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� Introduction

Abstract� We study the development of formally proved algorithms for

computational geometry� The result of this work is a formal descrip�

tion of the basic principles that make convex hull algorithms work and

two programs that implement convex hull computation and have been

automatically obtained from formally veri�ed mathematical proofs� A

special attention has been given to handling degenerated cases that are

often overlooked by conventional algorithm presentations�

Algorithms to compute the convex hull of a collection of points in two or
three dimensions abound� The complexity of this problem is known to be ap�
proximately the same as for a sorting algorithm in the worst case� but the average
complexity depends very much on the distribution of data� some algorithms ac�
tually have a complexity of the form n�h� where n is the total number of points
and h is the number of points on the convex hull� These algorithms will be more
e�cient than nlog�n� when few points are on the convex hull� This makes it
useful to have several algorithms around�

We have studied two algorithms� The �rst is an incremental algorithm� where
new points are progressively added to the input data� If the new point is outside
the convex hull� then it is necessary to add two new edges to the convex hull and
remove some others� The second algorithm is known as the package�wrapping
algorithm� it follows the intuition of tying a band around the collection of points�
At the nth step� the band is already in contact with a few points and the al�
gorithm proceeds by computing what the next point is going to be� if with the
band turning clockwise around the points� the next point in the hull is going to
be the leftmost remaining point�

All these algorithms rely on an orientation predicate that expresses whether
the points of a triangle are enumerated clockwise or counter�clockwise� This
orientation predicate is easily computed using the coordinates of the points� but
it is meaningless when the points are aligned� Usual presentation of convex hulls
algorithms assume that three points in the input data are never aligned�



The structure of convex hull algorithms rely on the fact that the orienta�
tion predicate satis�es some properties� for instance the triangles built with four
points have to be oriented in a consistent manner� Knuth �	
 describes the min�
imal properties of the orientation predicates and calls them axioms�

Knuth�s approach of axioms for convex hulls has the nice property of sepa�
rating concerns about the properties of arithmetic expressions containing point
coordinates and the control structure of algorithms� It has proved a good orga�
nization principle for our description and proof development�

Thus� our work contains distinct parts� The �rst part is about the axioms� and
showing that they hold for an implementation predicate� This part involves some
numerical computation� The second part describes the main structure of the
algorithms based on the axioms� with numeric computation completely avoided�
In the last part� we revisit the algorithms to make them robust with respect to
degenerated data�

All our proofs have been mechanically checked using the Coq system ��
�

��� Related work

Automatic theorem proving and geometry have been in contact for some time�
The work in this domain that we are better aware of is that of Chou �

� In this
development� theorems about basic geometric �gures like straight lines� triangles
and circles are proved automatically� but there is no result about computational
geometry per se� since algorithms are not the object of the study�

Puitg and Dufourd ��
� used the Coq proof system to describe notions of
planarity� Work on �nding minimal axioms to describe geometric concepts has
also been done in constructive proof theory by Jan von Plato ���
 and formalized
in Coq by Gilles Kahn ��
�

Last� we should refer to all the work done on computational geometry� but
this domain is far too large to be cited entirely� we can only refer to the books
we have used as reference� ��
 and ��
� and ���
�

� Knuth�s �axioms� for convex hulls

In what follows� we assume that points are taken from a set P and we describe
the orientation predicate as a predicate over three points p� q� r in P � which we
denotedpqr�

Knuth�s axioms describe the various ways in which triangles can be looked
at and arranged on the plane� The �rst axiom expresses that when enumerating
the points of a triangle� one may start with any of them�

Axiom � �p� q� r� dpqr �dqrp�

As a corollary of this axiom one also hasdpqr �drpq� This axiom is �cyclic� it can
be repeated inde�nitely on the same data� For this reason� it impedes automatic
proof search procedures�

The second axiom expresses that if a triangle is oriented counter�clockwise�
then the same triangle with two points transposed is in fact oriented clockwise�



Axiom � �p� q� r� dpqr � �dprq�

An immediate consequence of the �rst two axioms is that three points are
oriented only if they are pairwise distinct�

�p� q� r� dpqr � p �� q � q �� r � r �� p

Many of the lemmas appearing in our development therefore rely on the as�
sumptions that the points being considered are pairwise distinct� We also have a
predicate on lists of points expressing that they contain pairwise distinct points�

The third axiom expresses that a triangle is either oriented clockwise or
counter�clockwise�

Axiom � �p� q� r� p �� q � q �� r � p �� r �dpqr �dprq�

This a�rmation voluntarily overlooks the fact that points may be aligned� This
is a tradition of computational geometry that algorithms can be studied without
taking care of what are called degenerate cases� We will have to study this more
carefully later�

The fourth axiom expresses that the four triangles obtained with four arbi�
trary points may not be oriented in an arbitrary manner� there has to be some
sort of consistency� easily understood by observing �gure ��

p

q

r

t

Fig� �� Axiom �� Consistent orientation for four triangles�

Axiom � �p� q� r� t� ctqr � cptr � cpqt�dpqr�

The �fth axiom expresses that the orientation predicate may be used to sort
points in some way� with a notion that is similar to transitivity� Still one has
to be careful to avoid going in circles� this is the reason why this axiom uses

 points� see �gure �� Clever algorithms use this property of like�transitivity to
avoid looking at all points�

Axiom � �p� q� r� s� t� ctsp � ctsq � ctsr � ctpq � ctqr � ctpr
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Fig� �� Axiom �� sorting points in a half plane�

The �rst three orientation properties express that the three points p� q� and r are
in the same half plan� The other three orientation predicates express transitivity�
from the point of view of t� if q is left of p and r is left of q� then r is left of p�

There is a variant to this axiom� that can actually be proved using axioms
�� �� �� and 
� and which we will refer to by the name axiom ���

Axiom �� �p� q� r� s� t� cstp � cstq � cstr � ctpq � ctqr � ctpr
Knuth shows that these axioms are independent� For the case of general

positions� these axioms are enough� but if we want our algorithms to be robust
for possibly aligned points in the input� there are two possibilities� The �rst one
is to introduce notions that are meaningful for triplets of points that are aligned�
In this case� we also use segments and the property that a point belongs to a
segment given by its two extremities� This adds up to � more axioms� which
we do not describe here for the moment� The second solution is to �nd a way
to extend orientation to aligned points in a way that still satis�es the axioms�
Perturbation methods as described in ��
 provide a satisfactory approach to this�

��� Proving the axioms

When points are given as elements of R� � the orientation predicate is given by
observing the sign of a determinant�

dpqr �

������

xp yp �
xq yq �
xr yr �

������
� ��

In the following we will write jpqrj for this determinant� Knuth�s axioms are not
proper axioms anymore� they become simple consequences of the properties of
addition and multiplication of real numbers�

The proof of Axioms � and � is given by two equations�

jpqrj � jqrpj� jpqrj � jprqj�

From a mechanical proof point of view� the proofs of these equalities is done
painlessly by the usual con�uent rewriting system for ring structures� as imple�
mented by the Ring tactic in Coq� Axiom � simply does not hold in general�



When points are aligned� the determinant is null� A common solution to this
problem is to consider only data that are in general position� that is� assume
that no three points given in the problem are ever aligned� We will �rst follow
this practice to get a better idea of the algorithms� In a later section� we will see
di�erent solutions to the problem of considering degenerated cases�

In man�made proofs� Axiom � relies on an equality obtained from a ��by��
determinant that is obviously null� since it has � identical columns�

��������

xp yp � �
xq yq � �
xr yr � �
xt yt � �

��������
� jpqrj 	 jtqrj 	 jptrj 	 jpqtj � ��

Proving the right�hand side equality is also a simple matter of equality in a ring
structure� Now� if jtqrj� jptrj� jpqtj are all strictly positive� then jpqrj is�

Verifying Axiom 
 also relies on an equation� known as Cramer�s equation�
which has the following form�

jstqjjtprj � jtqrjjstpj� jtpqjjstrj

Here again� automatically proving this equation is a simple matter of ring based
computations�

The conclusion of this section on the orientation predicate is twofold� First
numeric computation can be done in a ring rather than in a complete �eld� This
is important as one of the reasons for problems in geometric algorithms is the
loss of precision in �oating point arithmetic� For convex hulls� �oating points are
not required� The points may be given by integer coordinates in a small grid� If
�oating points are used� one may notice that� since the determinant basically is a
polynomial of degree two in the coordinates of the three points being considered�
it is only necessary to compute the orientation predicate with a precision that
is double the precision of the input data�

��� The speci�cation

What is the convex hull of a set of points S� One de�nition is to describe it as
a minimal subset S� 
 S� such that all points in S can be described as positive
linear combinations of points in S��

An alternative description of the convex hull uses oriented edges� A possibly
open line S� encompasses a set of points S if for any point p in S and any two
consecutive points titi�� in S�� �titi��p or p � ftiti��g holds� We consider that
a list l is a convex hull of S if l is included in S� l is non�empty if S is not� l
contains no duplicates� and if t is the last element of l� then t�l� formed by adding
t at the head of l� encompasses S� In other terms� the convex hull is de�ned as
a minimal intersection of half�planes�

When a data set is the empty set� a singleton� or a pair� then the convex hull
is simply the list enumerating the set�s elements�



Knuth chooses the second de�nition in his monograph� We will also� for
several reasons� First� lists are a natural data�structure in the functional pro�
gramming language we use in our proofs� Second� this de�nition also relies on
the orientation predicate� thus making it possible to forget everything about nu�
merical computation in the main structure of algorithm� Third� most algorithms
to compute convex hulls naturally rely on the fact that the intermediary data
they construct already is a list of points included in S�

The three parts of the speci�cation are given using inductive de�nitions on
lists �actually we also consider that the input data is given as a list of points��

Still� we have made an e�ort to establish a bridge between the two de�nitions�
We have mechanically veri�ed a proof that if S� is a convex hull of S and p is an
arbitrary point in S� then there exists three points ti� tj � and tk � S� such that
p is inside the triangle formed by ti� tj and tk� This is expressed by the following
three orientation predicates�

dtitjp �tjtkp �tktip

The proof by induction on the length of a convex polygon S� encompassing p

works as follows� First� S� cannot be empty� since it encompasses p� If S� is a
singleton or a pair� the degenerate p� p� p will do� If the convex polygon contains
at least three points� �rst check whether p is equal to t�� t�� or t�� then compute
�t�t�p� If any of these conditions holds� then take t�t�t�� If none of these conditions
holds� then p is actually inside the convex polygon de�ned by t�t� � � � You can
use an induction hypothesis on this smaller convex polygon to reach the result�

Once you have the three points encompassing p it is possible to show that the
coordinates of p are a positive linear combination of the coordinates of the three
points� This is simply because the coordinates of p verify the following equation�

p� jtitjtkj � ti � jtjtkpj� tj � jtktipj� tk � jtitjpj

This equation is easily veri�ed using the ring decision procedure�
If dtitjp��tjtkp� and�tktip hold� then the three determinants on the right�hand

side are positive and by Axiom � the determinant on the left�hand side also is�
Dividing by this determinant is legitimate and p really is obtained by a positive
linear combination of the t�s� The cases where the convex hull contains less than
three points are also easy to prove� Notice that this proof requires that we work
in a �eld�

��� Finding initial data

Some algorithms require that one should be able to �nd one or two points that are
already present in the convex hull to start with� The package�wrapping algorithm
is among them� The usual technique is to look for the minimal point using a
lexical ordering on the coordinates�

If t is the minimal point for the lexical ordering on coordinates� and if p� q�
and r are points of a triangle encompassing t� where the �rst coordinates of p� q�
and r are such p� 
 r� then it is necessary that r� 
 q�� Using this result again�



we have p� 
 r� � r� 
 p�� Thus all three �rst coordinates must be equal� But
if they are� the points are aligned and cannot constitute a proper triangle�

Once we have the point t� whose coordinates are minimal for the lexico�
graphic order� we can �nd its left neighbour by choosing the only point that has
the same second coordinate as t�� If no such point exists� take the point that is
maximal for the order � de�ned by�

p � q � ctpq

That � is transitive is ensured by Axiom 
�� using the point �tx� ty ��� as point
s�

� Proving algorithms

In this section we review the descriptions and proofs for the abstract setting�
positions are general �no three points are aligned� and all numerical computation
is hidden behind the orientation predicate and the function producing initial
points�

��� The incremental algorithm

new point

red edges

blue edges

purple point

new edge

purple point

Fig� �� Red and blue edges in the incremental algorithm

The incremental algoritm works by taking the points of the input data one
by one and constructing the convex hull of all the points seen so far� At each
step� either the new point already lies inside the current convex hull and one can
directly proceed to the next� or some edges need to be removed and two edges
need to be added� All tests rely on the orientation predicate�

The edges from the previous convex hull are sorted into two categories� called
blue and red edges �see �gure ��� Blue edges represent edges� for which the new
point lies on good side� In our description we also say that an edge is blue if the
new point is one of the extremities� Red edges are the other� When all edges are
blue� the point is inside� All edges cannot be red at the same time and red edges
are contiguous�

When looking for red edges there may be four cases�



�� no red edges �including no edges at all��
�� the edge between the last point of the list and the �rst point of the list �the

closing edge� is red� but the last edge of the list is not�
�� the closing edge is red and the last edge too�
�� the closing edge is blue�

In the �rst case� nothing needs to be done� In the second case� the list of edges
can be viewed as the concatenation of two lists� lr and lb� such that lr contains
only red edges lb contains only blue edges� and the edge between the last element
in lr and the �rst element in lb is red� This relies on the property that the list
describing the convex hull has no duplicates� In this case� the result is the list
p � lb� To prove this� we need to show that p is not already in the list �easy�� that
the new point p is in the input data �easy�� that p is left of all the edges in the
convex hull �easy� since the edges that are kept are all blue� and the two new
edges have p at the extremity�� and that all the data considered so far is left
of the edges tp and pt�� where t and t� are the purple points� the last and �rst
elements of lb� respectively� The point t is di�erent from t� if there is a red edge�
Let us detail part of the proof for the other cases �see �gure ���

tk

red edge

blue edge

p q

rt

Fig� �� Using axiom �� to justify adding an edge�

Since t and t� are distinct� there exists a tk distinct from t that is last�but�one
in lb� Let q be the other extremity of the �rst red edge� and let r be an arbitrary
point among those that have already been processed� By construction� we have
dtktr� dtktq� and ctqr� Because tq is red we don�t have ctqp� By Axiom �� this gives
ctpq� Because tkt is blue� we have dtktp� All hypotheses are present to use Axiom 
�

and conclude that ctpr holds� The proof for dpt�r has the same structure� but uses
Axiom 
�

The two other cases are solved by rotating the convex hull to return to the
second case� Rotating a convex hull is simply decomposing this convex hull as
the concatenation of two lists� In the following� we will denote concatenation of
two lists l� and l� as l� � l�� Since concatenation is a simple structural recursive
function �recursive over the �rst argument�� it is a simple matter of structural
recursion over l� to show that rotation preserves inclusion in another list� that
it preserves the absence of duplicate elements� and that it preserves the data
encompassed� Thus� if l� � l� is a convex hull of l� l� � l� also is�



For the third case� one traverses down the list representing the convex hull
until one �nds the �rst point tj such that tj��tj is blue and tjtj�� is red� In that
case the rotation is given by l� � tj � � � t and l� � t� � � � tj � If ti is the �rst point
in l� such that the edge ti��ti is red and the edge titi�� is blue� then one has�
lr � tj � � � t � �t� � � � ti��� and lb � ti��tj �

The fourth case is symmetric to the third one� One also needs to �nd the
two purple points that are boundaries between blue and red edges but they are
in reverse order�

The main algorithm repeats this computation for each point� It is pro�
grammed as a simple structural recursion over the list of inputs�

��� The package�wrapping algorithm

The package�wrapping algorithm relies on the possibility to �nd an initial edge
that is known to be part of the convex hull� then it proceeds by constructing
an open encompassing list l of pairwise distinct points� included in the data�
�nding the right neighbour of the �rst element in the list at each step� At each
step one compares the right neigbour with the last element of the list� When the
two points are equal� the algorithm terminates without adding the current list�
When the two points are di�erent� the right neigbour is added to the list and
recursion restarts �see �gure 
�� During the recursion the list always has at least

future point

t

p

Fig� �� Intermediary iteration for the package�wrapping algorithm�

two elements� let t be the head and s be the second element� Finding t�s right
neighbour is done by �nding the greatest element for the relation � de�ned by

p � q � ctpq�

This relation is not re�exive� but its re�exive closure is a total order� thanks to
Axioms �� �� and 
� Finding the least element of a list for an arbitrary order is
an easy piece of functional programming� and it is also easily proved correct� If
p is this greatest element� ctqp holds for every point in the input data� and by
Axiom � cptq also holds� Thus the input data is left of the edge pt and the list
p � l also encompasses the input data�



A key ingredient to proving the termination of the algorithm is to ensure that
the list being constructed never contains duplicate elements and is included in
the input data� The hardest part is to show that checking that p is distinct from
the last element of l is enough to ensure that p does not belong to l� In fact� if t
is the head of the list� t� is the last element and q is another element of the list�
one needs to show that dtqt� holds� This is done by recursion over the length of
list l but there are many intricacies with base cases� because the proof relies on
Axiom 
� which needs 
 distinct points� Let us have a look at this proof�

First assume q is the second element of the list� dtqt� comes easily from the
fact that the list encompasses the input data and t� is in the input data� Then if
q is not the second element of the list� let t� be this second element� We do the
proof by structural recursion over the list q � � � t�� If this list is reduced to � or �
element� this is contradictory with our hypotheses� if this list has two elements�
then qt� is an edge from the list� anddqt�t holds because t is in the input data� The
result then comes from Axiom �� If the list q � � � t� has more than two elements� let
q� be the second element� one has dtq�t� by induction hypothesis� dtqq� because qq�
encompasses the input data and thanks to Axiom �� Moreover� the properties
dtt�q� dtt�q�� and dtt�t� hold� because q� q�� and t� are in the input data� This is
enough to use axiom 
 and conclude�

Now� the package�wrapping algorithm is not structural recursive� The termi�
nation argument is that the size of the list l is bounded by the size of the input
data� because all its elements are pairwise distinct� and that this size increases at
each step� For this reason� the function is de�ned using Coq�s solution for de�n�
ing well�founded recursive functions� This means that we have to exhibit a set
containing the principal argument of the recursive function and a well�founded
order on this set and show that recursive calls are done only on smaller terms�

The set LS we exhibit is the set of lists that are included in the input data S
and contain no duplicates� In Coq�s type theory� this set is described as a type
using dependently typed inductive types� We show that the length of a list in
in this set is always smaller than the size N of the input data S� We de�ne the
order �S to be �

l �S l� � N 	 length�l� � N 	 length�l���

Proving that this order is well�founded is a simple application of theorems about
composing well�founded orders with functions provided in Coq�s libraries� In
other theorem provers where the termination of recursive functions is ensured
by exhibiting measure functions� the measure function to exhibit is the following
one�

f � l �� N 	 length�l��

At each recursive step� the main argument is l and the argument for the
next recursive call is p � l such that p � l � LS � therefore one has length�p� �
length�p � l� � N and f�p � l� � f�l��



� Degenerated cases

If we want to allow for aligned points in the input data� we need to review our
technique� One solution is to change Axiom �� since it is the one that assumes
that a triple of points can always be viewed as a triangle� If we do that� any
decision taken with respect to orientation in the algorithms must be reviewed
and replaced by a new decision taking extra cases into account� The structure
of the algorithm remains� but all the details of its control��ow are deformed by
this constraint�

A second solution is to change the orientation predicate so that it satis�es
all �ve axioms even in the presence of aligned triples� This solution somehow
imposes that one changes the de�nition of convex hulls� since our de�nition relies
on the orientation predicate� We shall see that both solutions actually require
that we relax our de�nition of a convex hull�

��� Segments

When three distinct points are aligned� one of them lies between the two other�
We introduce a new predicate� written epqrd to express this� Axiom � is changed
to obtain the following formulation�

Axiom � �p� q� r� p � q � q � r � p � r �dpqr �dprq�epqrd�eqrpd�erpqd�
In Knuth�s work� Axioms ��
 express a form of internal consistency for the

orientation predicate� We need to have the same kind of internal consistency for
the segment predicate and between segments and oriented triangles� The �rst
two axioms describe internal consistency for three aligned points�

Axiom 	 �p� q� r� epqrd�erpqd�

Axiom 
 �p� q� r� epqrd� �eprqd�

The next four axioms describe consistency between segments and triangles�

Axiom � �p� q� r� t� dpqr�eptqd� cptr�

Axiom � �p� q� r� t� dpqr�epqtd� cptr�

Axiom �
 �p� q� r� t� dpqr�eptqd� ctqr�

Axiom �� �p� q� r� t� dpqr�etpqd� ctqr�

The last two axioms describe internal consistency of segments for four aligned
points�

Axiom �� �p� q� r� t� eqrtd�epqtd�eprtd�

Axiom �� �p� q� r� t� eqrtd�epqrd�eprtd�

With these new notions� we change the speci�cation of a convex hull for a
set S to be a list of points t� � � � tk such that for every p in S and every ti� tj
such that tj � ti�� or tj � t� if ti � tk one has dtitjp�etitjpd�



��� The working horse predicate

In the new setting we use a new predicate that combines orientation and segment
membership� For the rest of the paper� we will denote this predicate pqr� with
the following meaning�

pqr �dpqr � r � fp� qg�eprqd�

Generalizing our algorithms to the degenerated cases works by replacing the
orientation predicate by the new predicate wherever it occurs and adding a few
equality tests to take care of degeneracies� What matters really is that equivalents
of Axiom 
 still hold�

�p� q� r� s� t� tsp � tsq � tsr � �qtp � qtr � ptr

�p� q� r� s� t� stp � stq � str � �tqp � tqr � tpr�

Thus� if t is known to be on the convex hull� we keep the property that the order
�� can be used to �nd minimal and maximal elements� when this order is de�ned
as follows�

p �� q � tpq�

��� Perturbation

An alternative approach is to change the orientation predicate so that Axiom �
always holds� This option seems awkward� if we change the orientation predicate
how can we be sure that we actually compute the same convex hull� The answer
is to make sure that we change the orientation predicate in a manner that re�
mains consistent with the general orientation predicate� so that the convex hull
computed in non�degenerated cases is unchanged�

The solution we are going to present is based on the idea that if points are
aligned� then moving one of the points only slightly will remove the degeneracy�
This make it possible to compute an approximation of the hull� However� points
are not actually moved� and all points that should appear on the convex hull
will be guaranteed to appear in the approximation we compute� Imprecisions will
occur only for points that are on the segment between two legitimate vertices of
the convex hull� For these points� this method may or may not include them in
the resulting convex hull�

The solution is to consider that all points are moving in a continuous manner
and that the con�guration that is being studied is the snapshot at date t � ��
The determinants used to compute the orientation predicate also are continuous
functions in t� that may have the value � when t � �� The orientation predicate
is continuous for all unaligned triples� However� if the perturbation function can
be viewed as a polynomial function in t it is possible to ensure that limt��� is
either positive or negative� If the points are not aligned� the limit is the same as
the value in �� if there are aligned points� taking a value of t that is small enough
will always return the same sign� so that we do not even have to predict the value
of t� the sign can be predicted from the signs of the polynomial coe�cient�



We use a function taken from ��
 to indicate how all points move� The coordi�
nates of the point p actually are given by the formula xp�t�yp� yp�t��x�p�y�p��
The orientation predicate for points x� y� z then becomes the following term�

������

xp � t� yp yp � t� �x�p � y�p� �
xq � t� yq yq � t� �x�q � y�q� �
xr � t� yr yr � t� �x�r � y�r� �

������
� D� �D� � t�D� � t��

where D�� D�� and D� are the determinants de�ned as follows�

D� �

������

xp yp �
xq yq �
xr yr �

������
D� �

������

yp x
�
p � y�p �

yq x
�
q � y�q �

yr x
�
r � y�r ��

������
D� �

������

xp x
�
p � y�p �

xq x
�
q � y�q �

xr x
�
r � y�r ��

������

The proof that all three determinants cannot be zero is formalized using the
sketch provided in ��
 and relies very much on deciding equalities in a ring� plus
a lot of painful reasoning on equalities� However� we work on polynomials and
all our proofs are done in an ordered archimedian �eld� the �eld of rational
numbers su�ces so that our model is adequate for arithmetic numbers as they
are implemented in computers�

If the �rst derminant is �� then the three points are aligned� There exists
three numbers m�� m�� and m� such that m�� y � m��x�m� is the equation
of the line containing the three points� As these points are distinct� m� and m�

cannot both be null� There are two cases� depending on whether m� � ��
If m� � �� then xp � xq � xr� the second determinant is equal to the

following determinant�
������

yp x
�
p � y�p �

yq x
�
q � y�q �

yr x
�
r � y�r �

������
�

������

yp y
�
p �

yq y
�
q �

yr y
�
r �

������

� �yp 	 yq��yq 	 yr��yr 	 yp�� ���

This value can only be zero if one of the factors is �� in which case two of the
points have both coordinates equal� they are the same�

If m� � �� D� � � if and only if m� �D� � ��

m�
� �

������

yp x
�
p � y�p �

yq x
�
q � y�q �

yr x
�
r � y�r �

������
� �m�

� �m�
��

������

yp y
�
p �

yq y
�
q �

yr y
�
r �

������

� �m�
� �m�

���yp 	 yq��yq 	 yr��yr 	 yp� ���

Here again� at least two of the points must have the same vertical coordinate for
the determinant to be ��

The same reasoning applies to the third determinant� which is symmetric
with the second one� replacing x coordinates with y coordinates�

Now for every triple of points� the values D�� D�� and D� cannot be � at
the same time� We can then show that for every triple p� q� r in the input data�



there exists a number �pqr such that the perturbed determinant never becomes
� in the interval ��� �pqr	� Let abs�x� be the absolute value of x� If D� is non null�
then we can choose �pqr to be the following value�

�pqr � min��� abs�
D�


�D�

�� abs�
D�


�D�

��

If D� � � or D� � �� just ignore the corresponding term in the minimal compu�
tation�

If D� � � and D� �� �� then we can choose �pqr to be the following value�

�pqr � min��� abs�
D�

D�

��

If D� � � and D� � � we can take any positive value for �pqr�
This concludes the proof of existence of �pqr� This proof was also made only

using axioms that are ful�lled by the �eld of rational numbers�
We could now replace the orientation predicate used in the previous section

by a new orientation predicate� noted pqr and de�ned in the following manner�

pqr �

������

xp yp �
xq yq �
xr yr �

������
� �

�

������

xp yp �
xq yq �
xr yr �

������
� � �

������

yp x
�
p � y�p �

yq x
�
q � y�q �

yr x
�
r � y�r �

������
� �

�

������

xp yp �
xq yq �
xr yr �

������
�

������

yp x
�
p � y�p �

yq x
�
q � y�q �

yr x
�
r � y�r �

������
� � �

������

xp x
�
p � y�p �

xq x
�
q � y�q �

xr x
�
r � y�r �

������
� �

Note that the �pqr are never computed� we only show their existence to show that
the computation of these two determinants is enough to predict the orientations
for a general position that is arbitrarily close to the input data� It is not necessary
to return a convex hull composed of perturbed points� the points from the input
data are correct� since they can be shown to be arbitrarily closed to a legitimate
convex hull �we have not done this proof yet��

It is also interesting that the convex hull computation done in this manner
returns exactly the same result as the computation described in previous section
if the input data is not degenerated� If the input data is degenerated and the
convex hulls are required to contain no aligned points� a trivial traversal of the list
of points may be needed to remove the useless points� The cost of this traversal
should be proportional to the total cost�

It is remarkable that testing the sign of the D� can be done by simply com�
bining the signs of the terms �yp	yq�� �yq	yr�� �yr	yp�� according to equations
��� and ���� In fact� D� is strictly positive if and only if the line carrying the three
points is not horizontal� the point r is outside the segment pq� and the points
p and q are ordered in their second coordinate� similarly for D�� As a result�



testing the sign of D� and D� is equivalent to testing whether r� is outside the
segment pq and whether p and q are ordered lexicographically �using the second

coordinate �rst�� Thus� we have a program that computes �pqr� without com�
puting the larger determinants above� This algebraic reasoning brings an elegant
justi�cation to the use of segment predicates and lexical ordering in combination
with traditional orientation�

� Conclusion

The development of certi�ed algorithms is well suited to domains where it is easy
to have a mathematical formulation of the data and the speci�cations� Compu�
tational geometry is one of these domains� Euclidean geometry makes it easy
to connect the various notions encountered in computational geometry to real
analysis and algebra� In our experiment� the presence of a decision procedure for
ring equalities has been instrumental� although it has also been quite annoying
that this decision procedure was not complete� at least for the version we used�
This decision procedure is the Ring tactic� a tactic based on a re�ective approach
��
�

The problem of numeric computation also deserves some thoughts� We have
performed our proofs with an �axiomatized� set of numbers for the coordinates�
The axioms we have taken were carefully chosen to make them accurate as a
representation of computer numbers used in exact computation� These numbers
live in an archimedian �eld� The model for the �eld that is needed to express
the correction of the algorithm is the �eld of rational numbers� However� the
algorithm does not actually use numbers in the whole �eld� It only computes
a polynomial expression of degree two� so that if the numbers describing input
data are bounded� the set of numbers needed for the algorithm to work is much
smaller� It could be useful to express the di�erence between the �concrete� arith�
metic used in the algorithm� and the �abstract� arithmetic used in the proof�
This is actually the spirit of the work of Laurent th�ry and his colleagues in a
project to study computer arithmetics�

Perturbation methods are used in other parts of computational geometry�
for instance for Delaunay triangulation� where degenerate positions occur when
four points are cocyclic� They seem very well adapted as a method to make
algorithms robust to degeneracy without changing their structure� Still� it seems
a rare and lucky occurrence that perturbations are used in this paper to justify
an algorithm that actually does not use any perturbation� since it only boils
down to an extension of the orientation predicate with a segment predicate and
lexical ordering�

We actually heard about the perturbation method after having done most of
the proofs for the algorithm based on the extended axioms combining the tradi�
tional orientation and segment predicates� Still both developments are useful in
their own right� since the �rst development can be tuned to include or exclude co�
linear points from the convex hull at will� For the second method� we can predict
that colinear points on edges of the convex hull that grow lexicographically will



be included in the convex hull� while colinear points on edges that decrease lex�
icographically will not be included� This information that we have not formally
proved at the time of writing this article� may be used when writing a second
pass that removes colinear points� but it won�t be easy to recover colinear points
that have already been discarded by the convex hull computation�

We would like to acknowledge the help of several researchers from the com�
putational geometry group at INRIA Sophia Antipolis� In particular� Mariette
Yvinec pointed us to Knuth�s work on axioms and Olivier Devillers described us
the perturbation method�
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