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Fig. 1. Left: We propose a novel type of microstructures well suited for fabrication on continuous deposition processes such as fused filament fabrication. Our
microstructures afford for a wide range of elastic behaviors, from isotropic to orthotropic. As illustrated their geometry can be spatially graded. Right: We
model the foams as Voronoi diagrams of a special kind, which contrary to Euclidean Voronoi diagrams produce geometry enforcing all fabrication constraints.

A critical advantage of additive manufacturing is its ability to fabricate

complex small-scale structures. These microstructures can be understood as

a metamaterial: they exist at a much smaller scale than the volume they fill,

and are collectively responsible for an average elastic behavior different from

that of the base printing material making the fabricated object lighter and/or

flexible along specific directions. In addition, the average behavior can be

graded spatially by progressively modifying the microstructure geometry.

The definition of a microstructure is a careful trade-off between the

geometric requirements of manufacturing and the properties one seeks to

obtain within a shape: in our case a wide range of elastic behaviors. Most

existing microstructures are designed for stereolithography (SLA) and laser

sintering (SLS) processes. The requirements are however different than

those of continuous deposition systems such as fused filament fabrication

(FFF), for which there is currently a lack of microstructures enabling graded

elastic behaviors.

In this work we introduce a novel type of microstructures that strictly
enforce all the requirements of FFF-like processes: continuity, self-support

and overhang angles. They offer a range of orthotropic elastic responses

that can be graded spatially. This allows to fabricate parts usually reserved

to the most advanced technologies on widely available inexpensive printers

that also benefit from a continuously expanding range of materials.
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1 INTRODUCTION
Novel capabilities of additive manufacturing processes are challeng-

ing the traditional separation between shape and material. Tool

accessibility and mold extraction constraints no longer apply, and

shapes with intricate internal details can be fabricated. These in-

ternal microstructures modify the large-scale material properties,

making parts lighter, porous or flexible and resilient. In addition,

these microstructures can be spatially graded: the same object may

be rigid where external stresses apply, and lighter in other regions.

This has spawned an intense research effort towards the geo-

metric design of microstructures that can be embedded into vol-

umes while triggering varying properties. The microstructures are

typically considered as a metamaterial: at large-scale they behave

equivalently to a uniformmaterial characterized by a homogeneous

elasticity tensor. This average behavior can be analyzed, abstracting

away the fine-scale details, in a process called numerical homoge-
nization. In addition, the microstructures are often parametric: the
geometry of their fine scale details is controlled through high-level

parameters, such as thickness or orientation. These parameters im-

pact the large-scale elastic behavior, and thus the observed elasticity

tensor can be controlled by manipulating these parameters directly.

The main interest in using such parametric metamaterials is that

their elasticity can be spatially controlled – graded – by a control

field, varying mechanical properties within the shape volume. The

control field can be either manually painted through a dedicated

user interface [Ion et al. 2016] or automatically computed through,

e.g. topology optimization [Zhu et al. 2017].

In this paper we focus on defining a novel class of parametric

metamaterials. A key challenge – besides triggering the desired

elastic behavior – is to enforce constraints due to the additive man-

ufacturing processes. Most existing works on the topic have focused

on processes such as selective laser sintering (SLS) and stereolithog-

raphy (SLA). These technologies have different constraints than the

widely available and inexpensive fused filament fabrication (FFF)

3D printers. In particular, most recent works produce geometries ex-

hibiting truss structures (detailed in Section 2). After slicing, these

structures produce many isolated ellipses in each slice. These are

extremely challenging to print on FFF systems, where continuity
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of deposition, low overhang angles, and support from below are

strict requirements (for examples of actual trials we recommend

the online article by Zhou [2015]).

This is especially unfortunate, as FFF is not only widely avail-

able but allows to fabricate in a wide spectrum of materials, from

inexpensive plastics, food-safe materials, nylons, to metal-polymer

compounds and carbon fiber reinforced materials (see filament by

e.g. Proto-Plasta). In addition, other technologies such as wire arc

metal printing
1
and contour crafting

2
share the same constraints.

These constraints are very restrictive and have so far prevented the

development of metamaterials for these processes.

Contributions. Our paper aims at filling this gap, defining a novel

parametric metamaterial with the following properties:

• closed-cell, stochastic foam-like geometry readily printable

on FFF-like systems, with strictly enforced overhang angles

and that is everywhere supported from below,

• density and anisometry controllable through user provided

fields that can vary arbitrarily,

• defines orthotropic materials that can be freely oriented in

the plane orthogonal to the fabrication direction,

• a purely procedural computation that scales to arbitrarily

large shapes.

This is made possible by defining procedural Voronoi diagrams

based on polyhedral distances. We identify a class of parameter-

ized polyhedral distances providing guarantees on the maximum

overhang angles, and ensuring that all deposited material is sup-

ported from below. These constraints remain enforced when vary-

ing density and orientation parameters. We detail the procedural

generation of our foams, analyze their elastic behavior and the link

between the underlying parameters and the obtained elasticity ten-

sors, and produce a variety of results demonstrating applications.

2 RELATED WORK
Researchers in additive manufacturing have recognized the need

for internal fill patterns early on [McMains et al. 2000]. Indeed,

by avoiding densely filling an interior, the print time and material

use are greatly reduced. Thus, early infill patterns were essentially

targeted at reducing material density, while being fast to generate

and efficient to fabricate. Typical patterns for continuous deposition

encompass parallel lines with varying spacing, but more elaborate

patterns have been devised in an effort to achieve better strength

to weight ratios [Livesu et al. 2017].

In recent years, the focus has shifted to producing infill patterns

with controllable mechanical properties. Most approaches cast the

problem as a two-scale optimization [Zhu et al. 2017]. A paramet-

ric metamaterial is defined either as a set of (parametric) periodic

microstructures [Panetta et al. 2017, 2015; Schumacher et al. 2015]

or as a random process producing geometry [Martínez et al. 2016;

Martínez et al. 2017]. The link between microstructure parameters

and their average elastic behavior is analyzed, defining a material

space. Each entry of the material space relates a choice of structure

1
See e.g. https://waammat.com/about/waam

2
See https://en.wikipedia.org/wiki/Contourcrafting

parameters to an elasticity tensor. A user or an algorithm can di-

rectlywork at a coarser scale and specify the desired elastic behavior

in different regions of space. This is translated into microstructure

parameters used to produce a final geometry. The definition of the

geometry is often procedural, such that it is instantiated only when

sent to the printer, slice by slice [Pasko et al. 2011; Vidimče et al.

2013]. Our work is inscribed in this direction of research.

Most results in this area produce microstructures that are fab-

ricable only with SLS/SLA, which have constraints different from

FFF. The challenges in designing infill patterns for continuous de-

position are threefold. First, material can only be deposited on top

of already solidified layers: it is not possible to start a new feature

in ’mid-air’. Similarly, while slanted walls can be fabricated, there

is a limit to the maximum overhang angle (typically around 45 de-

grees, varies with layer and deposition thicknesses). Second, the

extrusion process should be interrupted as little as possible, as each

start/stop produces small deposition defects. Third, the deposition

head is typically a relatively heavy device, and acceleration rates

are limited by mechanical capabilities.

The first constraint (overhangs, support) relates to the geometry

of the patterns and requires defining self-supporting geometry (e.g.

not requiring auxiliary support for fabrication). The two other con-

straints (continuity, acceleration) relate to deposition efficiency and

quality. In particular, truss structures which print well on SLA/SLS

are ill-suited for continuous deposition due to the last two con-

straints: they require printing many small discs spread throughout

each layer. This triggers many start/stop and abrupt speed changes

– the low acceleration limiting the maximum reachable speed. As a

consequence, the beams have lower quality and print slower than

their volumes would indicate. Unsurprisingly, most patterns for FFF

are comprised of as long as possible continuous lines.

Nevertheless, recent research has considered improved infill pat-

terns for continuous deposition. Leary et al. [2013] advocate for the

use of self-supported spatial tessellations, considering maximum

overhang angles. Wu et al. [2016] explore how sub-dividable rhom-

bic infill patterns [Lefebvre 2015] can be optimized for rigidity. Lee

and Lee [2017] optimize similar patterns to produce parts that are

as empty as possible – while producing self-supported structures.

Hornus et al. [2016], Xie et al. [2017] andWang et al. [2017] consider

how to maximally carve parts while producing self-supported inner

cavities. Lu et al. [2014] optimize the positions of the point sites of

a Voronoi diagram to strengthen an object. Interestingly, a soluble

support material had to be used within the cells (page 6, paragraph

Physical test of [Lu et al. 2014]) – that is because usual Voronoi

diagrams cannot form self-supported structures (see Section 3). Lee

et al. [2018] pack many ellipses within a volume interior to obtain

a self-supported interior fill.

However, none of these techniques afford for the definition of a

material space, in the same sense as the microstructures employed

with SLS/SLA [Martínez et al. 2016; Panetta et al. 2015; Schumacher

et al. 2015]. One exception is the work of Martinez et al. [2017] on

orthotropic foams, where orthotropic 2D patterns are fabricated on

FFF printers. However, this only applies to 2D patterns extruded

vertically, not 3D structures. Subdivisible infills [Medeiros e Sá et al.

2015; Wu et al. 2016] come close, but these cannot produce smooth
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spatial variations in orientation and density due to their underly-

ing regular nature. We discuss them in more details and provide

elements of comparison in Section 5.5.

Our work aims at introducing infill patterns which are well suited

for fabrication by continuous deposition, can be graded spatially,

and provide a wide material space for design.

3 OVERVIEW
The microstructures we explore belong to the family of closed-cell

foams. They are defined as a stochastic process, which parame-

ters drive the small-scale material arrangement, and ultimately the

average elastic behavior.

Our foams are defined as the thickening of the facets of Voronoi

diagrams of a special kind. We give below some more specific back-

ground on the use of Voronoi diagrams to represent foams and

microstructures, explain the challenges and give some intuition on

our technique. The precise definition and analysis of our micro-

structures are given in Section 4.

3.1 Voronoi foams in additive manufacturing
In material science, naturally occurring cellular solids are often ide-

alized as sets of Voronoi edges (open-cell) or facets (closed-cell) [Gib-

son and Ashby 1999]. These have been well studied as they exhibit

desirable properties such as an isotropic elastic behavior [Luxner

et al. 2007] with a quasi-linear link between density and Young’s

modulus [Gibson and Ashby 1999; Roberts and Garboczi 2002].

Voronoi open-cell foams are used for fabrication on SLA/SLS

processes, as they form fully connected truss networks well suited

to resin and powder solidification. They are amenable to efficient

procedural synthesis [Martínez et al. 2016]. Open-cell foams are

however not very suitable for continuous deposition, due to the con-

straints mentioned in Section 2. For continuous deposition, closed-

cell foams are more promising: they form walls that would afford

for continuous deposition and are also known to exhibit good me-

chanical behaviors – in fact, for the same volume closed-cell foams

are more rigid than open-cell foams (see [Gibson and Ashby 1999,

Formulas 5.6, 5.13] and [Sigmund et al. 2016]). The reason closed-

cell foams are not used with SLA/SLS is that they would trap non

solidified material in closed cells. This, however, is not an issue on

FFF-like processes.

Unfortunately, as we discuss next, the usual Voronoi diagrams

do not define self-supporting closed-cell structures. Besides, their

elastic behavior would remain limited to isotropic elasticity, while

we seek a wider material space.

3.2 Challenges of usual Voronoi diagrams
We now discuss why usual (Euclidean) Voronoi diagrams cannot

be readily used. Let us consider such a diagram defined from a set

of point sites si ∈ S . Each Euclidean Voronoi cell is defined by:

VP (si ) =
{
p ∈ R3 : | |si − p | |2 < | |sj − p | |2,∀si , sj ∈ S

}
(1)

The closed-cell foam is formed by thickening the facets of the dia-

gram. Figure 2 shows 2D examples where facets are edges. In these

side views, the build direction goes upward. As can be seen in the

Euclidean diagram (leftmost), the facets/edges can take an arbitrary

orientation and many of them violate the overhang constraint: they

cannot be printed on continuous deposition systems. In addition,

when the point sites are uniformly distributed, the cells tend to

be isotropic, which prevents the emergence of anisotropic elastic

behaviors (see [Martínez et al. 2017]).

Euclidean ⃝ L1 ^ L∞ □ Cone △

Fig. 2. The Voronoi diagram of a set of points under various distances, with
their unit ball drawn next to the name.

3.2.1 Changing the distance. Voronoi diagrams can be defined

using different distances. Figure 2 shows the diagram obtained using

the L1 and L∞ distances on the same point sites.

While these diagrams are not printable – due to the horizontal

facets – an interesting emerging property is that the facets take only

a fixed number of different angles. This, in fact, is a property of any

Voronoi diagram under a polyhedral distance: a distance induced by
a convex polyhedron [Icking and Ha 2001; Ma 2000].

Our intuition is that some specific convex polyhedron must exist

that induces polyhedral Voronoi diagrams whose facet set is fully

fabricable. Figure 2 (rightmost) shows an initial test that confirmed

this intuition: using a cone distance produces a fully printable dia-

gram. This idea forms the basis of our approach.

We detail how we build upon this initial intuition to define pa-

rameterized 3D Voronoi diagrams in Section 4. We analyze the

mechanical behavior of the structures in Section 5 and demonstrate

applications to additive manufacturing in Section 6.

4 METHOD
We now describe the use of polyhedral Voronoi diagrams for pro-

ducing microstructures with spatially varying elasticity, well suited

for continuous deposition (FFF-like processes).

Let Bd = {p : pz = d} be a plane orthogonal to the printing direc-
tion z, and B−d = {p : pz < d} be a half-space below Bd . We call slope
of a facet or slope of a plane the dihedral angle between the plane

supporting the facet and any horizontal (xy) plane. For example a

vertical wall has slope π/2, the printing plane slope zero.

Our microstructure is defined by a mesh K that must satisfy the

following two fabrication constraints:

(1) Angle constraint: Each facet f of K has to be “sufficiently

close to vertical” so that it is printable with FFF. We model

this constraint by imposing a lower-bound θ⋆ ∈ [0,π/2]
on the slope of facet f . If n is the normal vector of facet f ,
it must satisfy |nz | ≤ cosθ⋆. Reasonable values of θ⋆ may

range, say, from π/6 to π/3 and depends on the fabrication

hardware at hand.

(2) No-local-minimum constraint: Each point p ∈ K has to

be “supported from below” so that it does not appear mid-air

during fabrication; i.e. we have that K ∩ N (p) ∩ B−pz , ∅

where N (p) is any open neighborhood of p.
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These two constraints are well-suited for FFF-like processes, as

they capture the requirement that deposited material has to be well

supported from below. For our purpose in this paper, we model the

meshK as the union of the facets of a polyhedral Voronoi diagram,

namely, the Voronoi diagram of a set of point sites that arises when

using a specific polyhedral distance instead of the usual Euclidean

one (Section 4.1.1).We show that some choices of distance polytopes

guarantee thatK satisfies both fabrication constraints. In particular,

we show how one can easily check that a given polyhedral distance

entails a fabricable mesh K (Section 4.1.4) and we exhibit a simple

family of such polytopes (cones, Section 4.2). We discuss which

parameters can be spatially graded and how (Section 4.3). Finally,

in Section 4.4 we detail a simple algorithm to extract the deposition

paths delineating to the Voronoi facets.

4.1 Polyhedral Voronoi diagrams
We now recall the definition of polyhedral distances, polyhedral

bisectors, and their use in Voronoi diagrams. For simplicity, some

of the following illustrations consider a planar polygonal distance.

4.1.1 Polyhedral distances. Let P ⊂ R3 be a compact convex

polyhedron of combinatorial size k containing the origin in its in-

terior. The polyhedral distance induced by P from a point p to q is

(e.g., [Okabe et al. 2009]):

dP (p,q) = min {t ≥ 0 : q ∈ p + tP} . (2)

The value of dP (p,q) is the minimal scaling factor t applied to P
so thatp+tP touches q (Figure 3). Note that the L1 and L∞ distances

are particular cases of polyhedral distances. Since P is convex, the

triangle inequality holds: 0 ≤ dP (p, r ) ≤ dP (p,q) + dP (q, r ) (proof
in supplemental material). However, dP is symmetric if and only if

P is centrally symmetric with respect to the origin.

The distance dP (p,q) can be computed as follows [Icking et al.

1995]. Let q′ be the unique point of p + P intersected by the ray

from p to q (see Figure 3). Then dP (p,q) =
∥q−p ∥
∥q′−p ∥ .

In our implementation, we compute the closest intersection of

the ray with the planes supporting the facets of P .

Fig. 3. A polygonal distance function.

4.1.2 Polyhedral bisectors. The bisector between two point sites
p and q is the set of points equidistant to p and q under the distance

dP , that is:

B(p,q) =
{
r ∈ R3 : dP (p, r ) = dP (q, r )

}
(3)

Note that the polyhedral distance is taken from p and q to r because
dP is not symmetric.

4.1.3 Polyhedral Voronoi diagrams. Equipped with the polyhe-

dral distance, we now describe their use in Voronoi diagrams. Let

S be a set of n point sites in R3. The polyhedral Voronoi diagram
VorP (S) is the decomposition of R3 into Voronoi cells. A cellVP (si )
for a site si ∈ S is defined as:

VP (si ) =
{
p ∈ R3 : dP (si ,p) ≺ dP (sj ,p),∀si , sj ∈ S

}
(4)

where the lexicographical distance relation ≺ is necessary to deal

with cases where a full region space belongs to the bisector (non-

general position cases [Klein and Wood 1988]), see Figure 4:

dP (si ,p) ≺ dP (sj ,p) ⇐⇒

dP (si ,p) < dP (sj ,p) ∨ (dP (si ,p) = dP (sj ,p) ∧ (i < j))
(5)

Fig. 4. A non-general position case: the line passing through s1s2 is parallel
to the line containing the facet H1 of P . The gray region are points of the
polyhedral bisector B(s1, s2). The lexicographical distance of Equation (5)
selects one of the boundaries of the gray region.

The Voronoi facets form the boundary set of Voronoi cells. Due

to the triangle inequality, the Voronoi cells are star-shaped polyhe-

drons [Chew and Dyrsdale 1985]: for all q ∈ VP (s) the line segment

from s to q is in VP (s). Regarding the combinatorial complexity, as-

suming the complexity k of P is constant, the worst case complexity

of the Voronoi diagram is Θ(n2) [Icking and Ha 2001] (n = |S |).
An important property for our purpose is that the facets of

VorP (S) form a subset of the arrangement of the bisectors of each

pair of sites in S × S (see, e.g., [Ma 2000]). Thus, if all the bisectors

satisfy both fabricability constraints then the facets of the Voronoi

diagram form a fabricable mesh as well. We now analyse polyhedral

bisectors in more detail.

ACM Trans. Graph., Vol. 37, No. 4, Article 129. Publication date: August 2018.
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4.1.4 Properties of polyhedral bisectors. In this section, we re-

call known facts about polyhedral bisectors and explain how these

properties can be used to check whether the geometry of P induces

fabricable bisectors. Various works have already studied polyhe-

dral bisectors [Corbalan et al. 1996; Icking et al. 2001; Martini and

Swanepoel 2004]. For amore detailed exposition, we refer the reader

to the thesis of Ma [2000] and the references therein.

For simplicity, we assume that two points p and q are in gen-

eral position with respect to P . That is, the line through p and

q is not parallel to any line segment contained in the boundary

of P [Boissonnat et al. 1995]. Then, B(p,q) is piecewise linear and
homeomorphic to a plane [Ma 2000]. We give a method to construct

the bisector of two point sites in the supplemental material.

We define a feature as either a vertex, a (straight) edge or a (pla-

nar) facet. We say that two features X ⊂ P and Y ⊂ P on the

boundary of the distance polytope P generate a feature B of the

bisector B(p,q) when B =
⋃
λ>0 ((p + λX ) ∩ (q + λY )) . B is either

empty or does not depend on the relative position of the point sites

p and q. It follows from the constructions of polyhedral bisector

(detailed in the supplemental material) and Proposition 4.1 below,

that each feature of a bisector is generated by two features on P .
To determine fabricability, we have to analyse the slope of the

bisector facets. This builds upon the following property. Let Bi j
be a facet of the bisector B(p,q) generated by the facets fi and fj
of P . Let ni be the outward normal vector to facet fi . Let αi > 0

be the distance from the origin to the plane Hi supporting fi . (In
particular, if r is a point of fi then αi = r · ni .)

Proposition 4.1. Write Hi j for the plane that spans the origin
and the line Hi ∩Hj . Then, the bisector facet Bi j (generated by fi and
fj ) is parallel to the plane Hi j (Figure 5). The normal vector of Bi j is
proportional to α jni − αinj .

The proof is in [Icking and Ha 2001]. The derivation of the for-

mula for the normal vector can be found in the supplemental ma-

terial. Given Proposition 4.1, we now explain how to check if both

fabrication constraints are respected.

Verifying the angle constraint. Each planar facetBi j of the bisector
B(p,q) is defined through the interaction between two facets fi
and fj of P (see Figure 5). Proposition 4.1 tells us that the normal

vector of Bi j depends only on fi and fj and is independent of the
relative position of p and q. Thus, there are at most

(k
2

)
different

orientations for the bisector facets. We can check that they satisfy

the angle constraint by enumerating all pairs of facets of P .

Verifying the no-local-minimum constraint. Similarly, the vertices

of all bisectors exhibit a finite number of configurations that can be

enumerated in timeO(k2), to verify that no vertex of any bisector is
a local minimum with respect to the build direction. Each bisector

vertex is generated by either an edge-edge pair or a vertex-facet

pair (see Figure 6). Details are given in the supplemental material.

In summary, for a given polyhedral distance dP induced by a

polytope P of size k , we can check in time O(k2) if the polyhedral
bisectors under dP satisfy both fabrication constraints.

Fig. 5. Let fi , fj be facet of P . Let Hi and Hj be the supporting planes of fi
and fj , respectively. The feature of B(p, q) generated by fi and fj is drawn
bold and green. A construction for its supporting plane is shown. Lines
with the same color are parallels. The bold green bisector feature is indeed
parallel to the top green line, as constructed in Proposition 4.1. See Lemma
3.2.1.2 in [Ma 2000].

Fig. 6. Polygonal bisector between two point sites p and q. Each facet Bi j
of the bisector is generated by facets fi on p + P and fj on q + P . The
dark-red bisector vertex is generated by the two light-red features of P . The
dark-green bisector edge is generated by the two light-green features of P .
A section in the supplemental material details this geometric construction.

4.2 Polyhedral cone distances
We now describe our choice of a particular family of polyhedral

distances that induce fabricable Voronoi diagrams. The ideal family

has few parameters and the influence of each parameter should be

well understood, and easy to relate to the final elastic behavior. We

prefer a distance that is symmetric around the z-axis so that it is

easier to reason about. The most difficult property to achieve is the

absence of local minimum.

We determined that a polyhedral cone achieves these objectives,

and we now describe our family of cone distances. Given the param-

eterized cone geometry (Section 4.2.1), we explain how the fabrica-

tion constraints are satisfied (Section 4.2.2) and extend the family

with anisotropic cones (Section 4.2.3). We highlight the influence

of the parameters on the induced Voronoi diagram in Section 4.3.

4.2.1 Geometry of the cone. The base facet of the cone is a hor-
izontal regular k-gon (Figure 7-bottom-left). The cone has k side
facets (typically k = 8). The scale of the distance polytope does

not affect the Voronoi diagram that it induces, so we assume that

the base facet lies at z = −1. The cone has apex A = (0, 0,Az )

ACM Trans. Graph., Vol. 37, No. 4, Article 129. Publication date: August 2018.
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Size: k Slopes: θ , µ Anisotropy: σ , ζ

3 ≤ k θ⋆ ≤ θ < π/2 0 < µ < 1 0 < σ < 1 ζ ∈ R

O

A

θ

α

1

Az

k = 8

y

x

r

`

`

` = tan(π/2− θ)
= r cos(π/k)

φ

α = ` cosφ Az

1+Az

= `µ

z

x

Fig. 7. Top. The parameters describing our family of distances. Bottom. The
geometry of the cone for k = 8. The right triangle is the half of the cone
cutaway in the plane (O, x, z). We indicate remarkable quantities used in
computations.

with Az > 0. (Figure 7-right). The vertices of the base facet have

y,−x-coordinates: r cosai and r sinai where ai = (2i + 1) πk for

i = 0..k − 1, and r is the radius.
We parameterize the cone with parameters k , θ , µ (Figure 7-top)

and add parameters σ , ζ for controlling anisotropy (Section 4.2.3).

All other quantities are determined from these parameters to en-

force fabrication constraints (Section 4.2.2). Examples of cones

within our family are shown in Figure 8.

4.2.2 Cones for fabricable Voronoi diagrams. We now consider

constraints on the slopes of the bisector features. All the side facets

contain the apex A of the cone, thus if Hi and Hj are planes sup-

porting two side facets fi and fj , their intersection line contains A
as well. By Proposition 4.1, Hi j contains both A and the origin O ,
so that it is a vertical plane. We conclude that any bisector feature

generated by two side facets is vertical and therefore satisfies the

angle constraint.

Let us now consider a feature generated by a side facet and the

base facet. By Proposition 4.1, this feature is parallel to a plane

spanning an edge of the base facet and the origin. Its slope θ (Fig-

ure 7-bottom) is the same for all side facets. In order to satisfy the

angle constraint, we choose the value of θ in the range [θ⋆,π/2),
where θ⋆ is the angle constraint bound. This fixes the value of

ℓ = tan(π/2 − θ ) and the radius r = ℓ/cos(π/k) of the base facet.
The last value to determine is Az . It comes from our parameter

µ, which controls the distance α from the origin to a side facet. By

expressing the sine of angle ϕ, we compute α = ℓ cosϕ Az
1+Az . In

order to decouple parameters θ and µ, we interpret our parameter

µ as µ = α/ℓ. Then, by expressing the squared tangent of angle ϕ

as
α 2

A2

z−α 2
= ℓ2

(1+Az )2
, we obtain Az =

µ
1−µ2

(
µ +

√
1 + ℓ2(1 − µ2)

)
.

Figure 9 shows a 2D example cone (a triangle). The table of possi-

ble bisector vertices shows the impossibility of a local minimum.

We provide in the supplementary material an interactive applet

illustrating the induced bisectors in 3D.

4.2.3 Anisotropic cones. We vary the anisotropy of the polyhe-

dral Voronoi diagram by shrinking the distance cone along the x
axis followed by rotating it around the z axis. We do not allow

other axes of rotation so as to guarantee that the Voronoi mesh

stays fabricable: the base of the cone becomes a polygonal approxi-

mation of an ellipse and stays horizontal. The shrink is obtained by

applying to the cone the linear transformation diag(σ , 1, 1) where
0 < σ < 1.

3
The rotation angle is specified with parameter ζ . The

analysis in Section 4.2.2 still applies. A pair of side facets generate a

vertical bisector feature and the base facet generates features with

slopes that vary for each side facet, but are always larger than or

equal to θ . Figure 8 illustrates how the parameterization impacts

the corresponding polyhedral Voronoi facets.

4.3 Spatial variations
The capacity to obtain gradients of properties within fabricated

shapes is a major advantage offered by additive manufacturing.

In this section we discuss how the geometric properties of our

microstructures can vary spatially.

4.3.1 Varying the point sites density. The microstructures that

we fabricate are materializations of the Voronoi mesh K . We con-

trol their density by changing the set of point sites S on which

the Voronoi diagram is computed, following an input density field

R3 → D whereD ⊂ R is a range of fabricable densities. In practice

we follow the implementation of Martínez et al. [2016] to produce

point sites in a multi-resolution jittered grid.

4.3.2 Varying the polyhedral distance. We now consider that

each of the parameters θ , µ, σ and ζ are fields in R3. The value of
the parameter is picked at the location of a point site s ∈ S , and
used to define the distance polyhedron at s . Thus, we are effectively
using a different distance for each site in S . We discuss two subsets

of parameters that can be spatially varied together while still guar-

anteeing fabricability in Section 4.3.3 and Section 4.3.4. We always

consider k ≥ 3 and θ ≥ θ⋆ constant.

Remark. When changing the distance at each site, the fact that

the bisector between two sites p and q is homeomorphic to a plane

does not hold anymore. In fact, in such a situation, the bisector can

have more that one connected component [Icking et al. 2001]. We

never observed this behavior in our experiments. This is due to the

fact that point sites are distributed all over space so that pieces of

bisectors that may appear far from their two parent sites are “taken

over” by the Voronoi cells of other sites.

4.3.3 Varying µ. The apex of the cone moves vertically from

just above the origin when µ ≈ 0 to infinitely high as µ approaches

1. Consider two side facets of two identical cones and start raising

the apex of one cone (but not the other). Then, the feature that

those facets generate becomes increasingly horizontal. The slope

decreases but fortunately never reaches below θ .
While we do not have a formal proof, we can verify it numerically.

Consider a side facet fi of a cone with a value µ < 1 together with

each side facet fj of a cone with µ = 1, i.e., fj is vertical. Each pair

3
Let η be the minimum slope of the bisector facets. In order to have η stay constant

when we shrink the cone along the x axis, we generate the circle in the y, −x frame

so that the cone has at least one side facet perfectly parallel to the x axis.
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k = 4 θ = 25
◦ σ = 0.4

µ = 0.2 µ = 0.8

σ = 0.7 θ = 65
◦ k = 16

Fig. 8. Illustration of cone parameters and effect in the corresponding polyhedral Voronoi diagram. For better understanding, the boundary of the cube is
highlighted in orange color. The central sample has parameters k = 8, θ = 45

◦, σ = 1.0 , and µ = 0.5. Each neighbouring sample vary a single parameter. We
provide in the supplementary material illustrations for a wider variation of parameters.

generates the lowest possible angle for this “side j” of the cone.

For each pair, the construction of Hi j from Proposition 4.1 lets

us compute this lowest slope. We did check numerically that it is

indeed always greater than θ .

Changes in the Voronoimesh. A2D illustration of how the Voronoi

diagram changes is shown in Figure 10. Varying the parameter µ
modifies the distribution of the slopes of the facets of the Voronoi

diagram, from “all facets have slope θ” to “most facets are vertical.”

Indeed, when µ = 0 every bisector features are generated by a base

facet and have slope θ . When µ is close to 1 the situation is exactly

the opposite, most bisector features are generated by side facets

resulting in vertical walls.

4.3.4 Varying σ and ζ . The parameters σ and ζ , that control
anisotropy and rotation, can vary spatially together; the fabricabil-

ity is maintained. Indeed, other parameters being fixed, the cones

in this 2-parameters family all share the same apex point. As we

mentioned before, this implies that a bisector feature generated

by side facets of two different cones remains vertical. The features

generated by a base facet are the same as in Section 4.2.3.

ACM Trans. Graph., Vol. 37, No. 4, Article 129. Publication date: August 2018.
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Fig. 9. Polygonal distance defined by a triangle. The three different bisector
vertex configurations are shown in the table, and in context below. The
polygonal bisectors do not exhibit any local minimum, and form an angle
of at least 45◦ with respect to the x axis.

µ ≈ 0 µ = 0.5 µ ≈ 1

Fig. 10. Varying parameter µ with θ = 45
◦.

Changes in the Voronoi mesh. Geometrically, as σ decreases, the

Voronoi cells become flatter in a direction specified by ζ . This flat-
tening also increases the slope of some bisectors (as we have seen

in Section 4.2.3), especially those parallel to the anisotropy direction.

Compare, for example, Figure 8 center and top-right.

4.3.5 Varying σ , ζ , µ and θ . It is possible to vary all four pa-

rameters simultaneously. In that case however, µ and θ are inter-

dependent, and function as a single parameter. The supplemental

material gives more details. We have not experimented with this

3-parameters family yet, and set it as future work.

4.4 Algorithm and implementation
For fabrication we seek to efficiently generate single slices of the

microstructures. In order to print with the smallest available thick-

ness, we produce paths delineating the Voronoi facets – these paths

have no thickness, since the thickening comes from the physical

material deposition. To guarantee scalability, we devise a proce-

dural approach relying on discretization, as illustrated in Figure 11.

We overlay a 2D regular grid over the slice, called the labels grid
and label each grid square with the site of S closest to the square

center, as measured by the polyhedral distance. Then, we extract all

the boundary edges between adjacent grid squares with different

labels and simplify the extracted jagged paths in order to produce

the final deposition paths for fabricating the slice of microstructure.

This affords for a simple space-tiling approach, limiting required

memory and enabling parallelism.

There are many interesting details on how to implement this

efficiently, and we refer the interested reader to the supplemental

material. Our implementation uses OpenCL for parallel grid label-

ing, and C++ for path extraction. On a GeForce GTX 1080 and an

Intel i7-6800K, the Voronoi labeling for 1000
2
labels takes around

20ms and the path extraction 1600ms (the cone parameters are

θ = 45
◦
, k = 8, µ = 0.6, σ = 1). The current bottleneck lies in the

path extraction since we use an unoptimized sequential method.

(a) Current intersection. (b) Voronoi labeling.

(c) Boundary extraction. (d) Path generation.

Fig. 11. Overview of the path extraction. The input solidC is a bishop chess
piece (https://www.thingiverse.com/thing:378322/). (a) The bishop cut by
the plane Bd . (b) We label each square in the labels grid with its closest
site in S . Each Voronoi cell is shown with a different color. (c) We extract
the axis-aligned edges between Voronoi cells. (d) We generate simplified
deposition paths inside C .

5 ELASTIC BEHAVIOR
We analyze the elasticity of polyhedral Voronoi diagrams with

numerical periodic homogenization akin to [Martínez et al. 2016;

Panetta et al. 2015; Schumacher et al. 2015]. Periodic homogeniza-

tion seeks to find the elasticity tensor characterizing a periodic

composite material defined from a unit periodic cell. We do not

reproduce here all the details and refer the interested reader to the

aforementioned publications and our supplemental material.

One difference with prior works is that we use the CrAFT soft-

ware [Boittin et al. 2014], based on the fast Fourier transform (FFT)

[Moulinec and Suquet 1998]. In comparison to finite element meth-

ods, it allows us to homogenize high resolution volumes, achieving

higher precision. CrAFT has been successfully used to homogenize

porous microstructures such as Voronoi foams [Boittin et al. 2017].

ACM Trans. Graph., Vol. 37, No. 4, Article 129. Publication date: August 2018.
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After analysis, we consider the parameters of the fitted orthotropic

material, primarily the Young’smoduli Ex ,Ey ,Ez along respectively
the x,y and z axis (measure of stiffness). We provide analysis of the

shear moduli G and Poisson’s ratio v in supplemental material, as

well as the homogenized tensors obtained by this procedure.

We are also interested in evaluating the overall compressive stren-

gth. To do so, we consider the bulk modulus K , that characterizes
the tendency of a material to deform in all directions when uni-

formly loaded in all directions. A high bulk modulus implies higher

incompressibility. We consider the Voigt-Reuss average KVR of the

bulk modulus bounds [Hill 1952] (details in supplemental material).

All analysis is performed with a base isotropic material having

Young’s modulus E = 1 (normalized) and Poisson’s ratio v = 0.3.

Thus, it is expected that Ei ∈ [0, 1]. The Poisson’s ratio of an or-

thotropic material is unbounded [Ting and Chen 2005]. The CrAFT

convergence threshold is set such that the modulus of the diver-

gence of the stress field is lower than 0.005, providing convergence

and a reasonable trade-off between accuracy and performance.

5.1 Material space exploration
We explore the material space spanned by the parameterized cone

distance (Section 4.2). For all tests the unit periodic cell is discretized

into 200
3
voxels and the thickness of Voronoi facets is 0.03.

We first consider a point density ρ of 125 point sites per unit cell

(given by a 5×5×5 jittered grid point distribution). We evaluate the

Cartesian product of the following cone parameters, for 5 different

random realizations of point sites, performing in total 2205 tests:

• θ ∈ {25◦, 45◦, 65◦}

• k ∈ {4, 8, 16}

• µ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

• σ ∈ {1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4}

The material space we explored spans a range of relative volumes

V ∈ [0.413, 0.634] for unit cells. The results for the Young’s moduli

are shown in Figure 12, offering a wide range of possibilities along

each orthotropy axis. The results for Poisson’s ratio and shear mod-

uli are shown in the supplemental material, spanning a variable

range of elastic behaviors, with an always positive Poisson’s ratio.

We observe a good correlation between the cone parameters

and the orthotropic elastic constants, as detailed in Section 5.2.

The variance of the logarithmic Euclidean distance [Moakher and

Norris 2006] between each 5 random realizations of points sites

having the same parameters remains low at 0.0006, indicating that

randomness has a limited impact. In addition, we verified that zero

entries of the ideal elasticity orthotropic tensor differ by at most

0.005 from the homogenized one, indicating that an orthotropic

material constitutes a plausible approximation.

5.2 Influence of parameters
We now consider how each parameter of the polyhedral distance

impacts the mechanical response.

Influence of θ . Increasingθ increases furtherEz , since the Voronoi
facets become closer to being vertical (see Figure 8).

Influence of µ. Increasing µ mainly increases Ez , since the area of
vertical Voronoi facets increases (see Figure 8). In addition, increas-

ing µ mainly decreases vyz , increases vzx , and decreases Gyz ,Gzx
in a different degree depending on θ (see supplemental material).

Influence of σ . Decreasing σ decreases Ex and increases Ey ,Ez ,
since the Voronoi facets become comparatively more elongated

in the y and z direction than in the x direction (see Figure 8). In

addition, decreasing σ mainly increases vzx , decreases vxy , and
increases Gxy (see supplemental material).

Influence of k . We observe that the value of k impacts on the

following two properties:

• Increasing k decreases the variance of the homogenized elas-

ticity under different random distributions of the point sites.

For each 5 random realizations with same parameters, the

average logarithmic Euclidean distance between any pair of

tensors is 11% lower for k = 8 (similar for k = 16) with

respect to k = 4.

• Increasing k increases the Voigt-Reuss average bulk modulus.

In particular, for k = 4 the average unit cell volume is V =

0.481 and KVR = 0.107, for k = 8 we have V = 0.469 and

KVR = 0.11. Thus, k = 8 exhibits a higher average KVR
(similar for k = 16) while having an even lowerV .

Thus, a value of k ≥ 8 is encouraged to achieve better strength to

weight ratio, and being closer to the homogenized analysis.

Influence of point density. Increasing the point density ρ increases
the overall elasticmoduli, since the unit cell volumeV increases [Gib-

son and Ashby 1999]. This is illustrated in Figure 13, where we

evaluate additional point densities ρ.

5.3 Material space control
An orthotropic material is defined by nine independent constants

(see supplemental material). For a fixed θ , k , and ζ , we have three
independent parameters (ρ, µ,σ ) controlling the microstructure ge-

ometry. Thus, our microstructure only spans a subset of the space

of orthotropic materials.

In the context of material design, one usually seeks to indepen-

dently control the three orthogonal Young’s moduli Ex ,Ey ,Ez . In
order to unveil the correlation of the different microstructure pa-

rameters and the other elastic constants we propose to visualize

each as a function of

(
Ex ,Ey ,Ez

)
. Results are reported in Figure 14.

To provide a dense visualization from the discrete sampling of the

material space, we interpolate the space of variables (see Section 5.1).

We seek to approximate a function f (Ex ,Ey ,Ez ) = (ρ, µ,σ ). We

perform a multivariate interpolation of the function f implemented

by the Python package scipy.interpolate. Other triplets of physical
parameters could be chosen to perform this analysis. However, the

space of Young’s moduli provides the largest design freedom.

Design freedom. From the designer perspective thematerial space

offers the following controls. The Young’s moduli may be freely

changed along each axis of the orthotropic frame. The z axis of the
orthotropic frame has to remain aligned with the build direction.

The other axes may otherwise be freely rotated (parameter ζ ).
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Fig. 12. Material space for k = 8 and ρ = 125. Each column corresponds to a different minimal bisector slope θ . Each plot dot denotes a single test. The plot
axes correspond the three orthogonal Young’s moduli. The color of dots either depicts µ (first row) or σ (second row). For better interpretation, each dot is
projected in gray color to the Ez and Ey planes.
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Fig. 13. Material space for k = 8 and θ = 45
◦. We consider the same range

of parameters σ and µ used in Figure 12, while varying in addition the
point density for {64, 125, 512, 1728, 4096} point sites per unit cell. The
data for 125 point sites per unit cell (green points) corresponds exactly to
θ = 45

◦ in Figure 12 (middle row). For better interpretation, each dot is
projected in gray color to the Ez and Ey planes.

These variations may be spatially graded. Currently we limit

gradations to either µ (Section 4.3.3) or σ and ζ (Section 4.3.4), but

full variations are possible (Section 4.3.5). We show in Figure 15

the effect of fixing either µ or σ and varying the other. Fixing one

spans a subset curve within

(
Ex ,Ey ,Ez

)
.

5.4 Experimental verification
We performed experimental verification of the predicted elastic

behavior. We print three samples with varying orthotropy and mea-

sure their linear elastic response (Young’s modulus) using a com-

pression test along each axis. The results are reported in Figure 17.

Tomitigate the impact of the choice of printer, we use three different

machines (see Figure for details).

The experimental results are consistent with numerical results,

even though there are differences. The main one is a lower stiff-

ness along the build direction, on average. This is to be expected

since layered materials are anisotropic. As future work, we would

like to investigate homogenization with an anisotropic material

for AM [Liu and Shapiro 2016]. Nevertheless, the discrepancies are

limited and we observe a direct correlation between control parame-

ters (µ, σ ) and the measured Young’s moduli. We provide curves for

one sample in Figure 18, revealing the non-linear behavior under

large compressions. The curve reveals a smooth response with the

expected flattening. We also performed a repeatability test, taking

five measurements along each axis of a same sample. We observe

variations of ± 3% without any noticeable trend.

5.5 Comparison to tessellations by planes
Self-supported structures made of interleaved sets of parallel planes

have become a popular choice for filling volumes in the context of

FFF [Lee and Lee 2017; Lefebvre 2015; Wu et al. 2016].
4
To the best

of our knowledge, the material space spawned by these infills has

4
See also cubic/tetrahedral infill in software Cura.
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Fig. 14. Interpolation given by the material space sampling shown in Figure 13 (θ = 45
◦, k = 8). The plot axes correspond the three orthogonal Young’s moduli.

Both the Poisson’s ratio vxy, vzx , vyz (always positive), and the shear moduli Gyz, Gzx , Gxy (Gmax =
E

2(1+v )
≈ 0.38 for base material E = 1, v = 0.3)

remain fixed for a desired triplet of Young’s moduli. The plots unveil the good correlation between the parameters ρ, µ, σ and the Young’s moduli.

σ ∈ [0.4, 0.7, 1.0] µ ∈ [0.2, 0.55, 0.8]
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Fig. 15. Interpolation given by the material space sampling shown in Figure 13 (θ = 45
◦, k = 8). The plot axes correspond the three orthogonal Young’s

moduli. For a three different values of σ (left) and µ (right), we obtain three different curves of feasible spatial variations.
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V KVR
(a) 0.426 0.119
(b) 0.353 0.118

(b) / (a) 82.7% 99.4%
(c) 0.421 0.114
(d) 0.329 0.115

(d) / (c) 78.0% 100.5% (a) (b) (c) (d) (e)

V Ey Ez
(e) 0.328 0.258 0.244
(b) 0.353 0.152 0.258

(e) / (b) 93.0% 169.7% 94.57%
(d) 0.329 0.199 0.199

(e) / (d) 99.7% 129.6% 122.6%

Fig. 16. We compare infills made of tessellations made of planes with polyhedral Voronoi diagrams. We set a minimum slope of θ = 45
◦ for all tests. We

give in the supplemental material the full expression of the homogenized elasticity tensors of each test. Left table: We determine the volume V required to
achieve similar KVR values (±0.001). Since polyhedral Voronoi diagrams span a wide space of material, we select the closest sample (with respect to KVR ) in
the database of Figure 12. However, note that other samples having similar KVR are possible. (a) and (c) correspond, respectively, to the closest match for (b)
and (d). As seen in the third and sixth row, our infills require 20% more material for the same KVR . Right table: When orthotropy is desired, for instance to
mimic a laminate much stiffer in y, z than in x , polyhedral Voronoi diagrams are better suited. As seen in the third row, for a lower volume (e) is significantly
more stiff in y than (b), while in the fifth row (e) is significantly stiffer in both y, z than (d) for a similar volume.

µ = 0.6, σ = 1 µ = 0.6, σ = 0.4 µ = 0.85, σ = 1

V = 0.22 V = 0.27 V = 0.25

Ex Ey Ez Ex Ey Ez Ex Ey Ez
Homogen. 0.048 0.049 0.049 0.009 0.131 0.128 0.043 0.043 0.135

Ratio (×) 0.68 0.69 0.69 0.13 1.86 1.81 0.61 0.61 1.91

Ultimaker 3 1.16 1.2 1.15 0.49 4.2 3.41 1.66 1.46 3.22

Ratio (×) 0.58 0.60 0.58 0.26 2.1 1.71 0.83 0.73 1.61

Ultimaker 2 1.84 1.85 1.73 0.71 5.95 4.24 2.51 2.4 4.94

Ratio (×) 0.63 0.64 0.59 0.24 2.05 1.46 0.86 0.83 1.70

Prusa i3 2.12 2.16 2.35 0.61 5.4 4.8 2.55 2.24 6.5

Ratio (×) 0.66 0.68 0.74 0.19 1.69 1.50 0.80 0.70 2.04

Fig. 17. Comparison between numerical homogenization (Young’s moduli
in the normalized range [0, 1]) and experimental compression tests per-
formed on an Instron 3345 testing machine. Experimental Young’s moduli
are given in megapascals (MPa). For all three tests we set k = 8 and θ = 45

◦,
and we vary µ and σ . We have printed each sample (30mm cubes) on three
different printers (Ultimaker 3, and Ultimaker 2, and Prusa i3) using differ-
ent rolls of filaments (Ninjatek Semiflex) in diameters of either 1.75mm
(Prusai3) or 2.85mm (Ultimakers), with the same layer thickness (0.2mm)
and print speed (15mm/sec). We apply a compression test to each direc-
tion, to obtain Ex , Ey , and Ez . For comparison we compute ratios to the
average value across all nine tests of the same printer (i.e. how much more
rigid/flexible each is with respect to the average). As can be seen the ra-
tios agree well overall. We provide in the supplemental material the full
expression of the homogenized elasticity tensor of each compression test.

not been studied in the context of microstructures. Nevertheless,

we provide here some elements of comparison.

A first important limitation of rhombic structures is that they

cannot be graded spatially in orientation or anisotropy, due to their

regular structure. Therefore, they offer significantly less control

than our approach. Their density can be varied by subdivision, for
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Fig. 18. Compression curve for the middle sample from Figure 17, printed
on Prusai3. The material enters into the non-linear regime for the y and z
axes when the load approaches 300N , it remains linear for the x axis (low
stiffness). We stopped the test for y as the response flattened.

instance maximizing rigidity [Wu et al. 2016]. However, as illus-

trated in Figure 25, grading by subdivision introduces sudden jumps

that impair the smoothness of the final elastic behavior.

Figure 16 compares the bulk modulus of the structures, for the

two typical cases of using three or fours sets of parallel planes.

Rhombic structures are 20% stiffer for a same volume, but this ad-

vantage vanishes if orthotropy is desired: our structures become

significantly stiffer in the preferred directions for a same volume.

The rhombic structures, thanks to the use of straight lines, print

slightly faster than our structures (14% difference on a Prusai3 on

default settings, may vary with acceleration settings).

6 APPLICATIONS
In this section we present several designs modeled with our tech-

nique. The control fields are created either through a dedicated

painting interface, or procedurally (we use a domain specific lan-

guage for this purpose).

The designs we present are illustrations, demonstrating the ver-

satility of our technique. To reveal the foam we print them without

an external perimeter – this means that some small unsupported

regions on the sides exist. In practice we observe no detrimental

impact. Real designs could add an external thin skin where needed.

A striking difference between our designs and those produced

with SLA/SLS is the ease of production – thanks to the use of FFF

printers – as well as the robustness of the final part. In particular,

parts printed with filaments having varying degrees of elasticity

(Ninjatek SemiFlex and Cheetah) can flex very significantly with-

out breaking. In our experience, foams are much more difficult to
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Fig. 19. Top row: Orientation field ζ (left) and anisotropy field σ (right).
Pictures, bottom row: The left side bends easily while the right side remains
rigid. On the contrary, the right side can be compressed sideways (bottom
image), while the left side is much more rigid (top image).

Fig. 20. Cylinder with a varying direction of orthotropy (from 0 to 90 de-
grees between the handles), vertically rigid but allowing rotation in one
direction.

produce on SLA printers, require a careful choice of printer and

parameters [Zhou 2015], and are more fragile after curing.

Our first example is a bar with varying orthotropy, shown in

Figure 19. An abrupt change in orthotropy direction in the middle

of the bar triggers very different behavior on both sides.

Our second example is a cylinder with a direction of orthotropy

that rotates 90 degrees along the main axis, shown Figure 20. This

creates an interesting case where, under rotation in the proper

orientation, the cylinder twists and flatten across its section. It is

otherwise rigid vertically.

Our third example is an illustration of a prosthetic finger, re-

producing a result from [Martínez et al. 2016]. The two joints are

obtained by a strong orthotropy aligned with the joint “axis.” Den-

sity also varies between the outside (denser) and the inside of the

bend. The result offers a preferred direction of flex that corresponds

better to a natural joint, in particular it is harder to bend sideways

(by orthotropy) or reverse (by density). See Figure 21.

Our fourth example is a wheel that can be mounted on an actual

RC car (aMonster Beetle by Tamiya), see Figure 22. The wheel prints
as a single part, is lighter than the original (109 g versus 130 g), and

deforms radially (shock absorbent). Of course, the design would

have to be refined to act as an efficient tire. Our technique makes

such applications accessible to hobbyists.

Our fifth example, Figure 23, illustrates how orthotropy can be

arranged radially to achieve different properties in a pipe design.

Fig. 21. The articulations of this finger prosthetic are obtained by spatially
varying density and anisotropy. The design is very robust and easy to print:
it uses a rubber-like filament (Cheetah by NinjaTek) printed on a standard
FFF printer (Prusai3).

Fig. 22. Top left: Orientation field ζ (top) and density field (below). The
anisotropy is constant at σ = 0.3. Bottom left: Wheel being printed on an
Ultimaker 2 with Semiflex filament at 0.3mm thickness. The print took 19
hours.Middle column: The finished wheel and its deformation under load.
Right: Ready to run!

Fig. 23. An application to pipe design. The left design transfers forces be-
tween the inner and outer pipes, while the right one protects the inner pipe
from external forces. Both designs differ only by the orthotropy angle.

Our final example is a shoe sole with controlled elasticity, shown

in Figure 24. By modifying density, angle and anisotropy we are

able to control both the “softness” and “bending” of the sole. While

this is a purely illustrative example, we hope our method will help

produce orthopaedic footwear at much lower price points than

those produced on high-end SLS/SLA printers.
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Fig. 24. A 3D printed shoe sole. Left: Control fields used on the model, den-
sity (top), orthotropy strength (middle) and angle (bottom). Right: Printed
shoe, top, side and bending. The shoe is printed without any skin to reveal
the foam structure.

Fig. 25. Compared to subdividing rhombic infill (left), Voronoi polyhedral
diagrams produce a smoother grading (right) without marked transitions,
triggering a smoother elastic behavior. Both structures use the same amount
of material. Ours printed 14% slower due to a more complex geometry.

7 LIMITATIONS, FUTURE WORK
To the best of our knowledge, the presented microstructures form

the first metamaterial that is well suited for FFF and offers a wide

range of controllable elastic behaviors. Their properties can be

graded following custom control fields, while still satisfying strict

guarantees on manufacturability.

There are however a number of limitations and areas of improve-

ment. In terms of overall rigidity (bulk modulus), our structures

are less effective than plane tessellations (see Figure 16). It remains

an open question whether there exists other polyhedral distances

improving bulk modulus, while enforcing fabrication constraints.

The geometry of the cone distance that we use entails a mate-

rial with a orthotropy axis that can not be moved aways from the

vertical axis. This lost degree of freedom may be desirable in some

application. We believe further exploration of the space of poly-

hedral distances could let us recover this degree of freedom even

while respecting the fabricability constraints of FFF-like processes.

The stochastic geometry has an impact on printing speed (about

15% slower than straight line infill on our printers). This possibly

could be mitigated by optimizing the traversal of the paths; our

slicer currently uses a simple “go to next closest path” heuristic.

A minor issue related to design is that the point sites are not

always close to the centroid of the Voronoi cell. Therefore, at low

densities and high anisotropy, there can be an offset between the

control field and its actual effect of the structure. It would be inter-

esting to compensate for this.

Finally, while we efficiently extract slices, we did not investigate

interactive visualization of the microstructures – one possible ap-

proach is ray-marching. Efficient ray-traversal of the structures is

an interesting topic for future work.

8 CONCLUSIONS
By carefully choosing the distance functions used to model Voronoi

diagrams, we are able to produce stochastic closed-cell foams that

enforce all manufacturability constraints on continuous deposition

processes. We proposed a parameterized polyhedral distance based

on cones, that provides good correlation between well understood

geometric properties and observed elastic behaviors.

We envision that our method could also be helpful in optimiz-

ing periodic microstructures [Panetta et al. 2015; Schumacher et al.

2015] since it provides a space of geometric structures that are cer-

tain to be fabricable. It may also be interesting to use it as a replace-

ment in approaches that optimize Voronoi diagrams for additive

manufacturing, such as the work of Lu et al. [2014].
There is no direct way to interpret our structures as open-cell

foams. The Voronoi edges could be considered but they do not

enforce fabrication constraints. Therefore, our technique is com-

plementary to existing works targeting powder and resin based

systems, as it answers the need for parameterized metamaterials

applicable to continuous deposition.
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