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1. Notations

In the following, Ω ⊂ R2 is a polygonal domain. We consider a family of meshes (TH)H>0

of Ω such that, for all H > 0, the elements K ∈ TH are triangles satisfying

diam(K) = sup
x,y∈K

|x− y| ≤ H,

In addition, we assume that there exists a constant β > 0, such that

diam(K)

ρ(K)
≥ β,

for all K ∈ TH and H > 0, where

ρ(K) = sup {r > 0 | ∃x ∈ K; B(x, r) ⊂ K} .
Finally, for all H > 0 and for all pairs of distinct elements K+, K− ∈ TH , we assume that
∂K+ ∩ ∂K− is either empty, or a vertex or or a full edge of K+ and K−.

We denote by E intH and EextH the set of internal and external edges of TH . We also employ
the notation EH = E intH = ∪EextH .

If φ and φ are vectorial and scalar functions, we define

curlφ =
∂φ2

∂x1

− ∂φ1

∂x2

, curlφ =

(
∂φ

∂x2

,− ∂φ

∂x1

)
,

where the derivatives are taken in the sense of distributions.
If O ⊂ R2 is a connected open set with Lipschitz boundary ∂O, H1(O) is the space of

scalar functions φ ∈ L2(O) such that ∇φ ∈ L2(O) and H(curl,O) is the space of vectorial
functions φ ∈ L2(O) such that curlφ ∈ L2(O). These spaces are equipped with the norms

‖φ‖2
1,O = ‖φ‖2

0,O + ‖∇φ‖2
0,O, ‖φ‖2

curl,O = ‖φ‖2
0,O + ‖ curlφ‖2

0,O.

If φ ∈ H1(O), its trace on ∂O is defined as an element of H1/2(∂O). The space H1/2(∂O)
is equipped with the quotient norm

‖ψ‖1/2,∂O = inf
φ∈H1(O

{‖φ‖1,O | φ|∂O = ψ} .

If φ ∈ H(curl,O) its tangential trace is defined in H−1/2(∂O) as∫
∂O

φ× nψ =

∫
O

curlφψ − φ · curlψ,
1
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for all ψ ∈ H1(Ω), and we have∣∣∣∣∫
∂O

φ× nψ

∣∣∣∣ ≤ ‖φ‖curl,O‖ψ‖1,O.

For every H > 0, the “broken spaces” H1(TH) (resp. H(curl, TH)) are defined as space
of φ ∈ L2(Ω) (resp. φ ∈ L2(Ω)) such that φ|K ∈ H1(K) (resp. φ|K ∈ H(curl, K)) for all
K ∈ TH . They are equipped with the norms

‖φ‖2
1,TH =

∑
K∈TH

‖φ|K‖2
1,K , ‖φ‖2

curl,TH =
∑
K∈TH

‖φ|K‖2
curl,K .

In addition, we introduce the space

H1/2(EH) =

{
η ∈

∏
K∈TH

H1/2(∂K) | ∃φ ∈ H1(Ω); φ|∂K = η|∂K ∀K ∈ TH

}
,

equipped with the norm

‖η‖2
1/2,EH =

∑
K∈TH

‖η|K‖2
1/2,∂K .

We easily check that

‖η‖1/2,EH = inf
φ∈H1(Ω)

{‖φ‖1,Ω | φ|∂K = η|∂K ; ∀K ∈ TH} .

If φ ∈ H1(Ω) we will use the notation φ|EH to denote the element η ∈ H1/2(EH) such
that η|∂K = φ|∂K for all K ∈ TH .

2. Maxwell’s equations

We consider time-harmonic Maxwell’s equations in the 2D domain Ω at frequency ω > 0.
For the sake of simplicity, we assume that Ω is an isotropic linear medium, so that it can
be characterized by three measurable scalar functions ε, µ, σ : Ω → R that respectively
represent the permittivity, the permeability, and the conductivity. We assume that there
exist some real constants such that

0 < ε? ≤ ε(x) ≤ ε? <∞, 0 < µ? ≤ µ(x) ≤ µ? <∞, 0 < σ? ≤ σ(x) ≤ σ? <∞
for a.e. x ∈ Ω.

The electric field u : Ω→ C2 is solution to

(1)

{
(iωσ − εω2)u + curl (µ−1 curlu) = f in Ω,

u× n = 0 on ∂Ω,

where the action of an electric source f ∈ L2(Ω)
Classically, we recast (1) into a variational problem: find u ∈ H0(curl,Ω) such that

(2) a(u,v) = (f ,v), ∀v ∈ H0(curl,Ω),

where the sesquilinear form a is given by

a(u,v) =
((
iωσ − εω2

)
u,v

)
+
(
µ−1 curlu, curlv

)
.
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We can easily show that a is coercive, i.e. that there exists a θ ∈ [0, 2π) such that

(3) |a(v, eiθv)| & ‖v‖2
curl,Ω, ∀v ∈ H0(curl,Ω).

The existence and uniqueness of a solution u ∈ H0(curl,Ω) to (2) is thus a direct conse-
quence of the Lax-Migram lemma.

3. An hybrid formulation

We introduce an hybrid formulation of (1), in which the tangential continuity of u is
relaxed, and weakly imposed using a Lagrange multiplier λ. The relaxed space for u is
V = H(curl, TH). As shown in Lemma 1, the correct space for the Lagrange multiplier is
Λ = H1/2(EH).

Lemma 1. Let v ∈ V. Then v ∈ H0(curl,Ω) if and only if

(4) b(η,v) = 0, ∀η ∈ Λ,

where

b(η,v) =
∑
K∈TH

∫
∂K

v × nη.

Proof. The key point of the proof is a convenient way of redefining b(η,v) for η ∈ Λ and
v ∈ V. If E ∈ E intH is the edge shared by two elements K+, K− ∈ TH , since η have the
same value on both side of the edge, it makes sense of defining the restriction η|E of η to E.
On the other hand, since v has two independent definitions on K− and K+ we introduce
the notation v± × n± = (v|K±)× n±|E, where n± is the unit vector normal to E pointing
outside K±. Then, we can write

(5) b(η,v) =
∑

E∈EextH

∫
E

v × nη +
∑
E∈Eint

H

∫
E

v+ × n+ + v− × n−η.

Assume that v ∈ H0(curl,Ω). Because of the essential boundary condition, we have
v|E × n = 0 on all exterior edges E ∈ EextH . On the other hand, because the tangential
component of v is continuous, if E ∈ E intH is the edge shared by two elements K+, K− ∈ TH ,
we have

(6) v+ × n+ + v− × n− = 0.

As a result, (4) directly follows from (5).
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On the other hand, consider v ∈ V such that (4) holds. We first show that v ∈
H(curl,Ω). To this end, we introduce an arbitrary test function φ ∈ H1

0 (Ω). We have∫
Ω

v · curlφ =
∑
K∈TH

∫
K

v · curlφ

=
∑
K∈TH

∫
K

curlvφ+
∑
∂K

v × nφ

=
∑
K∈TH

∫
K

curlvφ+ b(η,v),

where η is the element of Λ defined by η|∂K = φ|∂K for all K ∈ TH . Since we assume that
(4) holds, it follows that ∫

Ω

v · curlφ =

∫
Ω

(∑
K∈TH

curlv|K

)
φ,

which means that
curlv =

∑
K∈TH

curlv|K ∈ L2(Ω),

in the sense of distribution. As a result, v ∈ H(curl,Ω).
Since we established that v ∈ H(curl,Ω), (6) holds, and v × n ∈ H−1/2(∂Ω). Thus,

using (5), for all φ ∈ H1(Ω), if η = φ|EH , we have

0 = b(η,v) =

∫
∂Ω

v × nη.

Since this last equality is true for every element of H1/2(∂Ω), we conclude that v × n = 0
on ∂Ω, and v ∈ H0(curl,Ω). �

The hybrid formulation is simply obtained by relaxing the tangential continuity and
introducing the Lagrange multiplier: find (u, λ) ∈ V × Λ such that

(7)

{
a(u,v) + b(λ,v) = (f ,v), ∀v ∈ V,

b(η,u) = 0, ∀η ∈ Λ,

where we have extended the definition of a over V by

a(u,v) =
∑
K∈TH

{((
iωσ − εω2

)
u|K ,v|K

)
+ (curlu|K , curlv|K)

}
.

Theorem 1. u ∈ H0(curl,Ω) is solution to (2) if and only if (u, (µ−1 curlu)|EH ) ∈ V×Λ
is solution to (7).

Proof. Assume that u ∈ H0(curl,Ω) is solution to (2). Then, by Lemma 1, b(η,u) = 0 for
all η ∈ Λ, and the second equation of (7) is satisfied.

Since u satisfies the first equation of (1) in the sense of distributions, we have

curl
(
µ−1 curlu

)
= f +

(
εω2 − iωσ

)
u ∈ L2(Ω).
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It follows that µ−1 curlu ∈ H1(Ω), and it makes sense to consider the restriction (µ−1 curlu)|EH
as an element of Λ.

Consider v ∈ V multiplying the first equation of (1) and by v and performing an
integration by parts over an arbitrary element K ∈ TH , we have((
iωσ − εω2

)
u|K ,v|K

)
+ (µ−1 curlu|K , curlv|K) +

∫
∂K

v|K × nKµ
−1 curlu|K = (f |K ,v|K).

Then, by summation over K ∈ TH , we obtain that

a(u,v) + b((µ−1 curlu)|EH ,v) = (f ,v), ∀v ∈ V,

which is the first equation of (7). We have thus established that (u, (µ−1 curlu)|EH ∈ V×Λ
is solution to (7).

Now, assume that (u, λ) ∈ V × Λ is solution to (7). Then, by Lemma 1, we have that
u ∈ H0(curl,Ω). Using again Lemma 1, we see that for all v ∈ H0(curl,Ω)

a(u,v) = a(u,v) + b(λ,v) = (f ,v),

so that u is solution to (2).
It remains to identify λ. If v ∈ H(curl, K), we have

a(u,v) =

∫
K

(
iωσ − εω2

)
u · v +

∫
K

µ−1 curlucurlv

=

∫
K

((
iωσ − εω2

)
u + curl

(
µ−1 curlu

))
· v +

∫
∂K

v × nµ−1 curlu.

On the other hand, we have

a(u,v) = (f ,v)− b(λ,v)

=

∫
K

f · v +

∫
∂K

v × nλ,

and we identify that

µ−1 curlu = λ on ∂K.

Because the above identification is valid for every element K ∈ TH , we obtain that λ =
(µ−1 curlu)|EH , which is the desired result. �

As a direct consequence of Theorem 1, we have:

Corollary 1. There exists a unique pair (u, λ) ∈ V × Λ solution to (7).

4. The Multiscale Hybrid Mixed formulation

The Multiscale Hybrid Mixed (MHM) formulation is formally obtained from hybrid
formulation (7) by substituting u by λ in the first equation. Assuming that λ ∈ Λ is
known, we can write

a(u,v) = (f ,v)− b(λ,v), ∀v ∈ V.
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Since a is coercive over V, we see that u is uniquely determined given λ. In addition, by
linearity, we can formally write that

(8) u = Tλ+ T̂f ,

for two linear operators T and T̂. Then, plugging (8) into the second equation of (7), we
obtain a variational problem that is solely expressed in terms of λ:

b(η,Tλ) = −b(η, T̂f), ∀η ∈ Λ.

We start by properly defining the substitution operators T and T̂ and discuss their
basic properties. Then, we establish that the MHM formulation is well-posed, and that its
solution coincides with the solution of the original problem.

4.1. Local operators. For all η ∈ Λ and h ∈ L2(Ω) the image of η and h through T and

T̂ are defined as the solutions to

(9) a(Tη,v) = −b(η,v), a(T̂h,v) = (h,v), ∀v ∈ V.

Since a is coercive over V, it is clear that (9) uniquely defines Tη and T̂h. As a result,

T : Λ→ V and T̂ : L2(Ω)→ V are well defined linear operators.

Lemma 2. For all η ∈ Λ and h ∈ L2(Ω), we have

‖Tη‖V . ‖η‖Λ, ‖T̂h‖V . ‖h‖0,Ω.

Proof. Let η ∈ Λ. We have

‖Tη‖2
V . |a(Tη, eiθTη)| = |b(η,Tη)|.

For all φ ∈ H1(Ω), since ∣∣∣∣∫
∂K

Tη × nφ

∣∣∣∣ ≤ ‖φ‖1,K‖Tη‖curl,K ,

we have
|b(φ,Tη)| ≤ ‖φ‖1,Ω‖Tη‖V,

for all φ ∈ H1(Ω). Hence, if φ ∈ H1(Ω) satisfies φ|∂K = η|∂K for all K ∈ TH , we have

‖Tη‖V . ‖φ‖1,Ω,

but then, by taking the infinimum, we obtain

‖Tη‖V . inf
φ∈H1(Ω)

{‖φ‖1,Ω | φ|∂K = η|∂K ∀K ∈ TH} = ‖η‖Λ.

Now, if h ∈ L2(Ω), we have

‖T̂h‖2
V . |a(T̂h, eiθT̂h)|

= |(h, T̂h)|
≤ ‖h‖0,Ω‖T̂h‖0,Ω

≤ ‖h‖0,Ω‖T̂h‖V,
and the result follows. �
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Proposition 1. For all η ∈ Λ, we have

‖η‖Λ . ‖Tη‖V.

Proof. Let η ∈ Λ. For each element K ∈ TH , we have

(iωσ − εω2)Tη + curl
(
µ−1 curlTη

)
= 0.

Letting φ = µ−1 curlTη, we see that

∇⊥φ = curlφ =
(
εω2 − iωσ

)
Tη ∈ L2(Ω).

It follows that φ ∈ H1(K) with

‖φ‖1,K . ‖φ‖0,K + ‖∇φ‖1,K

. ‖µ−1 curlTη‖0,K + ‖
(
εω2 − iωσ

)
Tη‖1,K

. ‖Tη‖curl,K .

Since in addition, φ|∂K = µ|∂K we obtain a global definition for φ ∈ H1(Ω) with

‖φ‖1,Ω . ‖Tη‖V,

but by definition of ‖.‖Λ as the quotient norm, we have

‖η‖Λ . ‖φ‖1,Ω,

and the result follows. �

Corollary 2. For all η ∈ Λ, we have

‖η‖Λ . ‖Tη‖V . ‖η‖Λ.

Finally, we established that the sesquilinar form associated with the MHM formulation
is coercive over Λ:

Corollary 3. We have

|b(e−iθη,Tη)| & ‖η‖2
Λ

for all η ∈ Λ.

Proof. Let η ∈ Λ, by definition of T, we have

b(e−iθη,Tη) = −a(T
(
e−iθη

)
,Tη) = a(Tη, eiθTη),

and it follows that

|b(e−iθη,Tη)| = |a(Tη, eiθTη)| & ‖Tη‖2
V.

Then, the conclusion follows from Corollary (2). �

Theorem 2. For all η ∈ Λ and h ∈ H(div,Ω), we have Tη, T̂h ∈ H(div,Ω), and

div
((
iωσ − εω2

)
Tη
)

= 0, div
((
iωσ − εω2

)
T̂h
)

= divh.
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Proof. Let η ∈ Λ. For all φ ∈ H1
0 (Ω), since curl∇φ = 0, we have∫

Ω

(
iωσ − εω2

)
Tη ·∇φ =

∑
K∈TH

∫
K

(
iωσ − εω2

)
Tη ·∇φ

=
∑
K∈TH

∫
K

(
iωσ − εω2

)
Tη ·∇φ+ µ−1 curlTη curl∇φ

= a(Tη,∇φ).

Then, since ∇φ ∈ H0(curl,Ω), using Lemma 1 and by definition of the operator T, we
obtain

a(Tη,∇φ) = −b(η,∇φ) = 0,

so that ∫
Ω

(
iωσ − εω2

)
Tη ·∇φ = 0, ∀φ ∈ H1

0 (Ω),

which means that (iωσ − εω2)Tη ∈ H(div,Ω), and

div
(
(iωσ − εω2)Tη

)
= 0.

Now, if h ∈ H(div,Ω), the same arguments than above show that∫
Ω

(
iωσ − εω2

)
T̂h ·∇φ = a(T̂h,∇φ) =

∫
Ω

h ·∇φ, ∀φ ∈ H1
0 (Ω).

It follows that (iωσ − εω2)T̂h ∈ H(div,Ω) with

div
(

(iωσ − εω2)T̂h
)

= divh.

�

4.2. The MHM formulation.

Theorem 3. For each f ∈ L2(Ω), there exists a unique λ ∈ Λ such that

(10) b(η,Tλ) = −b(η, T̂f)

for all η ∈ Λ. In addition, if we define

u = Tλ+ T̂f ∈ V,

then the pair (u, λ) is solution to (7).

Proof. The existence and uniqueness of η ∈ Λ follows from Corollary 3 and Lax-Milgram
lemma. Then, we let

u = Tλ+ T̂f ∈ V.

From (10), we see that
b(η,u) = 0, ∀η ∈ Λ.

On the other hand, by linearity, we have

a(u,v) = a(Tλ,v) + a(T̂f ,v), ∀v ∈ V,
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and by definition of the operators T and T̂, we see that

a(u,v) + b(λ,v) = (f ,v), ∀v ∈ V,

so that the pair (u, λ) is solution to (7). �

5. Discrete MHM problem

We obtain a discrete version of (10) by introducing a finite dimensional subspace ΛH ⊂ Λ.
Here, we consider spaces ΛH that are made of piecewise polynomials. First we introduce
the space LH of Lagrange finite elements of degree k:

LkH =
{
vH ∈ H1(Ω) | vH |K ∈ Pk(K) ∀K ∈ TH

}
.

Then, the space ΛH is obtained by restrictions of Lagrange finite elements onto the EH :

Λk
H =

{
λH ∈ Λ | ∃vH ∈ LkH ; λH = vH |EH

}
.

Theorem 4. For all f ∈ L2(Ω), there exists a unique λH ∈ Λk
H such that

(11) b(ηH ,TλH) = −b(ηH , T̂f), ∀ηH ∈ ΛH .

In addition, if λ ∈ Λ solve (10), we have

‖λ− λH‖Λ . inf
ηH∈ΛH

‖λ− ηH‖Λ.

It remains to analyze the approximation properties of the space ΛH in the ‖.‖Λ norm
to obtain an error estimate. To this end, we introduce an interpolation operator. Assume
that η ∈ Λ is such that η = v|EH for some v ∈ H2(TH). Then πkHη ∈ Λk

H is defined as

πkHη = (IkHv)|EH ,

where IkH is the Lagrange interpolant of v. We have:

Lemma 3. Let η ∈ Λ such that η = v|EH for some v ∈ Hk+1(TH). Then we have

(12) ‖η − πHη‖Λ . Hk|v|k+1,TH .

Proof. Let η ∈ Λ such that η = v|EH with v ∈ H2(TH). For all element K ∈ TH , we have

‖η − πHη‖1/2,∂K = inf
w∈H1(K)

{‖w‖1,K | w|∂K = η − πHη} .

We observer that the function w̃ = v−Ihv ∈ H1(K) satisfies w̃|∂K = η−πHη. As a result,

‖η − πHη‖1/2,∂K ≤ ‖w̃‖1,K = ‖v − Ihv‖1,K .

Then, standard interpolation properties ensure that

‖η − πHη‖ . Hk|v|k+1,K ,

and we obtain (12) by summation over K ∈ TH . �
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Corollary 4. Assume the solution u ∈ H0(curl,Ω) to (2) is such that µ−1 curlu ∈
Hk+1(TH). Then, we have

‖λ− λH‖Λ . Hk| curlu|k+1,TH ,

and

‖u− uH‖curl,TH . Hk| curlu|k+1,TH ,

where λ = curlu|EH , λH ∈ ΛH is the solution to (11), and uH = TλH + T̂f .

6. Representation of the shape functions

In the following, we focus on the discrete spaces Λ1
H and Λ2

H . For the case of Λ1
H , we

consider a basis {ψj} that consists of one shape function ψj for each vertex in the mesh
TH . In each element K ∈ TH the basis functions ψj admit local expressions. These local
expressions are associated with the vertices of K = ((i− 1)h, ih)× ((j− 1)h, jh), and have
definitions 

λ̂1(x̂1, x̂2) = (1− x̂1)(1− x̂2)

λ̂2(x̂1, x̂2) = (1− x̂1)x̂2

λ̂3(x̂1, x̂2) = x̂1x̂2

λ̂4(x̂1, x̂2) = x̂1(1− x̂2)

where

x̂1 =
x1 − (i− 1)h

h
, x̂2 =

x2 − (j − 1)h

h
.

In the case of the space Λ2
H , we add to the basis of Λ1

H one shape function for each edge
of TH . These shape functions also admits local expressions in each element K ∈ TH , that
are associated with the edges of K = ((i− 1)h, ih)× ((j − 1)h, jh)):

λ̂5(x̂1, x̂2) = x1(1− x1)(1− x̂2)

λ̂6(x̂1, x̂2) = x1x2(1− x̂2)

λ̂7(x̂1, x̂2) = (1− x1)(1− x1)(1− x̂2)

λ̂8(x̂1, x̂2) = (1− x1)x2(1− x̂2)

where

x̂1 =
x1 − (i− 1)h

h
, x̂2 =

x2 − (j − 1)h

h
.

In order to better illustrate the shape functions, we plot (Tψj) for two different meshes.
First, we consider a very simple mesh made of a single square K = (0, 1)2. In that case,
since we only have one element, the shape functions ψj exactly coincide with their local
expressions λ̂j. The nodal shape function Tλ̂1 is represented on Figure 1. Similarly, we
depict on Figure 2 the edge shape function Tλ̂5.

Then, we represent on Figures 3 and 4 a nodal and an edge shape function in the case
of a 2× 2 mesh.

We remark on Figures 3 and 4 that indeed, Tλj ∈ H(div,Ω) but Tλj /∈ H(curl,Ω).
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(a) x1 component (b) x2 component

(c) curl (d) vectorial representation

Figure 1. T̂λ1

7. Numerical experiments

7.1. Convergence of linear elements. We consider the problem{
u + curl curlu = f in Ω

u× n = 0 on ∂Ω,

where Ω = (0, 1)2 and

f(x) =

(
sin(πx1) sin(πx2) + π2 sin(πx1) sin(πx2)

π2 cos(πx1) cos(πx2)

)
,

whose solution is given by

u(x) =

(
sin(πx1) sin(πx2)

0

)
.

We represent the convergence curves of

‖u− uH‖0,Ω and

(∑
K∈TH

‖ curl(u− uH)‖2
0,K

)1/2
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(a) x1 component (b) x2 component

(c) curl (d) vectorial representation

Figure 2. T̂λ5

on Figure 5 for the space Λ1
H . We also compare the accuracy proposed by first-order

Nédélec’s edge elements on the same mesh TH on Figure 5.
Figure 5 depicts that the MHM and FE methods provide the same linear convergence

rate in both L2(Ω) and H(curl, TH) norms. MHM solution is less accurate than the FE
solution in terms of L2(Ω) error. On the other hand, the MHM solution is more accurate
in terms of the error on the curl.

7.2. Convergence of quadratic elements. We present the convergence curves for the
MHM method equiped with the Λ2

H space on Figure 6. In this case, the right-hand-side
and solution we consider are

f(x) =

(
sin(5πx1) sin(5πx2) + 25π2 sin(5πx1) sin(5πx2)

25π2 cos(5πx1) cos(5πx2)

)
,

whose solution is given by

u(x) =

(
sin(5πx1) sin(5πx2)

0

)
.

We observe that in this case, the convergence rates are quadratic.
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(a) x1 component (b) x2 component

(c) curl (d) vectorial representation

Figure 3. Nodal shape function Tψ3

7.3. A remark concerning tangential continuity. On Figure 7 we show the x1 com-
ponent of uH on a 16× 16 mesh when the analytical solution is

u =

(
sin(πx1) sin(πx2)

0

)
.

We can see there that the discrete solution obtained with linear elements exhibits impor-
tant tangential jumps across the edges of TH . Also, we observe some “oscillations”. This
might be the reason why we observed that the error in L2(Ω) norm is more important for
MHM that for FE discretization in the previous section. The effect we just mentioned for
the linear discretization is much less important, however, for the quadratic discretization.

As shown at Figure 8, the approximation of the curl is continuous, and does not suffer
of the aforementioned effect, even for the linear discretization.
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(a) x1 component (b) x2 component

(c) curl (d) vectorial representation

Figure 4. Edge shape function Tψ6
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Figure 5. Convergence curves for first-order elements
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Figure 6. Convergence curves for second-order elements

(a) Λ1
H space (b) Λ2

H space

Figure 7. x1 component of uH on a 16× 16 mesh

(a) Λ1
H space (b) Λ2

H space

Figure 8. curluH on a 16× 16 mesh


