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A MULTISCALE HYBRID MIXED METHOD FOR TIME-HARMONIC
MAXWELL’S EQUATIONS IN TWO DIMENSIONS

T. CHAUMONT-FRELET, S. DESCOMBES, S. LANTERI AND F. VALENTIN

1. Notations

In the following, 
 � R2 is a polygonal domain. We consider a family of meshes (TH)H>0
of 
 such that, for all H > 0, the elements K 2 TH are triangles satisfying

diam(K) = sup
x;y2K

jx� yj � H;

In addition, we assume that there exists a constant � > 0, such that
diam(K)
�(K)

� �;

for all K 2 TH and H > 0, where

�(K) = sup fr > 0 j 9x 2 K; B(x; r) � Kg :

Finally, for all H > 0 and for all pairs of distinct elements K+; K� 2 TH , we assume that
@K+ \ @K� is either empty, or a vertex or or a full edge of K+ and K�.

We denote by E intH and EextH the set of internal and external edges of TH . We also employ
the notation EH = E intH = [EextH .

If � and � are vectorial and scalar functions, we de�ne

curl � =
@�2

@x1
�
@�1

@x2
; curl� =

�
@�
@x2

;�
@�
@x1

�
;

where the derivatives are taken in the sense of distributions.
If O � R2 is a connected open set with Lipschitz boundary @O, H1(O) is the space of

scalar functions � 2 L2(O) such that r� 2 L2(O) and H(curl;O) is the space of vectorial
functions � 2 L2(O) such that curl � 2 L2(O). These spaces are equipped with the norms

k�k2
1;O = k�k2

0;O + kr�k2
0;O; k�k2

curl;O = k�k2
0;O + k curl �k2

0;O:

If � 2 H1(O), its trace on @O is de�ned as an element of H1=2(@O). The space H1=2(@O)
is equipped with the quotient norm

k k1=2;@O = inf
�2H1(O

fk�k1;O j �j@O =  g :

If � 2 H(curl;O) its tangential trace is de�ned in H�1=2(@O) as
Z

@O
�� n =

Z

O
curl � � � � curl ;
1
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for all  2 H1(
), and we have
����

Z

@O
�� n 

���� � k�kcurl;Ok k1;O:

For every H > 0, the \broken spaces" H1(TH) (resp. H(curl; TH)) are de�ned as space
of � 2 L2(
) (resp. � 2 L2(
)) such that �jK 2 H1(K) (resp. �jK 2 H(curl; K)) for all
K 2 TH . They are equipped with the norms

k�k2
1;TH

=
X

K2TH

k�jKk2
1;K ; k�k2

curl;TH
=
X

K2TH

k�jKk2
curl;K :

In addition, we introduce the space

H1=2(EH) =

(

� 2
Y

K2TH

H1=2(@K) j 9� 2 H1(
); �j@K = �j@K 8K 2 TH

)

;

equipped with the norm
k�k2

1=2;EH
=
X

K2TH

k�jKk2
1=2;@K :

We easily check that

k�k1=2;EH = inf
�2H1(
)

fk�k1;
 j �j@K = �j@K ; 8K 2 THg :

If � 2 H1(
) we will use the notation �jEH to denote the element � 2 H1=2(EH) such
that �j@K = �j@K for all K 2 TH .

2. Maxwell’s equations

We consider time-harmonic Maxwell’s equations in the 2D domain 
 at frequency ! > 0.
For the sake of simplicity, we assume that 
 is an isotropic linear medium, so that it can
be characterized by three measurable scalar functions �; �; � : 
 ! R that respectively
represent the permittivity, the permeability, and the conductivity. We assume that there
exist some real constants such that

0 < �? � �(x) � �? <1; 0 < �? � �(x) � �? <1; 0 < �? � �(x) � �? <1

for a.e. x 2 
.
The electric �eld u : 
! C2 is solution to

(1)
�

(i!� � �!2) u + curl (��1 curl u) = f in 
;
u� n = 0 on @
;

where the action of an electric source f 2 L2(
)
Classically, we recast (1) into a variational problem: �nd u 2 H0(curl;
) such that

(2) a(u;v) = (f ;v); 8v 2 H0(curl;
);

where the sesquilinear form a is given by

a(u;v) =
��
i!� � �!2�u;v

�
+
�
��1 curl u; curl v

�
:
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We can easily show that a is coercive, i.e. that there exists a � 2 [0; 2�) such that

(3) ja(v; ei�v)j & kvk2
curl;
; 8v 2 H0(curl;
):

The existence and uniqueness of a solution u 2 H0(curl;
) to (2) is thus a direct conse-
quence of the Lax-Migram lemma.

3. An hybrid formulation

We introduce an hybrid formulation of (1), in which the tangential continuity of u is
relaxed, and weakly imposed using a Lagrange multiplier �. The relaxed space for u is
V = H(curl; TH). As shown in Lemma 1, the correct space for the Lagrange multiplier is
� = H1=2(EH).

Lemma 1. Let v 2 V. Then v 2 H0(curl;
) if and only if

(4) b(�;v) = 0; 8� 2 �;

where

b(�;v) =
X

K2TH

Z

@K
v � n�:

Proof. The key point of the proof is a convenient way of rede�ning b(�;v) for � 2 � and
v 2 V. If E 2 E intH is the edge shared by two elements K+; K� 2 TH , since � have the
same value on both side of the edge, it makes sense of de�ning the restriction �jE of � to E.
On the other hand, since v has two independent de�nitions on K� and K+ we introduce
the notation v� � n� = (vjK�)� n�jE, where n� is the unit vector normal to E pointing
outside K�. Then, we can write

(5) b(�;v) =
X

E2Eext
H

Z

E
v � n� +

X

E2Eint
H

Z

E
v+ � n+ + v� � n��:

Assume that v 2 H0(curl;
). Because of the essential boundary condition, we have
vjE � n = 0 on all exterior edges E 2 EextH . On the other hand, because the tangential
component of v is continuous, if E 2 E intH is the edge shared by two elements K+; K� 2 TH ,
we have

(6) v+ � n+ + v� � n� = 0:

As a result, (4) directly follows from (5).
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On the other hand, consider v 2 V such that (4) holds. We �rst show that v 2
H(curl;
). To this end, we introduce an arbitrary test function � 2 H1

0 (
). We have
Z



v � curl� =

X

K2TH

Z

K
v � curl�

=
X

K2TH

Z

K
curl v�+

X

@K

v � n�

=
X

K2TH

Z

K
curl v�+ b(�;v);

where � is the element of � de�ned by �j@K = �j@K for all K 2 TH . Since we assume that
(4) holds, it follows that

Z



v � curl� =

Z




 
X

K2TH

curl vjK

!

�;

which means that
curl v =

X

K2TH

curl vjK 2 L2(
);

in the sense of distribution. As a result, v 2 H(curl;
).
Since we established that v 2 H(curl;
), (6) holds, and v � n 2 H�1=2(@
). Thus,

using (5), for all � 2 H1(
), if � = �jEH , we have

0 = b(�;v) =
Z

@

v � n�:

Since this last equality is true for every element of H1=2(@
), we conclude that v � n = 0
on @
, and v 2 H0(curl;
). �

The hybrid formulation is simply obtained by relaxing the tangential continuity and
introducing the Lagrange multiplier: �nd (u; �) 2 V � � such that

(7)
�
a(u;v) + b(�;v) = (f ;v); 8v 2 V;

b(�;u) = 0; 8� 2 �;

where we have extended the de�nition of a over V by

a(u;v) =
X

K2TH

���
i!� � �!2�ujK ;vjK

�
+ (curl ujK ; curl vjK)

	
:

Theorem 1. u 2 H0(curl;
) is solution to (2) if and only if (u; (��1 curl u)jEH ) 2 V��
is solution to (7).

Proof. Assume that u 2 H0(curl;
) is solution to (2). Then, by Lemma 1, b(�;u) = 0 for
all � 2 �, and the second equation of (7) is satis�ed.

Since u satis�es the �rst equation of (1) in the sense of distributions, we have

curl
�
��1 curl u

�
= f +

�
�!2 � i!�

�
u 2 L2(
):



A MHM METHOD FOR TIME-HARMONIC MAXWELL’S EQUATIONS IN 2D 5

It follows that ��1 curl u 2 H1(
), and it makes sense to consider the restriction (��1 curl u)jEH

as an element of �.
Consider v 2 V multiplying the �rst equation of (1) and by v and performing an

integration by parts over an arbitrary element K 2 TH , we have
��
i!� � �!2�ujK ;vjK

�
+ (��1 curl ujK ; curl vjK) +

Z

@K
vjK � nK��1 curl ujK = (f jK ;vjK):

Then, by summation over K 2 TH , we obtain that

a(u;v) + b((��1 curl u)jEH ;v) = (f ;v); 8v 2 V;

which is the �rst equation of (7). We have thus established that (u; (��1 curl u)jEH 2 V��
is solution to (7).

Now, assume that (u; �) 2 V � � is solution to (7). Then, by Lemma 1, we have that
u 2 H0(curl;
). Using again Lemma 1, we see that for all v 2 H0(curl;
)

a(u;v) = a(u;v) + b(�;v) = (f ;v);

so that u is solution to (2).
It remains to identify �. If v 2 H(curl; K), we have

a(u;v) =
Z

K

�
i!� � �!2�u � v +

Z

K
��1 curl ucurl v

=
Z

K

��
i!� � �!2�u + curl

�
��1 curl u

��
� v +

Z

@K
v � n��1 curl u:

On the other hand, we have

a(u;v) = (f ;v)� b(�;v)

=
Z

K
f � v +

Z

@K
v � n�;

and we identify that
��1 curl u = � on @K:

Because the above identi�cation is valid for every element K 2 TH , we obtain that � =
(��1 curl u)jEH , which is the desired result. �

As a direct consequence of Theorem 1, we have:

Corollary 1. There exists a unique pair (u; �) 2 V � � solution to (7).

4. The Multiscale Hybrid Mixed formulation

The Multiscale Hybrid Mixed (MHM) formulation is formally obtained from hybrid
formulation (7) by substituting u by � in the �rst equation. Assuming that � 2 � is
known, we can write

a(u;v) = (f ;v)� b(�;v); 8v 2 V:
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Since a is coercive over V, we see that u is uniquely determined given �. In addition, by
linearity, we can formally write that

(8) u = T�+ T̂f ;

for two linear operators T and T̂. Then, plugging (8) into the second equation of (7), we
obtain a variational problem that is solely expressed in terms of �:

b(�;T�) = �b(�; T̂f); 8� 2 �:

We start by properly de�ning the substitution operators T and T̂ and discuss their
basic properties. Then, we establish that the MHM formulation is well-posed, and that its
solution coincides with the solution of the original problem.

4.1. Local operators. For all � 2 � and h 2 L2(
) the image of � and h through T and
T̂ are de�ned as the solutions to
(9) a(T�;v) = �b(�;v); a(T̂h;v) = (h;v); 8v 2 V:

Since a is coercive over V, it is clear that (9) uniquely de�nes T� and T̂h. As a result,
T : �! V and T̂ : L2(
)! V are well de�ned linear operators.

Lemma 2. For all � 2 � and h 2 L2(
), we have

kT�kV . k�k�; kT̂hkV . khk0;
:

Proof. Let � 2 �. We have
kT�k2

V . ja(T�; ei�T�)j = jb(�;T�)j:
For all � 2 H1(
), since

����

Z

@K
T� � n�

���� � k�k1;KkT�kcurl;K ;

we have
jb(�;T�)j � k�k1;
kT�kV;

for all � 2 H1(
). Hence, if � 2 H1(
) satis�es �j@K = �j@K for all K 2 TH , we have
kT�kV . k�k1;
;

but then, by taking the in�nimum, we obtain
kT�kV . inf

�2H1(
)
fk�k1;
 j �j@K = �j@K 8K 2 THg = k�k�:

Now, if h 2 L2(
), we have

kT̂hk2
V . ja(T̂h; ei�T̂h)j

= j(h; T̂h)j
� khk0;
kT̂hk0;


� khk0;
kT̂hkV;
and the result follows. �
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Proposition 1. For all � 2 �, we have

k�k� . kT�kV:

Proof. Let � 2 �. For each element K 2 TH , we have

(i!� � �!2)T� + curl
�
��1 curl T�

�
= 0:

Letting � = ��1 curl T�, we see that

r?� = curl� =
�
�!2 � i!�

�
T� 2 L2(
):

It follows that � 2 H1(K) with

k�k1;K . k�k0;K + kr�k1;K

. k��1 curl T�k0;K + k
�
�!2 � i!�

�
T�k1;K

. kT�kcurl;K :

Since in addition, �j@K = �j@K we obtain a global de�nition for � 2 H1(
) with

k�k1;
 . kT�kV;

but by de�nition of k:k� as the quotient norm, we have

k�k� . k�k1;
;

and the result follows. �

Corollary 2. For all � 2 �, we have

k�k� . kT�kV . k�k�:

Finally, we established that the sesquilinar form associated with the MHM formulation
is coercive over �:

Corollary 3. We have
jb(e�i��;T�)j & k�k2

�

for all � 2 �.

Proof. Let � 2 �, by de�nition of T, we have

b(e�i��;T�) = �a(T
�
e�i��

�
;T�) = a(T�; ei�T�);

and it follows that
jb(e�i��;T�)j = ja(T�; ei�T�)j & kT�k2

V:
Then, the conclusion follows from Corollary (2). �

Theorem 2. For all � 2 � and h 2 H(div;
), we have T�; T̂h 2 H(div;
), and

div
��
i!� � �!2�T�

�
= 0; div

��
i!� � �!2� T̂h

�
= div h:



8 T. CHAUMONT-FRELET, S. DESCOMBES, S. LANTERI AND F. VALENTIN

Proof. Let � 2 �. For all � 2 H1
0 (
), since curl r� = 0, we have

Z




�
i!� � �!2�T� �r� =

X

K2TH

Z

K

�
i!� � �!2�T� �r�

=
X

K2TH

Z

K

�
i!� � �!2�T� �r�+ ��1 curl T� curl r�

= a(T�;r�):

Then, since r� 2 H0(curl;
), using Lemma 1 and by de�nition of the operator T, we
obtain

a(T�;r�) = �b(�;r�) = 0;
so that Z




�
i!� � �!2�T� �r� = 0; 8� 2 H1

0 (
);

which means that (i!� � �!2)T� 2 H(div;
), and

div
�
(i!� � �!2)T�

�
= 0:

Now, if h 2 H(div;
), the same arguments than above show that
Z




�
i!� � �!2� T̂h �r� = a(T̂h;r�) =

Z



h �r�; 8� 2 H1

0 (
):

It follows that (i!� � �!2)T̂h 2 H(div;
) with

div
�

(i!� � �!2)T̂h
�

= div h:

�

4.2. The MHM formulation.

Theorem 3. For each f 2 L2(
), there exists a unique � 2 � such that

(10) b(�;T�) = �b(�; T̂f)

for all � 2 �. In addition, if we de�ne

u = T�+ T̂f 2 V;

then the pair (u; �) is solution to (7).

Proof. The existence and uniqueness of � 2 � follows from Corollary 3 and Lax-Milgram
lemma. Then, we let

u = T�+ T̂f 2 V:
From (10), we see that

b(�;u) = 0; 8� 2 �:
On the other hand, by linearity, we have

a(u;v) = a(T�;v) + a(T̂f ;v); 8v 2 V;
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and by de�nition of the operators T and T̂, we see that

a(u;v) + b(�;v) = (f ;v); 8v 2 V;

so that the pair (u; �) is solution to (7). �

5. Discrete MHM problem

We obtain a discrete version of (10) by introducing a �nite dimensional subspace �H � �.
Here, we consider spaces �H that are made of piecewise polynomials. First we introduce
the space LH of Lagrange �nite elements of degree k:

LkH =
�
vH 2 H1(
) j vH jK 2 Pk(K) 8K 2 TH

	
:

Then, the space �H is obtained by restrictions of Lagrange �nite elements onto the EH :

�k
H =

�
�H 2 � j 9vH 2 LkH ; �H = vH jEH

	
:

Theorem 4. For all f 2 L2(
), there exists a unique �H 2 �k
H such that

(11) b(�H ;T�H) = �b(�H ; T̂f); 8�H 2 �H :

In addition, if � 2 � solve (10), we have

k�� �Hk� . inf
�H2�H

k�� �Hk�:

It remains to analyze the approximation properties of the space �H in the k:k� norm
to obtain an error estimate. To this end, we introduce an interpolation operator. Assume
that � 2 � is such that � = vjEH for some v 2 H2(TH). Then �kH� 2 �k

H is de�ned as

�kH� = (IkHv)jEH ;

where IkH is the Lagrange interpolant of v. We have:

Lemma 3. Let � 2 � such that � = vjEH for some v 2 Hk+1(TH). Then we have

(12) k� � �H�k� . Hkjvjk+1;TH :

Proof. Let � 2 � such that � = vjEH with v 2 H2(TH). For all element K 2 TH , we have

k� � �H�k1=2;@K = inf
w2H1(K)

fkwk1;K j wj@K = � � �H�g :

We observer that the function ~w = v�Ihv 2 H1(K) satis�es ~wj@K = ���H�. As a result,

k� � �H�k1=2;@K � k ~wk1;K = kv � Ihvk1;K :

Then, standard interpolation properties ensure that

k� � �H�k . Hkjvjk+1;K ;

and we obtain (12) by summation over K 2 TH . �
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Corollary 4. Assume the solution u 2 H0(curl;
) to (2) is such that ��1 curl u 2
Hk+1(TH). Then, we have

k�� �Hk� . Hkj curl ujk+1;TH ;

and
ku� uHkcurl;TH . Hkj curl ujk+1;TH ;

where � = curl ujEH , �H 2 �H is the solution to (11), and uH = T�H + T̂f .

6. Representation of the shape functions

In the following, we focus on the discrete spaces �1
H and �2

H . For the case of �1
H , we

consider a basis f jg that consists of one shape function  j for each vertex in the mesh
TH . In each element K 2 TH the basis functions  j admit local expressions. These local
expressions are associated with the vertices of K = ((i� 1)h; ih)� ((j� 1)h; jh), and have
de�nitions 8

>>><

>>>:

�̂1(x̂1; x̂2) = (1� x̂1)(1� x̂2)
�̂2(x̂1; x̂2) = (1� x̂1)x̂2

�̂3(x̂1; x̂2) = x̂1x̂2

�̂4(x̂1; x̂2) = x̂1(1� x̂2)
where

x̂1 =
x1 � (i� 1)h

h
; x̂2 =

x2 � (j � 1)h
h

:

In the case of the space �2
H , we add to the basis of �1

H one shape function for each edge
of TH . These shape functions also admits local expressions in each element K 2 TH , that
are associated with the edges of K = ((i� 1)h; ih)� ((j � 1)h; jh)):

8
>>><

>>>:

�̂5(x̂1; x̂2) = x1(1� x1)(1� x̂2)
�̂6(x̂1; x̂2) = x1x2(1� x̂2)
�̂7(x̂1; x̂2) = (1� x1)(1� x1)(1� x̂2)
�̂8(x̂1; x̂2) = (1� x1)x2(1� x̂2)

where

x̂1 =
x1 � (i� 1)h

h
; x̂2 =

x2 � (j � 1)h
h

:

In order to better illustrate the shape functions, we plot (T j) for two di�erent meshes.
First, we consider a very simple mesh made of a single square K = (0; 1)2. In that case,
since we only have one element, the shape functions  j exactly coincide with their local
expressions �̂j. The nodal shape function T�̂1 is represented on Figure 1. Similarly, we
depict on Figure 2 the edge shape function T�̂5.

Then, we represent on Figures 3 and 4 a nodal and an edge shape function in the case
of a 2� 2 mesh.

We remark on Figures 3 and 4 that indeed, T�j 2 H(div;
) but T�j =2 H(curl;
).
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(a) x1 component (b) x2 component

(c) curl (d) vectorial representation

Figure 1. T̂�1

7. Numerical experiments

7.1. Convergence of linear elements. We consider the problem
�

u + curl curl u = f in 

u� n = 0 on @
;

where 
 = (0; 1)2 and

f(x) =
�

sin(�x1) sin(�x2) + �2 sin(�x1) sin(�x2)
�2 cos(�x1) cos(�x2)

�
;

whose solution is given by

u(x) =
�

sin(�x1) sin(�x2)
0

�
:

We represent the convergence curves of

ku� uHk0;
 and

 
X

K2TH

k curl(u� uH)k2
0;K

!1=2
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(a) x1 component (b) x2 component

(c) curl (d) vectorial representation

Figure 2. T̂�5

on Figure 5 for the space �1
H . We also compare the accuracy proposed by �rst-order

N�ed�elec’s edge elements on the same mesh TH on Figure 5.
Figure 5 depicts that the MHM and FE methods provide the same linear convergence

rate in both L2(
) and H(curl; TH) norms. MHM solution is less accurate than the FE
solution in terms of L2(
) error. On the other hand, the MHM solution is more accurate
in terms of the error on the curl.

7.2. Convergence of quadratic elements. We present the convergence curves for the
MHM method equiped with the �2

H space on Figure 6. In this case, the right-hand-side
and solution we consider are

f(x) =
�

sin(5�x1) sin(5�x2) + 25�2 sin(5�x1) sin(5�x2)
25�2 cos(5�x1) cos(5�x2)

�
;

whose solution is given by

u(x) =
�

sin(5�x1) sin(5�x2)
0

�
:

We observe that in this case, the convergence rates are quadratic.
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(a) x1 component (b) x2 component

(c) curl (d) vectorial representation

Figure 3. Nodal shape function T 3

7.3. A remark concerning tangential continuity. On Figure 7 we show the x1 com-
ponent of uH on a 16� 16 mesh when the analytical solution is

u =
�

sin(�x1) sin(�x2)
0

�
:

We can see there that the discrete solution obtained with linear elements exhibits impor-
tant tangential jumps across the edges of TH . Also, we observe some \oscillations". This
might be the reason why we observed that the error in L2(
) norm is more important for
MHM that for FE discretization in the previous section. The e�ect we just mentioned for
the linear discretization is much less important, however, for the quadratic discretization.

As shown at Figure 8, the approximation of the curl is continuous, and does not su�er
of the aforementioned e�ect, even for the linear discretization.
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(a) x1 component (b) x2 component

(c) curl (d) vectorial representation

Figure 4. Edge shape function T 6
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Figure 5. Convergence curves for �rst-order elements
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Figure 6. Convergence curves for second-order elements

(a) �1
H space (b) �2

H space

Figure 7. x1 component of uH on a 16� 16 mesh

(a) �1
H space (b) �2

H space

Figure 8. curl uH on a 16� 16 mesh


