S. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory, vol.28, issue.2, pp.129-137, 1982.
DOI : 10.1109/TIT.1982.1056489

URL : http://www.cs.toronto.edu/~roweis/csc2515-2006/readings/lloyd57.pdf

N. Keriven, N. Tremblay, Y. Traonmilin, and R. Gribonval, Compressive K-means, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.
DOI : 10.1109/ICASSP.2017.7953382

URL : https://hal.archives-ouvertes.fr/hal-01386077

N. Keriven, A. Bourrier, R. Gribonval, and P. Pérez, Sketching for large-scale learning of mixture models, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1606.
DOI : 10.1109/ICASSP.2016.7472867

URL : https://hal.archives-ouvertes.fr/hal-01329195

R. Gribonval, G. Blanchard, N. Keriven, and Y. Traonmilin, Compressive statistical learning with random feature moments
URL : https://hal.archives-ouvertes.fr/hal-01544609

K. Bredies and H. K. Pikkarainen, Inverse problems in spaces of measures ESAIM: Control, Optimisation and Calculus of Variations, pp.190-218, 2013.

N. Boyd, G. Schiebinger, and B. Recht, The Alternating Descent Conditional Gradient Method for Sparse Inverse Problems, SIAM Journal on Optimization, vol.27, issue.2, pp.616-639, 2017.
DOI : 10.1137/15M1035793

URL : http://arxiv.org/pdf/1507.01562

C. Boutsidis, P. Drineas, W. Michael, and . Mahoney, Unsupervised feature selection for the k-means clustering problem, Advances in Neural Information Processing Systems, pp.153-161, 2009.

P. Indyk, J. Matou?ek, and A. Sidiropoulos, Low-Distortion Embeddings of Finite Metric Spaces, Handbook of discrete and computational geometry
DOI : 10.1201/9781420035315.ch8

C. Boutsidis, A. Zouzias, and P. Drineas, Random projections for k-means clustering, Advances in Neural Information Processing Systems, pp.298-306, 2010.

B. William, J. Johnson, and . Lindenstrauss, Extensions of lipschitz mappings into a hilbert space

J. M. Phillips-csaba, D. Toth, J. O. Rourke, E. Jacob, and . Goodman, Coresets and sketches, " in Handbook of discrete and computational geometry, p.48, 2017.

A. Rahimi and B. Recht, Random features for largescale kernel machines, Advances in Neural Information Processing Systems (NIPS), pp.1177-1184, 2007.

R. Alastair and . Hall, Generalized method of moments, 2005.

L. Peter-hansen, Large sample properties of generalized method of moments estimators, Econometrica: Journal of the Econometric Society, pp.1029-1054, 1982.

Q. Le, T. Sarlós, and A. Smola, Fastfoodapproximating kernel expansions in loglinear time, Proceedings of the international conference on machine learning (ICML), 2013.

K. Choromanski and V. Sindhwani, Recycling randomness with structure for sublinear time kernel expansions, Proceedings of the international conference on machine learning (ICML). 2016 Conference Proceedings, pp.2502-2510

F. X. Yu, A. Theertha-suresh, D. Krzysztof-marcin-choromanski, S. Holtmann-rice, and . Kumar, Orthogonal random features, Advances in Neural Information Processing Systems (NIPS), pp.1975-1983, 2016.

M. Bojarski, A. Choromanska, K. Choromanski, F. Fagan, C. Gouy-pailler et al., Structured adaptive and random spinners for fast machine learning computations, The 20th International Conference on Artificial Intelligence and Statistics
URL : https://hal.archives-ouvertes.fr/hal-01505587

K. Choromanski, M. Rowland, and A. Weller, Random features for large-scale kernel machines, Advances in Neural Information Processing Systems (NIPS)

N. Ailon and B. Chazelle, The fast johnson?lindenstrauss transform and approximate nearest neighbors, pp.302-322
DOI : 10.1137/060673096

URL : http://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf

N. Keriven, N. Tremblay, and R. Gribonval, Sketchmlbox: A matlab toolbox for large-scale mixture learning Spiral project: Wht package, 2016.

J. Johnson and M. Puschel, In search of the optimal walshhadamard transform, IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings

N. Park and N. K. Prasanna, Cache conscious walshhadamard transform, Proceedings of the International Conference on Acoustics, Speech and Signal Processing 2001 (ICASSP), pp.1205-1208

J. Curto, I. Zarza, F. Yang, A. Smola, and L. Van-gool, F2f: A library for fast kernel expansions

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324
DOI : 10.1109/5.726791

URL : http://www.cs.berkeley.edu/~daf/appsem/Handwriting/papers/00726791.pdf

G. Loosli, S. Canu, and L. Bottou, Training invariant support vector machines using selective sampling Large scale kernel machines, pp.301-320, 2007.

G. David and . Lowe, Distinctive image features from scaleinvariant keypoints, International journal of computer vision, vol.60, issue.2, pp.91-110, 2004.

Y. Andrew, M. I. Ng, Y. Jordan, and . Weiss, On spectral clustering: Analysis and an algorithm, Advances in neural information processing systems, pp.849-856

D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007.

N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst, Compressive spectral clustering, ICML 2016), pp.20-22
URL : https://hal.archives-ouvertes.fr/hal-01320214

J. Yang and J. Leskovec, Defining and evaluating network communities based on ground-truth, Knowledge and Information Systems, vol.393, issue.3, pp.181-213, 2015.
DOI : 10.1145/2501654.2501657

E. Mark, M. Newman, and . Girvan, Finding and evaluating community structure in networks, Physical review E, vol.69, issue.2, p.26113, 2004.

B. Mailhé, R. Gribonval, F. Bimbot, and P. Vandergheynst, LocOMP: algorithme localement orthogonal pour l'approximation parcimonieuse rapide de signaux longs sur des dictionnaires locaux