13 1.86 1.81 0.61 0.61 1.91

Ultimaker 3 1.16 1.2 1.15 0.49 4.2 3.41 1.66 1.46 3.22
Ratio (×) 0.58 0.60 0.58 0.26 2.1 1.71 0.83 0.73 1.61

Ultimaker 2 1.84 1.85 1.73 0.71 5.95 4.24 2.51 2.4 4.94
Ratio (×) 0.63 0.64 0.59 0.24 2.05 1.46 0.86 0.83 1.70
Prusa i3 2.12 2.16 2.35 0.61 5.4 4.8 2.55 2.24 6.5

Ratio (×) 0.66 0.68 0.74 0.19 1.69 1.50 0.80 0.70 2.04

Figure 16: Comparison between numerical homogenization
(Young’s moduli in the normalized range [0, 1]) and exper-
imental compression tests performed on an Instron 3345
testing machine. Experimental Young’s moduli are given
in megapascals (MPa). For all three tests we set k = 8
and θ = 45◦, and we vary µ and σ. We have printed
each sample (30mm cubes) on three different printers (Ul-
timaker 3, and Ultimaker 2, and Prusa i3) using different
rolls of filaments (Ninjatek Semiflex) in diameters of either
1.75mm (Prusai3) or 2.85mm (Ultimakers), with the same
layer thickness (0.2mm) and print speed (15mm/sec). We
apply a compression test to each direction, to obtain Ex,
Ey, and Ez. For comparison we compute ratios to the aver-
age value across all nine tests of the same printer (i.e. how
much more rigid/flexible each is with respect to the aver-
age). As can been seen the ratios agree well overall. We
provide in the supplemental material the full expression of
the homogenized elasticity tensor of each compression test.
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Figure 21: Top left: Orientation field ζ (top) and den-
sity field (below). The anisotropy is constant at σ = 0.3.
Bottom left: Wheel being printed on an Ultimaker 2 with
Semiflex filament at 0.3mm thickness. The print took 19
hours. Middle column: The finished wheel and its defor-
mation under load. Right: Ready to run!

Figure 22: Illustration of an application to pipe design.
The left design transfers forces between the inner and outer
pipes, while the right design protects the inner pipe from
external forces. The designs differ only by the orthotropy
angle.

Figure 23: A 3D printed shoe sole. Left: Control fields used
on the model, density (top), orthotropy strength (middle)
and angle (bottom). Right: Printed shoe, top, side and
bending. The shoe is printed without any skin to reveal
the foam structure.

[20] Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q.,
Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and
Chen, B. Build-to-last: Strength to weight 3d printed
objects. ACM Trans. Graph. 33, 4 (July 2014), 97:1–
97:10.

[21] Luxner, M. H., Stampfl, J., and Pettermann,
H. E. Numerical simulations of 3D open cell struc-
tures – influence of structural irregularities on elasto-

13



Figure 24: Compared to subdividing rhombic infill (left),
Voronoi polyhedral diagrams produce a smoother grading
(right) without marked transitions, triggering a smoother
elastic behavior. Both structures use the same amount of
material. Ours printed 14% slower due to a more complex
geometry.

plasticity and deformation localization. International
Journal of Solids and Structures 44, 9 (2007), 2990 –
3003.

[22] Ma, L. Bisectors and Voronoi diagrams for convex
distance functions. PhD thesis, Fernuniversität, Fach-
bereich Informatik, 2000.

[23] Martínez, J., Dumas, J., and Lefebvre, S. Proce-
dural voronoi foams for additive manufacturing. ACM
Trans. Graph. 35, 4 (2016), 44:1–44:12.

[24] Martínez, J., Song, H., Dumas, J., and Lefebvre,
S. Orthotropic k-nearest foams for additive manufac-
turing. ACM Transactions on Graphics 36, 4 (July
2017), 121:1–121:12.

[25] Martini, H., and Swanepoel, K. The geometry
of Minkowski spaces – a survey. part II. Expositiones
Mathematicae 22, 2 (2004), 93 – 144.

[26] McMains, S., Smith, J., Wang, J., and Sequin, C.
Layered manufacturing of thin-walled parts. In ASME
Design Engineering Technical Conference, Baltimore,
Maryland (2000).

[27] Medeiros e Sá, A., Mello, V. M., Ro-
driguez Echavarria, K., and Covill, D. Adaptive
voids. The Visual Computer 31, 6 (2015), 799–808.

[28] Moulinec, H., and Suquet, P. A numerical method
for computing the overall response of nonlinear com-
posites with complex microstructure. Computer Meth-
ods in Applied Mechanics and Engineering 157, 1
(1998), 69–94.

[29] Okabe, A., Boots, B., Sugihara, K., and Chiu,
S. N. Spatial Tessellations: Concepts and Applications
of Voronoi Diagrams. John Wiley & Sons, 2009.

[30] Panetta, J., Rahimian, A., and Zorin, D. Worst-
case stress relief for microstructures. ACM Transac-
tions on Graphics 36, 4 (2017), 122:1–122:16.

[31] Panetta, J., Zhou, Q., Malomo, L., Pietroni, N.,
Cignoni, P., and Zorin, D. Elastic textures for ad-
ditive fabrication. ACM Trans. Graph. 34, 4 (2015),
135:1–135:12.

[32] Pasko, A., Fryazinov, O., Vilbrandt, T., Fay-
olle, P.-A., and Adzhiev, V. Procedural function-
based modelling of volumetric microstructures. Graph-
ical Models 73, 5 (2011), 165–181.

[33] Roberts, A., and Garboczi, E. Elastic properties
of model random three-dimensional open-cell solids.
Journal of the Mechanics and Physics of Solids 50,
1 (2002), 33 – 55.

[34] Schumacher, C., Bickel, B., Rys, J., Marschner,
S., Daraio, C., and Gross, M. Microstructures to
control elasticity in 3D printing. ACM Trans. Graph.
34, 4 (2015), 136:1–136:13.

[35] Ting, T., and Chen, T. Poisson’s ratio for
anisotropic elastic materials can have no bounds. The
quarterly journal of mechanics and applied mathemat-
ics 58, 1 (2005), 73–82.

[36] Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and
Matusik, W. OpenFab: A programmable pipeline for
multi-material fabrication. ACM Trans. Graph. 32, 4
(2013), 136:1–136:12.

[37] Wang, W., Liu, Y. J., Wu, J., Tian, S., Wang,
C. C. L., Liu, L., and Liu, X. Support-free hollow-
ing. IEEE Transactions on Visualization and Com-
puter Graphics (2017).

[38] Wu, J., Wang, C. C., Zhang, X., and Wester-
mann, R. Self-supporting rhombic infill structures for
additive manufacturing. Computer-Aided Design 80
(2016), 32–42.

[39] Xie, Y., and Chen, X. Support-free interior carving
for 3D printing. Visual Informatics 1, 1 (2017), 9–15.

[40] Zhou, Q. A study in fabricating microstructures,
2015. https://medium.com/3d-printing-stories/
a-study-in-fabricating-microstructures-part-1-f267d298326e.

[41] Zhu, B., Skouras, M., Chen, D., and Matusik, W.
Two-scale topology optimization with microstructures.
ACM Trans. Graph. 36, 5 (July 2017), 164:1–164:16.

14



Polyhedral Voronoi diagrams for additive manufacturing,
Supplemental material

Jonàs Martínez, Samuel Hornus, Haichuan Song, Sylvain Lefebvre
Inria

January 20, 2018

Polyhedral Voronoi diagrams and algorithm
In Section 1 we provide the rationale behind the construc-
tion of Polyhedral bisectors (Section 1.1), how to find the
normal of bisector facets (Section 1.2), and how to iden-
tify any bisector local minima that may violate fabrication
constraints (Section 1.3).

In Section 2, we detail a 3-parameters family of cone
distances that satisfy the fabrication constraints but that
we have not experimented with yet.

In Section 3, we explain how we compute the labels in
the labels grid. The details are important for obtaining a
reasonably efficient implementation.

Elastic behavior
In Section 4, we give the analytic expressions for the or-
thotropic compliance tensor and the bulk modulus bounds.

Sections 5 and 6 provide the elasticity tensors for Fig-
ures 15 and 16 in the article.

In Figure 3 and Figure 4 we provide the Poisson’s ratio
and shear modulus, respectively, of Figure 13 in the article.

1 Constructions

We say that two features X ⊂ P and Y ⊂ P on the bound-
ary of the distance polytope P generate a feature B of the
bisector B(p, q) when

B = {(p+ λX) ∩ (q + λY ) | λ > 0}. (1)

B is empty or not depending on the relative position of the
point sites p and q.

1.1 Construction of a bisector
Given two point sites p and q, let us define the unit vector
u = q−p

||q−p|| . The facets of P can be partitioned into front
and back facets, where the normal vector of a front (resp.
back) facet has a non-negative (resp. non-positive) dot-
product with u. A point r on the bisector B(p, q) can be
written as r = p + λri = q + λrj where λ = dP (p, r) =
dP (q, r), ri is a point of a front-facet of P , rj is a point
of a back-facet of P and the line (rirj) is also parallel to
the vector u. Conversely, given a point ri on a front-facet
and a point rj on a back-facet; if both points also lie on
a line parallel to u, then they generate (in the sense given
above) exactly one point on the bisector. This proves that
the bisector B(p, q) can be constructed from the overlay O
of the projections of the front facets and the back facets
on a plane orthogonal to vector u, through a function ϕ :
O 7→ B(p, q): Let v be a vertex of a cell of the overlay. The
points ri(v) and rj(v) are computed as the intersection of
P with the line through v parallel to the vector u. These
two points on P generate the bisector point ϕ(v) = p +

λ(v)ri(v) = q + λ(v)rj(v) where λ(v) =
||q − p||

||ri(v)− rj(v)||
.

Once the vertices of the bisector are computed, its facets are
trivially obtained since they follow the same combinatorics
as the overlay. Finally, silhouette vertices on the boundary
of the overlay are mapped to bisector points at infinity.

The present submission comes with a compiled javascript
interactive visualization of the polyhedral bisector. The
reviewer is invited to check the “bisector/” directory and
the “README.txt” file in the parent directory.

1.2 Normal vector of a bisector facet
Let f be a facet of the bisector B(p, q) generated by the
facets fi and fj of P . (In particular, the projections of
both facets on a plane orthogonal to q − p have a non-
empty intersection, which is a cell of the overlay mentioned
in Section 1.1.) Let ni be the outward normal vector to
facet fi. Let αi > 0 be the distance from the origin to the
plane Hi supporting fi. In particular, if ri is a point of fi
then αi = ri · ni.

Proposition 1 ([6]). Write Hij for the plane that spans the
origin and the line Hi∩Hj. The bisector facet f (generated
by fi and fj) is parallel to the plane Hij and its normal
vector is proportional to αjni − αinj.

Proof. We prove the formula for the normal vector. Let
ri ∈ fi and rj ∈ fj be the pair of features that generates a
point ϕ(v) where v is any point on the line (rirj). We have

ϕ(v) · (αjni) = (p+ λ(v)ri) · (αjni) (2)
= K + λ(v)αj(ri · ni) = K + λ(v)αjαi

(3)
and ϕ(v) · (αinj) = (q + λ(v)rj) · (αinj) (4)

= K′ + λ(v)αi(rj · nj) = K′ + λ(v)αiαj ,
(5)

with K = αjni · p (6)
and K′ = αinj · q. (7)

We see that ϕ(v) · (αjni −αinj) is a constant for any point
v in the given overlay cell.

1.3 Finding a local minimum
Let e be a directed line segment on P (for example, an edge,
but not necessarily; we see e also as a vector). Let fi a facet
of P not parallel to e, with outward normal vector ni. Then
for some directions p−q, segment e and facet fi do generate
a line segment e′ on the bisector B(p, q). Let l and l′ be the
lines supporting segments e and e′ respectively. Then l′ is
parallel to the line from the origin to the point x = l ∩Hi.
As a point walks along e, the corresponding bisector point
walks along e′ in the direction x if e ∧ ni > 0, and in the
opposite direction, −x, otherwise.
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Figure 1: The 15 possible bisector vertex configurations
induced by a 5 sided polygon P , corresponding the all the
possible interactions between edges (horizontal axis) and
vertices (vertical axis) of P . Vertex v4 generates two local-
minimum configurations with edges e0 and e1. Therefore
the particular polyhedral distance induced by this polygon
does not produces fabricable Voronoi diagrams.

A vertex v of the bisector B(p, q) is the image through ϕ of
a vertex of the overlay O. Thus, vertex v is generated either
by a vertex vi and a facet fj of P (that can not contain
vi) or by two edges ei and ej of P . In either case, the
argument above lets us compute the directions (in R3) of
each bisector edge emanating from v. If the z-component of
every direction is positive, then v is a local minimum. This
gives an algorithm to decide in quadratic time whether or
not a distance polytope can produce local minimum in the
derived polyhedral Voronoi diagram. Figure 1 shows all the
bisector vertex configurations for a 2D polygonal distance.

2 Varying σ, ζ, µ and θ

If we increase θ, then ℓ decreases and the apex moves down.
We can take it back up to its original position by also in-
creasing µ. We then obtain a 3-parameters family of cones
whose parameters can spatially vary together and indepen-
dently while respecting both fabrication constraints. Pa-
rameters θ (represented by ℓ = tan(π/2 − θ)) and µ are
related by

ℓ2 =
A2

z

µ2
− (1 +Az)

2. (8)

Changes in the Voronoi mesh When increasing θ, the
bisector facets generated by a side facet and the base facet
of the distance cone become more vertical. Then, to com-
pensate the lowering of the apex, we also increase µ ac-
cording to Equation (8). We also expect this compensation
to raise the slope of the bisector facets (Main paper, Sec-
tion 4.3.3). Therefore, we can interpret the µ-θ pair as
working in tandem for us to tune the stiffness in z. In
the horizontal plane, we can still choose σ and ζ at will to
control horizontal stiffness.

3 Algorithmic details

Let C ⊂ R3 be the input solid to be filled with our mi-
crostructure mesh K. In a slice at height d, the deposition
paths that form the microstructure are given by Bd∩K∩C.
Since K is piecewise linear, Bd ∩ K is composed of a set of
line segments.

A sweep-plane approach to compute Bd∩K would be ide-
ally suited for our setting since we do want to extract many
horizontal slices of K. Such an algorithm involves updating

the planar topology of Bd ∩ K as d varies monotonously.
Dehne et al. [3] studied the two dimensional setting of the
wavefront approach for convex metrics. In the same vein,
Chen et al. [2] presented a sweep-line algorithm for certain
polygonal metrics in the plane. However, to the best of
our knowledge there exists no work dealing with the three-
dimensional case. This is mostly due to the complicated
update of the sweep-plane, and the difficulties in obtaining
a robust implementation [2].

Instead, we propose a simpler discretized approach to ap-
proximate the deposition paths, that we illustrate in Fig-
ure 12. We overlay a 2D regular grid over C ∩ Bd, called
the labels grid and label each grid square with the site of S
closest to the square center, as measured by the polyhedral
distance dP . Then, we extract all the boundary edges be-
tween adjacent grid squares with different labels and sim-
plify the extracted jagged paths in order to produce the
final deposition paths for fabricating the microstructure in-
side C.

The labels grid should not be confused with the 3D sites
grid, defined in Section 4.3.1: the labels grid is 2D and
much denser.

3.1 Voronoi labeling
This section describes the labeling of each square of the
2D labels grid. The size of each such square should be
much smaller than the size of the finest cells of the sites
grid. In our experiments, it is set from 20µm to 100µm.
The labels grid samples the horizontal plane Bd at height
z = d. For a given grid square center point c, we need
to compute the point site ν(c) ∈ S closest to c, that will
serve as a label for that square. (Note that the query point
c is located in R3 and cz = d.) Let sc be the cell of the
sites grid that contains the query c. To find ν(c) efficiently,
we traverse a pre-computed list of cells around sc: ν(c) =
argmins∈sp+Σ dP (s, c). The list Σ stores 3D indices relative
to the reference cell C0 with index (0, 0, 0) and is sorted by
distance to C0. The computation of Σ is detailed below.

3.2 Computation of Σ with a uniform distance
The idea is to obtain an upper bound λmax on the distance
between the query point c and its nearest site ν(c) and then
store in Σ the indices of all the cells that are at distance no
greater than λmax from the reference cell C0.

Recall that the distance dP is not symmetric. Since we
want to center the search around the query point c, we make
the following observation. Writing P ′ for the reflection of
P with respect the origin, we have dP (s, c) = dP ′(c, s) and
∀λ ≥ 0, dP (s, c) ≤ λ ⇐⇒ c ∈ s + λP ⇐⇒ s ∈ c + λP ′.
We are then guaranteed that ν(c) lies inside c + λmaxP

′,
which lets us restrict the search.

To compute the upper bound λmax for our specific point
site distribution (Section 4.3.1), we use the following prop-
erty: If we can fit an axis-aligned cube of side length 2a into
the scaled unit-ball λP for some λ > 0 (Figure 2-left), then
we have the guarantee that any translate of λP (or of λP ′,
in particular, c+λP ′) contains at least one cell of a regular
grid whose cells have side length a (Figure 2-middle). If s is
a point site in that cell, then s ∈ c+λP ′ ⇐⇒ dP (s, c) ≤ λ.
From the particular geometry of the unit-ball that we use
(a polyhedral cone, Section 4.2), we can (conservatively)
fit a cube touching the base of the cone and of side length
L = (1+Az)

√
2ℓ

1+Az+
√
2ℓ

where 1 + Az is the height of the cone and
ℓ/ cos(π/k) is the radius of its base for some integer k ≥ 3.
Thus, if the sites grid cells have side-length a, the nearest
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site of any query point is at polyhedral-distance no more
than λmax = 2a

L
from the query. (In our implementation,

we scale the problem so that a = 1.)
Using a breadth-first traversal starting at C0, we pre-

compute the search list Σ of cell indices (in the sites grid)
The search-list is truncated when the distance reaches λmax.

Remark Our “jittered grid” site distribution scheme
gives us an easy-to-compute upper bound on the distance
from any query point in R3 to the nearest point site in S.
Nonetheless, such an upper bound can also be derived for
other point sampling schemes and used in our technique.

Computing distances The distance dP ′ between a point
and an axis-aligned cubical cell is computed efficiently using
a simple modification of Greene’s technique [4]. During the
computation of the search-list, one needs to compute the
polyhedral distance between two grid cells:

dP ′(C0, C) = min{λ : ∃a ∈ C0, ∃b ∈ C, b ∈ a+ λP ′} (9)
= min{λ : ∃p ∈ (C ⊖ C0), p ∈ λP ′} (10)
= dP ′(O,C ⊖ C0). (11)

where O is the origin and C ⊖C0 = {b− a : a ∈ C0, b ∈ C}
is a cube twice the size of C or C0. Since we stop the
construction of the search list Σ when the distance gets
larger than λmax, the list Σ contains precisely the indices
of the sites grid cells that touch the Minkowski sum of C0

and λmaxP
′ (Figure 2-right).

In a multi-resolution sites grid, we use the precom-
puted search-list only at the coarsest level of the sites grid.
Then, when a cell should be recursively subdivided, we
check that each sub-cell is at distance no more than the
current minimal distance λ ≤ λmax found so far before ex-
amining the site(s) that it contains. Greene’s technique is
easily modified to exit as soon as the cell is found to be
farther from the query point than λ.

3.3 Computation of Σ with a spatially varying
distance

When the parameters of the cone distance vary spatially,
the distances to the sites grid cells must be conservatively
under-approximated in order to account for the variation
of the distances used at each different sites.

Both for computing the search list Σ and during the
search of a nearest site for a given query point, we use
a separate, larger distance cone P big which is guaranteed
to contain all the distance cones defined at the point sites
{P (s) : s ∈ S}. Instead of computing λmax on this cone, we
use the largest λmax among the values computed for all the
possible distance cones: λbig

max = maxs∈S λmax(P (s)). The
search is then slower, but is sure to find the correct nearest
site.

4 Elastic behavior and homogenization

For linear elasticity we have that σ = Cϵ and conversely
ϵ = Sσ, where σ is the stress, ϵ is the strain, C is the
elasticity tensor, and S is the compliance tensor.

We follow the conventional homogenization method [1]
of prescribing the strain and computing the overall stress
response for the six unit strains in order to approximate
the elasticity tensor C. We obtain the compliance tensor S
by directly inverting C.

C0

�e sites grid

c

c + λP ′

r

r + λP

s

C0 ⊕ λP ′

Figure 2: Left. One translate of the scaled polytope λP
contains a 2 × 2 sub-grid. Middle. This guarantees that
any translate of λP ′ contains at least one grid cell (green),
thus at least one point site (red). Right. The blue cells
have their index in the search list Σ.

4.1 Orthotropic materials
The compliance tensor Sortho of an ideal orthotropic mate-
rial [7] is:

Sortho =




s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66




(12)

where,

s11 =
1

Ex
, s22 =

1

Ey
, s33 =

1

Ez
(13)

s44 =
1

Gyz
, s55 =

1

Gzx
, s66 =

1

Gxy
(14)

s12 = −vyx
Ey

= −vxy
Ex

, s13 = −vzx
Ez

= −vxz
Ex

, (15)

s23 = −vzy
Ez

= −vyz
Ey

(16)

such that
vij
Ei

=
vji
Ej

i, j = x, y, z i ̸= j (17)

and Ei is the Young’s modulus along axis i (measure
of stiffness), Gij , is the shear modulus in direction j on
the plane whose normal is in direction i (measure of re-
sponse to shear stress), and vij is the Poisson’s ratio (ratio
of transverse strain to axial strain) that corresponds to a
contraction in direction j when an extension is applied in
direction i.

Given an homogenized compliance tensor S, we compute
the closest orthotropic compliance tensor Sortho under the
logarithmic Euclidean distance [8], which is well-suited for
elasticity.

4.2 Bulk modulus
We are also interested in evaluating the overall compres-
sive strength. To do so, we consider the bulk modulus K,
that characterizes the tendency of a material to deform in
all directions when uniformly loaded in all directions. A
high bulk modulus implies higher material incompressibil-
ity. Given the following classical bulk modulus bounds [5]
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KV = ((c11 + c22 + c33) + 2(c12 + c23 + c31))/9 (Voigt average)

KR = ((s11 + s22 + s33) + 2(s12 + s23 + s31))
−1 (Reuss average)

(18)

we consider the Voigt-Reuss average KVR = (KV +KR)/2.

5 Homogenized elasticity tensors Fig-
ure 15 in article

Tensors values are rounded to three decimals. Interestingly,
the elasticity tensor of (Figure 15b) is well approximated
by a monoclinic material (single plane of tensor symme-
try, 13 independent constants), while the others are better
approximated by an orthotropic one (three planes of ten-
sor symmetry, 9 independent constants). For more details
about tensor symmetries and elastic constants see for in-
stance Section 2.2 in [7].

5.1 Figure 15a

C =




0.197 0.077 0.07 0.0 0.0 0.0
0.077 0.195 0.069 0.0 0.0 0.0
0.07 0.069 0.253 0.0 0.0 0.0
0.0 0.0 0.0 0.06 0.0 0.0
0.0 0.0 0.0 0.0 0.077 0.0
0.0 0.0 0.0 0.0 0.0 0.076




5.2 Figure 15b

C =




0.127 0.098 0.083 0.0 −0.035 0.0
0.096 0.227 0.077 0.0 −0.018 0.0
0.081 0.077 0.313 0.0 −0.029 0.0
0.0 0.0 0.0 0.094 0.0 −0.021

−0.034 −0.02 −0.032 0.0 0.088 0.0
0.0 0.0 0.0 −0.021 0.0 0.08




5.3 Figure 15c

C =




0.118 0.083 0.083 0.0 0.0 0.0
0.084 0.259 0.072 0.0 0.0 0.0
0.084 0.072 0.259 0.0 0.0 0.0
0.0 0.0 0.0 0.084 0.0 0.0
0.0 0.0 0.0 0.0 0.084 0.0
0.0 0.0 0.0 0.0 0.0 0.075




5.4 Figure 15d

C =




0.201 0.075 0.067 0.0 0.0 0.0
0.075 0.202 0.068 0.0 0.0 0.0
0.067 0.068 0.207 0.0 0.0 0.0
0.0 0.0 0.0 0.064 0.0 0.0
0.0 0.0 0.0 0.0 0.074 0.0
0.0 0.0 0.0 0.0 0.0 0.074




5.5 Figure 15e

C =




0.002 0.003 0.003 0.0 0.0 0.0
0.004 0.28 0.071 0.0 0.0 0.0
0.003 0.07 0.264 0.0 0.0 0.0
0.0 0.0 0.0 0.002 0.0 0.0
0.0 0.0 0.0 0.0 0.002 0.0
0.0 0.0 0.0 0.0 0.0 0.1




6 Homogenized elasticity tensors Fig-
ure 16 in article

6.1 Left compression test (µ = 0.6, σ = 1)

C =




0.06 0.024 0.019 0.0 0.0 0.0
0.024 0.061 0.019 0.0 0.0 0.0
0.018 0.019 0.058 0.0 0.0 0.0
0.0 0.0 0.0 0.017 0.0 0.0
0.0 0.0 0.0 0.0 0.026 0.0
0.0 0.0 0.0 0.0 0.0 0.026




6.2 Middle compression test (µ = 0.6, σ = 0.4)

C =




0.012 0.016 0.012 0.0 0.0 0.0
0.018 0.16 0.042 0.0 0.0 0.0
0.013 0.042 0.145 0.0 0.0 0.0
0.0 0.0 0.0 0.012 0.0 0.0
0.0 0.0 0.0 0.0 0.017 0.0
0.0 0.0 0.0 0.0 0.0 0.059




6.3 Right compression test (µ = 0.85, σ = 1)

C =




0.06 0.03 0.023 0.0 0.0 0.0
0.031 0.06 0.024 0.0 0.0 0.0
0.025 0.025 0.148 0.0 0.0 0.0
0.0 0.0 0.0 0.013 0.0 0.0
0.0 0.0 0.0 0.0 0.035 0.0
0.0 0.0 0.0 0.0 0.0 0.035



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θ = 25◦

θ = 45◦

θ = 65◦

Figure 3: Material space for k = 8. Each row corresponds to a different minimal bisector slope θ. Each plot dot denotes
a single test. The plot axes correspond the three orthogonal Poisson’s ratio. The color of dots either depicts µ (left
column) or σ (right column).
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θ = 25◦

θ = 45◦

θ = 65◦

Figure 4: Material space for k = 8. Each row corresponds to a different minimal bisector slope θ. Each plot dot denotes a
single test. The plot axes correspond the three orthogonal shear moduli. The color of dots either depicts µ (left column)
or σ (right column).
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