N
N

N

HAL

open science

A sequent calculus with dependent types for classical
arithmetic

Etienne Miquey

» To cite this version:

Etienne Miquey. A sequent calculus with dependent types for classical arithmetic. 2018.

01703526v1

HAL Id: hal-01703526
https://inria.hal.science/hal-01703526v1

Preprint submitted on 7 Feb 2018 (v1), last revised 23 May 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-

https://inria.hal.science/hal-01703526v1
https://hal.archives-ouvertes.fr

A sequent calculus with dependent types for classical arithmetic

Etienne Miquey
Equipe Galinette
INRIA, LS2N
Nantes, France
emiquey@inria.fr

Abstract

In a recent paper [11], Herbelin developed a calculus dPA® in which
constructive proofs for the axioms of countable and dependent
choices could be derived via the encoding of a proof of countable
universal quantification as a stream of it components. However, the
property of normalization (and therefore the one of soundness) was
only conjectured. The difficulty for the proof of normalization is due
to the simultaneous presence of dependent dependent types (for the
constructive part of the choice), of control operators (for classical
logic), of coinductive objects (to encode functions of type N — A
into streams (ag,ay, . . .)) and of lazy evaluation with sharing (for
these coinductive objects).

Building on previous works, we introduce in this paper a variant
of dPA® presented as a sequent calculus. On the one hand, we take
advantage of a variant of Krivine classical realizability we devel-
oped to prove the normalization of classical call-by-need [19]. On
the other hand, we benefit of dL. , a classical sequent calculus with
dependent types in which type safety is ensured using delimited
continuations together with a syntactic restriction [18]. By combin-
ing the techniques developed in these papers, we manage to define
a realizability interpretation a la Krivine of our calculus that allows
us to prove normalization and soundness.

Keywords 7?7

1 Introduction

1.1 Realizing ACy and DC in the presence of classical
logic

One the key features of Martin-L6f’s type theory is the dependent

sum type, which provides a strong existential elimination. In partic-

ular, it allows for a simple and constructive proof of the full axiom

of choice [16], given by:

ACs = AH.(Ax.wit (Hx),Ax.prf (Hx))
VxAEIyBP(x,y) - HfA*BVxAP(x,f(x))

where wit and prf are the first and second projections of a strong
existential quantifier.

We present here a continuation of Herbelin’s works [11], who
proposed a way of scaling up Martin-L6f proof to classical logic.
The first idea is to restrict the dependent sum type to the fragment
of negative-elimination-free proofs (NEF) in order to make it com-
putationally compatible with classical logic. The second idea is to
represent a countable universal quantification as an infinite conjunc-
tion. This allows to internalise into a formal system (called dPA®)
the realizability approach [2, 9] as a direct proofs-as-programs
interpretation.

Informally, let us imagine that given a proof H : YxN3yBP(x, 1),
we could create the infinite sequence Ho, = (H0,H1,...,Hn,...)

2018.

and select its n'P-element with some function nth. Then, one might
wish that:

AH.(An.wit (nth n Hs),An. prf (nth n Hy))

could stand for a proof for ACy. However, even if we were ef-
fectively able to build such a term, Ho, might still contain some
classical proof. Therefore two copies of H,, might end up being
different according to the contexts in which they are executed, and
thus return two different witnesses (which is known to lead to
logical inconsistencies [10]). This problem can be fixed by using a
shared version of Hu, that is to say:

AH.leta = Ho in (An.wit (nth n a),An.prf (nthna).

It only remains to formalize the intuition of He,, which is done
by means of a stream cofixjorn [(Hn, f(S(n)))] iterated on f with

parameter n, starting with 0:
ACy := AH.leta = cofix}n[(Hn, f(S(n)]
in (An.wit (nthna),An.prf(nthna).

Whereas the stream is, at level of formulas, an inhabitant of a
coinductively defined infinite conjunction vg(n(ﬂy PO,y) AX(n+
1)), we cannot afford to pre-evaluate each of its components, and we
thus have to use a lazy call-by-value evaluation discipline. However,
it still might be responsible for some non-terminating reductions,

all the more as classical proofs may contain backtrack.

1.2 Normalization of dPA®

In [11], the property of normalization (on which relies the one of
consistency) was only conjectured, and the proof sketch that was
given turned out to be hard to formalize properly. Our first attempt
to prove the normalization of dPA® was to derive a continuation-
passing style translation, but it is very hard to obtain for dPA® as
such. In addition to the difficulties caused by control operators and
co-fixpoints, the reduction system is defined in a natural-deduction
style with contextual rules where the contexts involved can be of
arbitrary depth. This kind of rules are, in general and especially in
this case, very difficult to translate faithfully through a continuation-
passing style translation.

Rather than directly proving the normalization of dPA®, we
choose to first give an alternative presentation of the system un-
der the form of a sequent calculus, which we call dLPA®. Indeed,
a sequent calculus presentation of a calculus is usually a good
intermediate step for CPS translations [8] in that it enforces a de-
composition of the reduction system into finer-grain rules. To this
hand, we first handled separately the difficulties to the definition of
such a calculus: on the one hand, we proved the normalization of
a calculus with control operators and lazy evaluation [19]; on the
other hand, we defined a classical sequent calculus with dependent
types [18]. By combining the techniques developed in these frame-
works, we finally manage to define dLPA®, which we present in
this paper and prove to be normalizing.

Etienne Miquey

NEF cn = {pnlen)

Closures l ==cr Stores T u=¢|1fa ;‘T el | tla = e] .
Commands c =={ple) Storables pr ==V | fixgi[polps] | cofix,! [p]
Proof terms pgu=alu@) | @, | (tp) | Ax.pliap| refl Contexts e == f|alfacr

| fixgylpops] | cofix) [p]| pa.c| ptp.cg Forcing f==014larcy | az.c2] | fi(ar,az).c
Proof values Vou=al (V)| (V,V) | (Ve,V) | Axp | Aa.p | refl contexts | ji(x,a).clt-elp-e]ji=c
Terms tbuz=x10]S(¢) | rec;y[to [ts] | Ax.t | tu|witp Delimited Cp = (PN"etb) | (pltp)
Terms values V; :=x | S™(0) | Ax.t continuations g, == ﬁa.Cﬁ)r | ,ﬂ[al.Cﬁ3 | az.c’]

| ﬁ(al,ag).cﬁ) |[1(x,a).cﬁ3

en == x| fifar.cy | az.cy] | fla.ent | fia1,az).cn | ji(x,a).cn)
PNsgN == al i(PN) | (pN-gN) | (EpN) | Axp | Aap [refl | Fixg, [pn [qn] | cofixy [pn] | px.en | ptp.cg,

Figure 1. The language of dLPA®

1.3 Realizability interpretation of classical call-by-need

In then call-by-need evaluation strategy, the substitution of variable
is delayed until knowing whether the argument is needed. To this
end, Ariola et. al. [1] proposed the X[lvr*]-calculus, a variant of
Curien-Herbelin’s Apujfi-calculus [6] in which substitution are stored
in an explicit environment. Thanks to Danvy’s methodology of
semantics artifacts [7], which consists in successively refining the
reduction system until getting context-free reduction rules!, they
obtain an untyped CPS translation for the z[lm*]c-calculus. By
pushing one step further this methodology, we showed in [19]
how to obtain a realizability interpretation a la Krivine for this
framework. The main idea, in contrast to usual models of Krivine
realizability [13], is that realizers are defined as pairs of a term and
a substitution. The adequacy of the interpretation directly provides
us with a proof of normalization for the calculus, and we shall follow
the same methodology here to prove the normalization of dLPA®.

1.4 A sequent calculus with dependent types

While sequent calculi are naturally tailored to smoothly support
CPS interpretations, there was no such presentation of a language
with dependent types. In addition to the problem of safely combin-
ing control operators and dependent types [10], the presentation of
a dependently typed language under the form of a sequent calculus
is a challenge in itself. In [18], we introduced such a system, called
dLg,, which is a call-by-value sequent calculus with classical control
and dependent types. In comparison with usual type systems, a list
of dependencies decorates typing derivations to ensure subject re-
duction. Besides, the soundness of the calculus is justified by means
of a continuation-passing style translation taking the dependencies
into account. The very definition of the translation enforces us to
use delimited continuations in the calculus to reduce dependently
typed terms. At the same time, this unveils the need for the syn-
tactic restriction of dependencies to the negative-elimination-free
fragment as in [11]. Additionally, we show how to relate our calcu-
lus to a similar system by Lepigre [15], whose consistency is proved
by means of a realizability interpretation. In this paper, we use
the same techniques, namely a list of dependencies and delimited
continuations, to ensure the soundness of dLPA®, and we follow
Lepigre’s interpretation of dependent types for the definition of
our realizability model.

IThat is to say reduction rules for an abstract machine for which only the term or the
context needs to be analyzed.

1.5 Contributions of the paper

The main contribution of this paper is the definition of dLPA?,
a sequent calculus with classical control, dependent types, induc-
tive and coinductive fixpoints and lazy evaluation made available
thanks to the presence of stores. This calculus can be seen as a
sound combination of the Z[lm*]—calculus [1, 19] and dLﬁ) [17]
extended with the expressive power of dPA® [11]. We prove the
properties of normalization and soundness thanks to a realizability
interpretation d la Krivine, which we obtain by applying Danvy’s
methodology of semantic artifacts. Incidentally, dLPA® provides us
with a direct proofs-as-programs interpretation of classical arith-
metic with dependent choice as in [11].

To save some space, we only give proof sketches, complete proofs
are to be found in appendices.

2 A sequent calculus with dependent types for
classical arithmetic
2.1 Syntax

The language of dLPA® is based on the syntax of dLg, [17], ex-
tended with the expressive power of dPA® [11] and with explicit
stores as in the I[IUT*]-calculus [1]. We stick to a stratified pre-
sentation of dependent types, that is to say that we syntactically
distinguish terms—that represent mathematical objects—{rom proof
terms—that represent mathematical proofs. In particular, types and
formulas are separated as well, corresponding to the same syntax
as dPA®’s formulas. Types are defined as finite types with the set of
natural numbers as the sole ground type, while formulas are induc-
tively built on atomic equalities of terms, by means of conjunctions,
disjunctions, first-order quantifications, dependent products and
co-inductive formulas:
Types T,U =
Formulas A,B :

N|T->U
T|L|t=u|AAB|AVB
| Ta:AB|VxT.A|3xT.A| vfcfA

The syntax of terms is identical to the one in dPA®, including
functions Ax.t and applications tu, as well as a recursion operator
r‘ec;y [t | ts], so that terms represent objects in arithmetic of finite
types. As for proof terms (and contexts, commands), they are now
defined with all the expressiveness of dPA®. Each constructor in
the syntax of formulas is reflected by a constructor in the syntax
of proofs and by the dual co-proof (i.e. destructor) in the syntax
of evaluation contexts. Amongst other things, the syntax includes

A sequent calculus with dependent types for classical arithmetic

Basic rules

QAx.plV; - eyt —

(¢ € NEF) (Aa.plq-eyr —
(q ¢ NEF) (Aa.plq - eyr —
(e # eﬁa) (pa.cleyr —

(Vja.ct’yr —

Delimited continuations

(if et — c1’)

PLVi/xller
(i (gliia-(pIPNle)r
(qliiapleyr

-cle)r — el
(pacleg)r — cleg/alr
B PID)e)r - pleye

ct[a == e]

[VI Call-by-value
crla=V]r

Elimination rules

(Mlilag.ct | az.coly)t — citla; :== V]
((V1,V2)lli(a1, az).c)t — crlar = V1][az := V2]
((Ve.V)lji(x,a).c)t — (c[t/x])r[a = V]
(refllj=.c)r — cr

(a fresh) (cofix;:; [plleyr — (ale)r[a:
(a fresh)(Fix," [po | pslle)r — (ale)r[a = Fix;" [po | ps]]

(a fresh) (i(p)leyr — (plia.(ii(a)le))r

(a1,az fresh) ((p1,p2)le)r — (p1liar(pzlfiaz-((a1,az)le)))r
(a fresh) ((Ve.p)leyr — (plial(Ve,a)le)r

Laziness

cofix,” [p]]

(Yo, (playr = {(t.p")a)7) Twit p]r —p T[t]
Ax.)Ve —p t[Vi/x]
rec‘,)cy [to | l’s] i to
S(u)

recyy ' [tolts] — p ts[u/x][recy,[to | ts]/y]

Lookup
(Vlayr[a == e]t’ = (V]e)r[a := e]r’
(alfHrla = V]' - (V]a)r[a = V]’
(b’ fresh) (alf)rla = cofix," [pllr’ — (plVe /x][b' bljiasal £)e')r[b’ = Ay.cofix] [p]]
(alfizla = fixg [po I pslle” = (poljiaLal fr")z
(b’ fresh) (alfirla = fixsz [po I pslle” — (pslt/x][b’/blliafal fz")r[b’ = fixix [po | ps]]
Terms
(ift —p t') Ttlr — T[t']t where:

Cel 1= (L 1p)le) | (Fixkd oo I psTle)
| ¢cofixL)[plle) | Axpl[1-)

T[] == C[11 T([Ju] | T[reck [to I £s]]

Figure 2. Reduction rules of dLPA®

pairs (t,p) where t is a term and p a proof, which inhabit the de-
pendent sum type Jx7.A; dual co-pairs fi(x,a).c which bind the
(term and proof) variables x and a in the command c; functions
Ax.p (and dual stacks ¢ - e where e is a context whose type might be
dependent in ¢) inhabiting the type VxT .A; functions Aa.p (and dual
stacks q - e, where e is a context whose type might be dependent
in ¢g) which inhabit the dependent product type Ila : A.B; a proof
term refl which is the proof of atomic equalities t = t and the
dual destructor fi=.c which allows to type the command ¢ modulo
an equality of terms; operators fix}, [po | ps] and cofi xix [p], as
in dPA?, for inductive and coinductive reasoning; delimited contin-
uations through proofs ufp..cyp and the context tp; a distinguished
context [] of type L, which allows us to reason ex-falso.

As in dLg , the syntax of NEF proofs, contexts and commands is
defined as a restriction of the previous syntax. Technically, they are
defined (modulo a-conversion) with only one distinguished context
variable x (and consequently only one binder y*.c) and without
stacks of the shape ¢ - e or g - e (to avoid applications). Intuitively,
one can understand NEF proofs as the proofs that cannot drop their
continuation®. The commands Ch within delimited continuations
are again defined as commands of the shape (pIIﬁ)) or formed by
a NEF proof and a context of the shape fa.cg,T, ﬁ[al.CﬁDIaz.c"b],
ﬁ(al,ag).ct~p or fi(x, a).Cﬁ),

2See [18] for further details

We adopt a call-by-value evaluation strategy except for fixpoint
operators® which are evaluated in a lazy way. To this purpose,
we use stores in the spirit of the I[lv‘r*] -calculus, which are thus
defined as lists of bindings of the shape [a := p] where p is a value
or a (co-)fixpoint, and of bindings of the shape [« := e] where e is
any context. We assume that each variable occurs at most once in
a store 7, therefore we reason up to a-reduction and we assume
the capability of generating fresh names. Apart from evaluation
contexts of the shape fia.c and co-variables «, all the contexts are
forcing contexts since they eagerly require a value to be reduced.
The resulting language is given in Figure 1.

2.2 Reduction rules

Regarding the reduction system of dLPA“, which is given in Fig-
ure 2, there is not much to say. The basic rules are those of the
call-by-value Ayji-calculus and of dLﬁO. The rules for delimited con-
tinuations are exactly the same as in dLﬁ), except that we have
to prevent tp from being caught and stored by a proof pa.c. We
thus distinguish two rules for commands of the shape (ua.c|e),
depending on whether e is of the shape eg, or not. In the former
case, we perform the substitution [eﬁ3 /a], which is linear since pa.c
is necessarily NEF. We should also mention in passing that we abuse
the syntax in every other rules, since e should actually refer to e
3To highlight the duality between inductive and coinductive fixpoints, we evaluate
both in a lazy way. Even though this is not indispensable for inductive fixpoints, we

find this approach more natural in that we can treat both in a similar way in the
small-step reduction system and thus through the realizability interpretation.

Etienne Miquey

T,a1: A [C1

T,az : Ay [C2

T+ p: Alt/x]

Fre+°t¢:T

(V1)

I'x:T,a:Av% ¢

(30

T+ ﬁ[al.cl | az.cz] : (A1 \/Az)l

Lo (t,p): IxT.A

[% fi(x,a).c: (AxT.A)L

Ix:Trop: A

't t:T T+

Alt/x]*

9 t:N

(vVr)

Lo Axp:VxT A

THO t-e: (¥xT.A)L

(Y1)

Tr9p:A THoe:

Alu/t]

refl

(=1)

Trorefl:t=t

T+ fi=(pley : (t =u)t

Ta:A+° p:B

9q:A T+%e:B[g/at

if g ¢ NEF thena ¢ A

T'+? dap:1a: AB

(=r)

(=)
T+% g-e: (Mla: A.B)L !

F'vrp:A A=B

rvop:B "

€L

rro]t

r+°

e: ALt A=8B

THOt:N T+ pg:

Al0/x] T,x:T,a:Ar° ps: A[S(x)/x] (

(=)
T+ e: BL !

I+

fixgy[po | ps] : Alt/x]

Trot:T T,f:T—->Nx:T,b:Vyl.f(y) =0+ p: A f positive in A

I'+% cofix

pulPli Ve A

(cofix)

Regular types
Trop:A Troe:BL o(A) = o(B) (con LI+ ¢ T+9 7:(I";07) } Lo 7:(I";07) F,F’r‘”’/p:A()
T,
T+ (ple) o Tker @ T'+9 tla:=p]: ([V,a: A;o'{alp}) ’
(a:A)eT (a:AY)eT Fa: AL o ¢ T r:(T;07) T, 99 ¢ AL
Troa a®™) Trog. 4L @ - " - "w AL gn
T+t%a:A I+t a:A T+ pa.c: A Tte tla:=e]: (I",a: A";07)
Ia:Ar% cr THo p1: A l"l—”pzzB() Iay:A,a2: Ay +% ¢ D) THo p: A; W)
e Ar ~ v,
T+ jia.ct : AL T+ (p1,p2) :AAB T+ ji(a,az).c : (A] A Ag)L ! TH 4(p) : A1 V Ay

Dependent mode

T +y cm,ao"

e r: (T

/; UI)

ILI'+9p:A T,ip:BLT rge: AL,

a{-Ip}

T, u) AL Fd €450

—————— (®
T'+° ytp.cti3 : (@)

T,a:Aby ctbr'; olalpn}

T'ky ﬁa.c‘ﬁ)r AL o pN)

(f1a)

'ty CyT0

o(A) =o(B

(la)

) I

aj : Aj Fd C%J;O'{

- o (Cutq)
Itp: BT kg (ple); o

ti(ai)lpn}) Vi€ (1,2}

Iip: AL T+, tp: BY;

I'x:T,a:Avry

)
al-lp}

af{(x,a)lpn}

C

Ty /](x,a).c

ER)

(HxTA)L {lpN}

[kq jifar. C1 | az.c2] (A1 Vv Ag)*

(vd)
;o{-lpn}

F,a1 Ay,az 1 Ay g cgso{(ar,a2)Ipn}

(A1 A Aol pN)

T Fd ﬂ((ll,az).Cﬁ)

d

A7)

(A7

Terms

r

(0)

r+?t:N

(8)

(x:7T) €

T,x:Ur%t:T
(Axy)

T 0: N

I'v°t:U—->T T+°u:U
v tu:T

(@)

T+ S(f): N

'+ x

Trot:N TrOt:U T,x:Nyy:U+ tg

U

't Ax.t:U > T

[+ p:3AxT. A pNEF

T'+° rec

Lyltolts]: U

(rec)
FI—"witp:T

(o))

(wit)

Figure 3. Type system for dLPA®

or ety (or the reduction of delimited continuations would be stuck).
Elimination rules correspond to commands where the proof is a
constructor (say of pairs) applied to values, and where the context
is the matching destructor. Call-by-value rules correspond to (5)
rule of Wadler’s sequent calculus [22]. The next rules express the
fact that (co-)fixpoints are lazily stored, and reduced only if their
value is eagerly demanded by a forcing context. Lastly, terms are
reduced according to the usual f-reduction, with the operator rec
computing with the usual recursion rules. It is worth noting that
the stratified presentation allows to define the reduction of terms
as external: within proofs and contexts, terms are reduced in place.
Consequently, as in dL. the very same happen for NEF proofs em-
bedded within terms. Computationally speaking, this corresponds
indeed to the intuition that terms are reduced on an external device.

2.3 Typing rules

As often in Martin-Lof’s intensional type theory, formulas are con-
sidered up to equational theory on terms. We denote by A = B the
reflexive-transitive-symmetric closure of the relation » induced by
the reduction of terms and NEF proofs as follows:

Alt']
Alq]

whenever t —g t/

> whenever Va ({pla) — {qla))
in addition to the reduction rules for equality and for coinductive

formulas:

S5(t) = () >

f A

=u

[t/X]

=S(t) » L

S(H)=0> L A/f y) =

A sequent calculus with dependent types for classical arithmetic

We work with one-sided sequents? where typing contexts are
defined by:

LT == ¢e|0x:T|T,a:A|Ta: ALY |T,(p: AL

using the notation o : AL for an assumption of the refutation of A.
This allows us to mix hypotheses over terms, proofs and contexts
while keeping track of the order in which they are added (which is
necessary because of the dependencies). We assume that a variable
occurs at most once in a typing context.

We define nine syntactic kinds of typing judgments: six in regular
mode, that we write I' +¢], and three more for the dependent mode,
that we write I' 4 J; 0. In each case, o is a list of dependencies—
we explain the presence of a list of dependencies in each case
thereafter—, which are defined from the following grammar:

o==¢|olplq}

The substitution on formulas according to a list of dependencies o
is defined by:

o(Alg/p)) if q € nEF

£(A) = (A} a(A) otherwise

afplg}(A) = {
Because the language of proof terms now include constructors for
pairs, injections, etc, the notation A[q/p] does not refer to usual
substitutions properly speaking: p can be a pattern (for instance
(a1,az2)) and not only a variable.

We shall attract the reader’s attention to the fact that, unlike in
dLﬁj, all typing judgments include a list of dependencies. As in the

z[lw*]—calculus, when a proof or a context is caught by a binder,
say V and jia, the substitution [V/a] is not performed but rather
put in the store: z[a := V]. This forces us to slightly change the
rules from dLﬁD. Indeed, consider for instance the reduction of a

dependent function Aa.p (of type Ila : A.B) applied to a stack V - e:
QaplV - eyt — (uip(Vija{plD)le)r
= (up.(plp)le)tla = V] = (ple)r[a := V]

In dLﬁJ, the reduced command is (p[V/a]|e), which is typed with
the (Cut) rule over the formula B[V/a]. In the present case, p
still contains the variable a, whence his type is still B[a], whereas
the type of e is B[V]. We thus need to compensate the missing
substitution.

We are mostly left with two choices. Either we mimic the substi-
tution in the type system, which would amount to the following
typing rule:

ILT'Fr(c) Trr: T’

T'ker
tla:=pN](c) = t(c[pn/al) (p € NEF)
rla = pl(c) 2 7(c) (p ¢ nuF)

Or we type stores in the spirit of the Z[lm*] -calculus, and we carry
along the derivations all the bindings susceptible to be used in
types, which constitutes again a list of dependencies.

The former solution has the advantage of solving the problem
before typing the command, but it has the flaw of performing
computations which would not occur in the reduction system. For
instance, the substitution 7 (c) could duplicate co-fixpoints (and their
typing derivations), which would never happen in the calculus. That

where:
tla :=e](c) = (c)

4This is essentially an aesthetic choice, which we hope to ease the readability of
sequents. On top of that, it avoids us to deal with unified contexts I' U A (see ??) as we
would have done with two-sided sequents.

SWe refer the reader to [18] for detailed explanations on this rule.

is the reason why we privilege the other solution, which is closer to
the calculus in our opinion. Yet, it has the inconvenient that if forces
us to carry a list of dependencies even in regular mode. Since this
list is fixed (it does not evolve in the derivation except when stores
occur), we differentiate the denotation of regular typing judgments,
written I' 9 J, from the one judgments in dependent mode, which
we write T 4 J; o to highlight that o grows along derivations. The
type system we obtain is given in Figure 3.

2.4 Subject reduction

It only remains to prove that typing is preserved along reduction.
As for the I[lm*]-calculus, the proof is simplified by the fact that
substitutions are not performed (except for terms), which keeps us
from proving the safety of the corresponding substitutions. Yet, we
first need to prove some technical lemmas about dependencies. To
this aim, we define a relation 0 = ¢’ between lists of dependencies,
which expresses the fact that any typing derivation obtained with
o could be obtained as well as with o’

o0 2 o(A)=0(B)=d'(A) =’ (B) (for any A, B)
Proposition 2.1 (Dependencies weakening). Ifo,o’ are two depen-
dencies list such that o = o’, then any derivation using o can be one
using o’ instead. In other words, the following rules are admissible:

r+?J
I

(w) Tratio
Ty J;07

We also need a simple lemma about stores to simplify the proof
of subject reduction:

Lemma 2.2. The following rule is admissible:

Tr7 19: (To;00) T,To F7% 7y : (T1; 01) (1)
I'+9 o171 : (Tp,I1; 00,01)

Proof. By induction on the structure of 1. O

Lemma 2.3 (Safe term substitution). If T +° t : T then for any
conclusion] for typing proofs, contexts, terms, etc; the following holds:
LIfFT,x:T.Iv° J then T,T'[t/x] volt/X] Jlt/x].
2 If U,x : T,T' vq J;0 then T,T'[t/x] g J[t/x]);o[t/x].

Proof. By induction on typing rules. O

Theorem 2.4 (Subject reduction). For any context ' and any clo-
sures ct and ¢’t’ such that ct — ¢’t’, we have:

LIfT+crthenT +c't’. 2IfTrgcer;ethenT kg c't/se.

Proof. The proof follows the usual proof of subject reduction, by
induction on the reduction ¢t — ¢’z’. The complete proof is given
in Appendix A. O

Etienne Miquey

Trp:3IxT.A T,x:T,a:Ar q: B[(x,a)/e] péNEF:oéB(d Y F'rp:L Ta:Av q:Bla/e] peNEF:>o¢B(lt)
1
T+ dest p as(x,a) in q: B[p/e] ° F»—exfalsop:B(I'+leta=ping: B[p/e] ¢
F»—p:Al/\Az F,a1:Al,aZ:Agl—q:B[(al,az)/O] pﬁNEFﬁO%B ka:Al/\Az F,Of:AJ'L"P5A
N N (split) —— (A} m (throw)
I+ split p as(a1,az2) in q: B[p/e] T'Foi(p):Ai T,a: A"+ throwap: B
IF'rp:A1VAy T,a;:A;+q:Bl(a)i/e] fori=1,2 p¢NEF= ¢ B Ta:Alrp:A Fl—p:HxT.A(x)
(case) ——~(catch) ——————— (prf)
T + case p of [a1.p1 | az.p2] : B[p/e] T'Fcatchgp: A T'+prf p:A(wit p)

Figure 4. Typing rules of dPA®

2.5 Natural deduction as macros

We can recover the usual proof terms for elimination rules in natural
deduction systems, and in particular the ones from dPA®, by defin-
ing them as macros in our language. The definitions are straight-
forward, using delimited continuations for let ... in and the con-
structors over NEF proofs which might be dependently typed:

leta=ping

split p as(aj,az) in q
case p of [a1.p1 | az.p2]
dest p as(a,x) in g
prf p

subst pq = pa.(plj-=

Lqla))

pap-(pliaglap))

pap (pliar,az) {qlap))
pap-plilar{prlap)laz-(p2lap)])
pap(pli(x. a)-qlap))
po-(plji(x,a)<alto))

catchg p £ pa.(pla)

L (e | I 1

exfalso p = pa.{pl[]) throw a p = u_.(pla)

where a), = tp if p is NEF and @) = a otherwise.

Proposition 2.5 (Natural deduction). The typing rules from dPA®,
given in Figure 4, are admissible.

Proof. Straightforward derivations, see the Appendix B for the cases
prf p g and subst pgq. O

One can even check that the reduction rules in dLPA® for these
proofs almost mimic the ones of dPA®. To be more precise, the
rules of dLPA® do not allow to simulate each rule of dPA%, due
to the head-reduction strategy, amongst other things. Nonetheless,
up to a few details the reduction of a command in dLPA® follows
one particular reduction path of the corresponding proof in dPA®,
or in other word, one reduction strategy.

The main result is that using the macros, the same proof terms
are suitable for countable and dependent choice [11]. We do not
state it here, but following the approach of [11], we could also
extend dLPA® to obtain a proof for the axiom of bar induction.

Theorem 2.6 (Countable choice [11]). We have:

ACy = AH.leta= cofixgn[(Hn,b(S(n))]
in(An.wit (nthy a),An.prf (nthy, a)
VxNHyTP(x,y) — HfN_’TVxNP(x,f(x))

where nthy a := m (fix} [a] m2(c)]).
Proof. See Figure 6 in the Appendix C.

Theorem 2.7 (Dependent choice [11]). We have:

DC = AH.Axp.let a = (xo,cofixgn[dn])fsix
in (An.wit (nthy a), (refl,An.my (prf (prf (nthy, a)))))
vxT 3yT P(x,y) —
Vxl3f € T.(£(0) = xo A VR P(f(n), f(s(n))))

where d,, := dest Hn as (y,c) in(y,(c,by)))
and nthpa:= fix; d[a | (wit (prf d),m(prf (prf(d))))].

3 Small-step calculus

As for the I[lm*]—calculus [1, 19], we follow here Danvy’s method-
ology of semantic artifacts [1, 7] to obtain a realizability interpre-
tation. We first decompose the reduction system of dLPA® into
small-step reduction rules, that we denote by ~s. This requires
a refinement and an extension of the syntax, that we shall now
present. To keep us from boring the reader stiff with new (huge)
tables for the syntax, typing rules and so forth, we will introduce
them step by step. We hope it will help the reader to convince
herself of the necessity and of the somewhat naturality of these
extensions.

3.1 Values

First of all, we need to refine the syntax to distinguish between
strong and weak values in the syntax of proof terms. As in the
z[lm*]—calculus, this refinement is induced by the computational
behavior of the calculus: weak values are the ones which are stored
by fi binders, but which are not values enough to be eliminated
in front of a forcing context, that is to say variables. Indeed, if
we observe the reduction system, we see that in front of a forcing
context f, a variable leads a search through the store for a “stronger”
value, which could incidentally provoke the evaluation of some
fixpoints. On the other hand, strong values are the ones which can
be reduced in front of the matching forcing context, that is to say
functions, refl, pairs of (weak) values, injections or dependent
pairs:

Weak values
Strong values

Vi=alv

vu=u(V) | (V,V) | (Ve,V) | Axp | Aa.p | refl
This allows us to distinguish commands of the shape (v| f)z, where
the forcing context (and next the strong value) are examined to
determine whether the command reduces or not; from commands
of the shape (a| f)r where the focus is put on the variable a, which
leads to a lookup for the associated proof in the store.

3.2 Terms

Next, we need to explicit the reduction of terms. To this purpose,
we include a machinery to evaluate terms in a way which resemble
the evaluation of proofs. In particular, we define new commands
which we write (t|) where t is a term and r is a context for terms
(or co-term). Co-terms are either of the shape fix.c or stacks ot
the shape u - 7. These constructions are the usual ones of the Auji-
calculus (which are also the ones for proofs). We also extend the
definitions of commands with delimited continuations to include

A sequent calculus with dependent types for classical arithmetic

the corresponding commands for terms:

Commands
Co-terms

c == {pley | (tlm) | cg == [(tlmg)
mu=t-m|fix.c Ty u=1- g | ix.cg

We give typing rules for these new constructions, which are the
usual rules for typing contexts in the Apjfi-calculus:

F+t:T Trx:UL c:(lx:T)
— =0 —— (x)
T+rt-n:(T—>U) Trjxce:T
T+ ¢t:T TrO T
(cuty)

I+ (tlm)
It is worth noting that the syntax as well as the typing and reduc-
tion rules for terms now match exactly the ones for proofs®. In
other words, with these definitions, we could abandon the stratified
presentation without any trouble, since reduction rules for terms
will naturally collapse to the ones for proofs.

3.3 Co-delimited continuations

Finally, in order to maintain typability when reducing dependent
pairs of the strong existential type, we need to add what we call
co-delimited continuations. As observed in [18], the CPS translation
of pairs (¢,p) in dLy, is not the expected one, reflecting the need
for a special reduction rule. Indeed, consider such a pair of type
HxT.A, the standard way of reducing it would be a rule like:

((Et.plleyt ~os (tljix (plaal(x,a)le)))r

but such a rule does not satisfy subject reduction. Consider indeed
a typing derivation for the left-hand side command, when typing
the pair (t,p), p is of type A[t]. On the command on the right-
hand side, the variable a will then also be of type A[t], while it
should be of type A[x] for the pair (x,a) to be typed. We thus need
to compensate this mismatching of types, by reducing ¢ within a
context where a is not linked to p but to a co-reset tp (dually to
reset 1p), whose type can be changed from A[x] to A[t] thanks to a
list of dependencies:

((t.p)lleyp s (pliatp-(tljix(plial(x,a)le))),T
We thus equip the language with new contexts ﬂﬁ:).cﬁ), which we

call co-shifts, and where C is a command whose last cut is of

the shape (tp|e). This corresponds formally to the following syn-
tactic sets, which are dual to the ones introduced for delimited
continuations:

Contexts e = ﬂtb-cﬁ,
Co-delimited ¢y == (onleg) | (tlrg) | (Bole)
. . [. ’
continuations ey © /fa-cm | Il[al-c?) | az-cm]
| y(al,ag).ctvo | /1(x,a).ctiJ
Mg u= by | fix.ce,
NEF eN u= - |ﬁm'cﬁ3

This might seem to be a heavy addition to the language, but we insist
on the fact that these artifacts are merely the dual constructions
of delimited continuations that we introduced in dLy,, with a very
similar intuition. In particular, it might be helpful for the reader to
think of the fact that we introduced delimited continuations for type
safety of the evaluation of dependent products in Ila : A.B (which
naturally extends to the case VxT.A). Therefore, to maintain type

®Except for substitutions of terms, which we could store as well.

safety of dependent sums in 3xT.A, we need to introduce the dual
constructions of co-delimited continuations. We also give typing
rules to these constructions, which are dual to the typing rules for
delimited-continuations:

r,‘{':O:AI-dCﬁ);O' N I[L["+% e: AL o(A) = o(B)

s (i®) - 5 ()
T+ fitp.cg, : A* T,tp: BT kg (tple);o

Note that we also need to extend the definition of list of dependen-
cies so as to include bindings of the shape {x|t} for terms, and that
we have to give the corresponding typing rules to type commands
of terms in dependent mode:

c: (L,x: T;ofx|t}) II; TI,tp:BI’ l—dn:Al;a{-lt}
T kg jix.c: T of|t) It :B,I ry (t|n);0
whereIT; 2 T,T/ +% ¢t : T.
The small-step reduction system is given in Appendix D. The

rules are written ¢,7 ~w ¢/’ where the annotation 1,p on com-
mands are indices (i.e. ¢,p,e,V, f,t,7,V;) indicating which part of

(Curt)

the command is in control. As in the A[;,;+]-calculus, we observe
an alternation of steps descending from p to f for proofs and from
t to V; for terms. The descent for proofs can be divided in two
main phases. During the first phase, from p to e we observe the
call-by-value process, which extracts values from proofs, opening
recursively the constructors and computing values. In the second
phase, the core computation takes place from V to f, with the de-
struction of constructors and the application of function to their
arguments. The laziness corresponds precisely to a skip of the first
phase, waiting to possibly reach the second phase before actually
going through the first one.
We briefly state the important properties of this system.

Proposition 3.1 (Subject reduction). The small-step reduction rules
satisfy subject reduction.

Proof. The proof is again an induction on v, see Appendix D. O

It is direct to check that the small-step reduction system simu-
lates the big-step one, and in particular that it preserves the nor-
malization :

Proposition 3.2. If a closure ct normalizes for the reduction ~,
then it normalizes for —.

Proof. By contraposition, see Appendix D. O

4 Normalization of dLPA®
4.1 A realizability interpretation of dLPA®

We shall now present the realizability interpretation of dLPA®,
which will finally give us a proof of its normalization. Here again,
the interpretation combines ideas of the interpretations for the

Al1vr«]-calculus [19] and for dLg, through the embedding in Lepi-

gre’s calculus [15, 18]. Namely, as for the I[IUT*]—calulus, formulas
will be interpreted by sets of proofs-in-store of the shape (p|7), and
the orthogonality will be defined between proofs-in-store (p|7) and
contexts-in-store (e|z”) such that the stores 7 an 7’ are compatible.

We recall the main definition necessary to the realizability inter-
pretation:

Definition 4.1 (Proofs-in-store). We call closed proof-in-store (resp.
closed context-in-store, closed term-in-store, etc) the combination of
aproof p (resp. context e, term t, etc) with a closed store 7 such that

FV(p) € dom(r). We use the notation (p|r) to denote such a pair.
In addition, we denote by A, (resp. A, etc.) the set of all proofs
and by Af (resp. Ag, etc.) the set of all proofs-in-store.

We denote the sets of closed closures by Cp and we identify (c|7)
with the closure ¢t when c is closed in 7.

We now recall the notion of compatible stores [19], which allows
us to define an orthogonality relation between proofs- and contexts-
in-store.

Definition 4.2 (Compatible stores and union). Let 7 and ¢’ be
stores, we say that:

o they are independent and note t#7’ if dom(r) N dom(z”) = 0.

e they are compatible and note 7 o 7’ if for all variables a (resp.
co-variables «) present in both stores: a € dom(r) N dom(z”);
the corresponding proofs (resp. contexts) in 7 and 7’ coin-
cide.

e 7’ is an extension of 7 and we write 7 < 7’ whenever 7 ¢ 7’
and dom(zr) € dom(z’).

e 77/ is the compatible union of compatible closed stores 7 and
/.1t is defined as 77’ £ join(z,7’), which itself given by:

join(rola = plr1,7jla = plr]) = wo7jla = pljoin(ry, 7))

join(zo[a = e]r1,7j[a := e]t]) £ ror][a = eljoin(ry, 7))

join(zo,75) = 1074

11> 11> 1l

where ro#7;.

The next lemma (which follows from the previous definition)
states the main property we will use about union of compatible
stores.

Lemma 4.3. Ifz and t’ are two compatible stores, then r < T’ and
t/ < rt’. Besides, if T is of the form to[x := t]r1, then tT’ is of the
formTo[x := t]Ty withty <79 and 11 < 71.

We can now define the notion of pole, which has to satisfy an
extra condition due to the presence of delimited continuations

Definition 4.4 (Pole). A subset 1L € Cy is said to be saturated or
closed by anti-reduction whenever for all (c|z), (¢’|t") € Cy, we have

(" ed) A (et > 't') = (cr e 1)

It is said to be closed by store extension if whenever c7 is in 1L, for
any store 7’ extending 7, ¢’ is also in LL:

(cted) A(r<t’) = (cr’ € L)

It is said to be closed under delimited continuations if whenever
cle/tp]r (resp. c[V/tp]7) is in AL, then (utp.c|e)r (resp .V |itp.c)7)
belongs to LL:

(c[e/tp]r € 1) = ((utp.cle)r € 1)

(ClV/®lr e L) = (VIjif.or e 1)
A pole is defined as any subset of Cy that is closed by anti-reduction,
by store extension and under delimited continuations.

We verify that the set of normalizing command is indeed a pole:

Proposition 4.5. The set .|| = {ct € Cy : c7r normalizes} is a

pole.
Proof. See Appendix E. O

We finally recall the definition of the orthogonality relation with
respect to a pole, which is identical to the one for the A4~
calculus:

Etienne Miquey

Definition 4.6 (Orthogonality). Given a pole L, we say that a
proof-in-store (p|r) is orthogonal to a context-in-store (e|r”) and
write (p|r)L(e|r’) if 7 and 7" are compatible and (pIIe)F € .
The orthogonality between terms and coterms is defined identically.

We are now equipped to define the realizability interpretation
of dLPA®. Firstly, in order to simplify the treatment of coinductive
formulas, we extend the language of formulas with second-order
variables X,Y,... and we replace v}xA by v)t(xA[X(y)/f(y) =0].

The typing rule for co-fixpoint operators then becomes:
T+ t:T Tx:T.b:VylX(y)+"p:A X ¢ FV(T)
Lt .yt
I'+7 cofixy [p]: vy, A

(cofix)

where X has to be positive in A.

Secondly, as in the interpretation of dLﬁ) through Lepigre’s cal-
culus, we introduce two new predicates, p € A for NEF proofs
and t € T for terms. This allows us to decompose the dependent
products and sums into:

VxT A2 Vx.(x e T - A)
WITALAx(x e T - A)

la:AB%A— B (a ¢ FV(B))
Ia: AB=VYa(ac A— B) (otw.)

This corresponds to the language of formulas and types defined by:

Types T.U == N|T->U|teT
Formulas A,B T|L|X(#)|t=u|AAB|AVB
| Vx.A|3dx.A|Va.A| v)t(xAIaeA

and to the following inference rules:

T'+t9v:A ag¢FV(T) I'+% e:Alg/a] qNEF

7

v

'+ v:Va.A T+ e: (Va. A
T2 v:A x ¢ FV() v) T+ e: Alt/x] (V)
T+ v:Vx.A ’ THoe: (VxA)L !
T+ v Alt/x] @ F'rt9e:A x¢FV(D))
Fr90v:3Ix.A 7 I+ e: (Ax. AL !
't p: A pNEF [+ e: Al P
——— () 1 (&)
Tro9p:peA T'rtoe:(qeA)
o o .7l
M(ED B L S el m (€))
F+%t:teT It z:(teT)

These rules are exactly the same as in Lepigre’s calculus [15] up to
our stratified presentation in a sequent calculus fashion and modulo
our syntactic restriction to NEF proofs instead of his semantical
restriction. It is a straightforward verification to check that the
typability is maintained through the decomposition of dependent
products and sums.

Another similarity with Lepigre’s realizability model is that
truth/falsity values will be closed under observational equivalence
of proofs and terms. To this purpose, for each store 7 we intro-
duce the relation =;, which we define as the reflexive-transitive-
symmetric closure of the relation ».:

t vr t' whenever At VY, ((t|r)r - (t'|7)r’
p »r ¢ whenever 3/ Vf ({(plfir — (qlf)r’)

All this being settled, it only remains to determine how to in-
terpret coinductive formulas. While it would be natural to try to
interpret them by fixpoints in the semantics, this poses difficulties
for the proof of adequacy. We will discuss this matter in the next
section, but as for now, we will give a simpler interpretation. We

A sequent calculus with dependent types for classical arithmetic

Il Lllp = AT .
Ty =0 =l =1 ar
IE@)y £ F(2) lp € Ally = {(V] f
I 3x.Allp = Meea, 1AL/x]llf IT — Blif 2 {(
IVx.Allr = (Neea, IIA[t/X]IIJL“)Lf A= Bliy £ (V- elr) :
IVa.Allf £ (Nrea, I1Alp/a] ||Lv>lf IT A Allp 2 {(i
Ve, Allp = Unen IIF} Nl lA1 A Azl = {(f
|Aly 2 lAI&Y lA1 V Azl = {
Al £ |A|£(e [Alp £ 11411,
[Nly, £ {(S"(0)l7).n € N} Tl = 141"
|t € Tly, 2 {(Vel7) € 1Ty, : Vi =) Tl £ |Al;*
IT = Uly, £ {(Ax.tlr) : VVit',t 07" A (V7)) € [Tly, =

(t[Vi/x]lz7’) € |UI¢}

{(g=clt):cr e L} ift=ru

otherwise

)€|A|V V= pitf
Vi -elr) : (VelT) € |t € Tly,

A (el7) € [IBlle}

(Vlr) € 1Aly A (€|T) € ||B||e}
(x,a).c|t) : VY1’ Vy € |T|V ,Ve |A|V,T<>T = c[Vi/x]rt’[a:= V] € 1}
(a1.a2).clz) : Y1/, V1 € |A4]T Vs € |A2|V,T<>_T = crt’[ar = Vi][az = Vo] € L)
([al.C1|az.Cz]|T) YtV e |Ai|‘T//,r<>T' = crr’[a; := V] € 1}

where:
e p € ST (resp. e,V,etc.) denotes (p|r) € S
(resp. (e|7), (V|r), etc.),
e Fis a function from A; to P(A;)/z,

Figure 5. Realizability interpretation for dLPA®

stick to the intuition that since cofix operators are lazily evalu-
ated, they actually are realizers of every finite approximation of
the (possibly infinite) coinductive formulas. Consider for instance
the case of a stream

strmp = coflx

L%, 6(S()]

of type v&xA(x) A X(S(x)). Such stream will produce on demand
any tuple (p0, (p1,...(pn,0O)...) where O denotes the fact that it
could be any term, in particular str’:1p. So that str p should be
a successful defender of the formula

(A0) A (A1) A ...(A(n) A T)...)

Since cofix operators only reduce when they are bound to a vari-
able in front of a forcing context, it suggests to interpret the coin-
ductive formula vg(xA(x) A X(S(x)) at level f as the union of all
the opponents to a finite approximation.

To this end, given a coinductive formula Vgng where X is posi-
tive in A, we define its finite approximations by:

Fj ,/X(©)]

Since f is positive in A, we have for any integer n and any term ¢
that ||F f"" Al S IFRY ntl| |f- We can finally define the interpretation

Fo 2T FRo 2 Ale/x](

of coinductive formulas by:

ViexAlly = () IFS lp
neN

The realizability interpretation of closed formulas and types is
defined in Figure 5 by induction on the structure of formulas at
level f, and by orthogonality at levels V,e,p. When S is a subset
of P(AITJ) (resp. P(AL),P(A}),P(AL)), we use the notation Str
(resp. SV, etc.) to denote its orthogonal set restricted to A} (resp.
Ay, ete):

SLr2((flo) e A% Yplr’) € S,r o’ = (plf)re’ € i)

At level f, closed formulas are interpreted by sets of strong
forcing contexts-in-store (f|7). As observed in the previous section,
these sets are besides closed under the relation =; along their
component 7, we thus denote them by P(A})/ET. Second-order

variables X,Y,... are then interpreted by functions from the set

of terms Ay to P(A) /=, and as usual for each such function F we

add a predicate symbol F in the language.

We shall now prove the adequacy of the interpretation with
respect to the type system. To this end, we need to recall a few
definitions and lemmas. Since stores only contain proof terms,
we need to define valuations for term variables in order to close
formulas’. These valuations are defined by the usual grammar:

pu=elplx - Vi]| p[X - F]

We denote by (p|7), (resp. pp, Ap) the proof-in-store (p|z) where all
the variables x € dom(p) (resp. X € dom(p)) have been substituted
by the corresponding term p(x) (resp. falsity value p(x)).

Definition 4.7. Given a closed store 7, a valuation p and a fixed
pole 1L, we say that the pair (z,p) realizes T, which we write®
(r,p) T, if:

1. forany (a: A) €T, (alr), € |[Aply

2. for any (a :A#) €T, (alt)p € 1Aplle

3. forany {alp} € 0, a = p

4. for any (x : T) € T, x € dom(p) and (p(x)|7) € [Ty,

We recall two key properties of the interpretation, whose proofs
are similar to the proofs for the corresponding statement in the
Allor%]-calculus [19]:

Lemma 4.8 (Store weakening). Let 7 and t’ be two stores such that
T < 1/, let T be a typing context, let AL be a pole and p a valuation.
The following statements hold:
Lot =1
2. If (plt)p € |Aplp for some closed proof-in-store (p|7), and
formula A, then (plz’), € |Aplp. The same holds for each
levele,E,V, f,t,m,V; of the interpretation.
3. If (r,p) v T then (t/,p) +T.

Proposition 4.9 (Monotonicity). For any closed formula A, any
type T and any given pole 1L, we have the following inclusions:

lAlv € |Alp lAllf < [1Alle ITlv, < ITl:

7 Alternatively, we could have modified the small-step reduction rules to include
substitutions of terms.
80nce again, we should formally write (7, p) Iy T but we will omit the annotation by
AL as often as possible.

Finally we can check that the interpretation is indeed defined
up to the relations =;:

Lemma 4.10. For any store t and any valuation p, the component
along t of the truth and falsity values defined in Figure 5 are closed
under the relation =;:

L if (flr)p € llAplly and Ap =¢ Bp, then (fI7), € |IBplly,

2. if(Vlt)p € |Aply, and Ap =¢ Bp, then (Vi|7), € |Bplo.
The same applies with |Aplp, 1Ay le, etc.

Proof. By induction on the structure of A, and the different levels
of interpretation. The different base cases (p € Ap,teT,t= u) are
direct since their components along 7 are defined modulo =7, the
other cases are trivial inductions. O

Proposition 4.11 (Adequacy). The typing rules are adequate with
respect to the realizability interpretation.

Proof. The proof'is done by induction on the typing derivation such
as given in the system extended with the small-step reduction ~.
See Appendix E. O

We can finally deduce from Propositions 4.5 and 4.11 that dLPA®
is normalizing and sound.

Theorem 4.12 (Normalization). If T + c, then c is normalizable.
Theorem 4.13 (Consistency). ¥4 pae p: L

Proof. Assume there is such a proof p, by adequacy (ple) is in | L[,
for any pole. Yet, the set AL = (is a valid pole, and with this pole,
| L]p = 0, which is absurd. |

5 Conclusion and perspectives

Conclusion At the end of the day, we met our main objective,
namely proving the soundness and the normalization of a language
which includes proof terms for dependent and countable choice
in a classical setting. This language, which we called dLPA®, pro-
vides us with the same computational features as dPA® but in a
sequent-calculus fashion. Interstingly, in our search for a proof of
normalization for dLPA®, we developed novel tools to study these
side-effects and dependent types in presence of classical logic. On
the one hand, we set out in [18] the difficulties related to the defini-
tion of a sequent calculus with dependent types. On the other hand,
building on [19], we developed a variant of Krivine realizability
adapted to a lazy calculus where delayed substitutions are stored
in an explicit environment. These computational features allows
dLPA® to internalize the realizability approach of [9?] as a direct
proofs-as-programs interpretation: both proof terms for countable
and dependent choices furnish a lazy witness for the ideal choice
function which is evaluated on demand. This interpretation is in
line with the slogan that with new programing principles—here the
lazy evaluation and the co-inductive objects—come new reasoning
principles—here the axioms ACy and DC.

Krivine’s interpretations of dependent choice The computa-
tional content we give to the axiom of dependent choice is pretty
different of Krivine’s usual realizer of the same [12]. Indeed, our
proof uses dependent types to get witnesses of existential formulas,
and represents the choice function through the lazily evaluated
stream of its values. In turn, Krivine realizes a statement which is
logically equivalent to the axiom of dependent choice thanks to the

10

Etienne Miquey

instruction quote, which injectively associates a natural number to
each closed A.-term. In a more recent work [14], Krivine proposes
a realizability model which has a bar-recursor and where the axiom
of dependent choice is realized using the bar-recursion. This realiz-
ability model satisfies the continuum hypothesis and many more
properties, in particular the real numbers have the same properties
as in the ground model. However, the very structure of this model,
where A is of cardinal N (in particular infinite streams of integer
are terms), makes it incompatible with the instruction quote.

It is clear that the three approaches are different in terms of
programming languages. Nonetheless, it could be interesting to
compare them from the point of view of the realizability models
they give rise to. In particular, our analysis of the interpretation
of co-inductive formulas® may suggest that the interest of lazy
co-fixpoints is precisely to approximate the limit situation where
A has infinite objects.

Reduction of the consistency of classical arithmetic in finite
types with dependent choice to the consistency of second-order
arithmetic The standard approach to the computational content
of classical dependent choice in the classical arithmetic in finite
types is via realizability as initiated by Spector [21] in the context of
Godel’s functional interpretation, and later adapted to the context of
modified realizability by Berardi et al [?]. In the different settings of
second-order arithmetic [13] and classical realizability, Krivine [12]
gives a realization of a formulation of dependent choice over sets
of numbers using side-effects (a clock or a quote operator).

In all these approaches, the correctness of the realizer, which
implies consistency of the system, is itself justified by a use at
the meta-level of a principle classically equivalent to dependent
choice (dependent choice itself in Krivine, bar induction or update
induction [3] in the case of Spector or Berardi et al).

Our approach is here different. Not only we directly interpret
proofs of dependent choice in classical arithmetic computationally
but we propose a path to a computational reduction of the consis-
tency of classical arithmetic in finite types (PA®) to the one of the
target language Fy. This system is an extension of system F, but it is
not clear whether its consistency is conservative of not over system
F. Ultimately, we would be interested in a computational reduction
of the consistency of dPA® or dLPA® to the one of PA2, that is to
the consistency of second-order arithmetic. While it is well-known
that DC is conservative over second-order arithmetic with full com-
prehension (see [20, Theorem VII.6.20]), it would nevertheless be
very interesting to have such a direct computational reduction. The
converse direction has been recently studied by Valentin Blot, who
presented in [4] a translation of System F into a simply-typed total
language with a variant of bar recursion.

Acknowledgments

The author warmly thanks Hugo Herbelin for numerous discussions
and attentive reading of this work during his PhD years.

References

[1] Zena M. Ariola, Paul Downen, Hugo Herbelin, Keiko Nakata, and Alexis Saurin.
2012. Classical Call-by-Need Sequent Calculi: The Unity of Semantic Artifacts. In
Functional and Logic Programming - 11th International Symposium, FLOPS 2012,
Kobe, Japan, May 23-25, 2012. Proceedings (Lecture Notes in Computer Science),
Tom Schrijvers and Peter Thiemann (Eds.). Springer, 32-46. https://doi.org/10.
1007/978-3-642-29822-6

9See also Appendix F.

https://doi.org/10.1007/978-3-642-29822-6
https://doi.org/10.1007/978-3-642-29822-6

A sequent calculus with dependent types for classical arithmetic

(2]

(3]

[4

[l

(5]
(6]

(71

8

(9]

(10]

(1]

[12]

[13]

[14]

[15

[16]

[17]
(18

[19]

[20]

[21]

[22]

Stefano Berardi, Marc Bezem, and Thierry Coquand. 1998. On the Computational
Content of the Axiom of Choice. . Symb. Log. 63, 2 (1998), 600-622. https:
//doi.org/10.2307/2586854

Ulrich Berger. 2004. A Computational Interpretation of Open Induction. In 19th
IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku,
Finland, Proceedings. IEEE Computer Society, 326.

Valentin Blot. 2017. An interpretation of system F through bar recursion. In LICS
2017, Reijkavik, Iceland.

P. Cousot and R. Cousot. 1979. Constructive Versions of Tarski’s Fixed Point
Theorems. Pacific J. Math. 81, 1 (1979), 43-57.

Pierre-Louis Curien and Hugo Herbelin. 2000. The duality of computation. In
Proceedings of ICFP 2000 (SIGPLAN Notices 35(9)). ACM, 233-243. https://doi.org/
10.1145/351240.351262

Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. 2010. Defunctionalized
Interpreters for Call-by-Need Evaluation. Springer Berlin Heidelberg, Berlin,
Heidelberg, 240-256. https://doi.org/10.1007/978-3-642-12251-4_18

Paul Downen, Luke Maurer, Zena M. Ariola, and Simon Peyte Jones. 2016. Sequent
calculus as a compiler intermediate language. In ICFP 2016. http://research.
microsoft.com/en-us/um/people/simonpj/papers/sequent-core/scfp_ext.pdf
Martin H. Escard6 and Paulo Oliva. 2014. Bar Recursion and Products of Selection
Functions. CoRR abs/1407.7046 (2014). http://arxiv.org/abs/1407.7046

Hugo Herbelin. 2005. On the Degeneracy of Sigma-Types in Presence of Compu-
tational Classical Logic. In Typed Lambda Calculi and Applications, 7th Interna-
tional Conference, TLCA 2005, Nara, Japan, April 21-23, 2005, Proceedings (Lecture
Notes in Computer Science), Pawel Urzyczyn (Ed.), Vol. 3461. Springer, 209-220.
https://doi.org/10.1007/11417170_16

Hugo Herbelin. 2012. A Constructive Proof of Dependent Choice, Compatible
with Classical Logic. In Proceedings of the 27th Annual IEEE Symposium on Logic in
Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE Computer
Society, 365-374. https://doi.org/10.1109/LICS.2012.47

J.-L. Krivine. 2003. Dependent choice, ‘quote’ and the clock. Th. Comp. Sc. 308
(2003), 259-276.

J.-L. Krivine. 2009. Realizability in classical logic. In Interactive models of com-
putation and program behaviour. Panoramas et synthéses 27 (2009).

Jean-Louis Krivine. 2016. Bar Recursion in Classical Realisability: Dependent
Choice and Continuum Hypothesis. In 25th EACSL Annual Conference on Com-
puter Science Logic (CSL 2016) (Leibniz International Proceedings in Informat-
ics (LIPIcs)), Jean-Marc Talbot and Laurent Regnier (Eds.), Vol. 62. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 25:1-25:11.
https://doi.org/10.4230/LIPlcs.CSL.2016.25

Rodolphe Lepigre. 2016. A Classical Realizability Model for a Semantical Value
Restriction. In Programming Languages and Systems - 25th European Symposium
on Programming, ESOP 2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings (Lecture Notes in Computer Science), Peter Thiemann (Ed.),
Vol. 9632. Springer, 476-502.

P. Martin-Lof. 1998. An intuitionistic theory of types. In Twenty-five years of
constructive type theory. Oxford Logic Guides 36 (1998), 127-172.

Alexandre Miquel. 2017. Implicative algebras. Private communication (2017).
Etienne Miquey. 2017. A Classical Sequent Calculus with Dependent Types. In
Programming Languages and Systems: 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Hongseok
Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 777-803. https://doi.
org/10.1007/978-3-662-54434-1_29

Etienne Miquey and Hugo Herbelin. 2018. Realizability interpretation and
normalization of typed call-by-need A-calculus with control. Accepted at FCSD
2018 (2018). https://hal.inria.fr/hal-01624839

Stephen G. Simpson. 2009. Subsystems of Second Order Arithmetic (2 ed.). Cam-
bridge University Press. https://doi.org/10.1017/CB09780511581007

Clifford Spector. 1962. Provably recursive functionals of analysis: A consistency
proof of analysis by an extension of principles in current intuitionistic mathe-
matics. In Recursive function theory: Proceedings of symposia in pure mathematics,
F. D. E. Dekker (Ed.), Vol. 5. American Mathematical Society, Providence, Rhode
Island, 1-27.

Philip Wadler. 2003. Call-by-value is dual to call-by-name. In Proceedings of
the Eighth ACM SIGPLAN International Conference on Functional Programming,
ICFP 2003, Uppsala, Sweden, August 25-29, 2003, Colin Runciman and Olin Shivers
(Eds.). ACM, 189-201. https://doi.org/10.1145/944705.944723

11

https://doi.org/10.2307/2586854
https://doi.org/10.2307/2586854
https://doi.org/10.1145/351240.351262
https://doi.org/10.1145/351240.351262
https://doi.org/10.1007/978-3-642-12251-4_18
http://research.microsoft.com/en-us/um/people/simonpj/papers/sequent-core/scfp_ext.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/sequent-core/scfp_ext.pdf
http://arxiv.org/abs/1407.7046
https://doi.org/10.1007/11417170_16
https://doi.org/10.1109/LICS.2012.47
https://doi.org/10.4230/LIPIcs.CSL.2016.25
https://doi.org/10.1007/978-3-662-54434-1_29
https://doi.org/10.1007/978-3-662-54434-1_29
https://hal.inria.fr/hal-01624839
https://doi.org/10.1017/CBO9780511581007
https://doi.org/10.1145/944705.944723

) Etienne Miquey
Since most of the proofs contain typing derivations, we switch to a one column format to easen their display.
A Subject reduction

We first show that the cases which we encounter in the proof of subject reduction satisfy this relation:

Lemma A.1 (Dependencies implication). The following holds for any o,c”’,0"’:

1. 00’ = oo'c’ 5. o{-l(p1,p2)} = clailpiHazlp2}{-1(a1,a2)}
2. o{(a1,a2)|(V1,V2)} = ola1|Vi}{az|V2}) 0

3 ol (@) (V)] = olalV) 6. ol (p)} = olalp}{-lti(a)}

4 o{(x,a)|(t,V)} = ofalV}{x|t} 7. al-|(t,p)} = olalp}{-I(t,a)}

where the fourth item abuse the definition of list of dependencies to include a substitution of terms.
Proof. All the properties are trivial from the definition of the substitution o (A). O
Proposition 2.1 (Dependencies weakening). Ifo,0’ are two dependencies list such that o = o’, then any derivation using o can be one using
o’ instead. In other words, the following rules are admissible:

r+?J 'ty ;o

— (w) e
T+ J Try ot

Proof. Simple induction on the typing derivations. The rules () and (Cut) where the list of dependencies is used exactly match the
definition of =. Every other case is direct using the first item of Lemma A.1. O

Theorem 2.4. For any context T and any closures ct and ¢’t’ such that ct — ¢’t’, we have:
1 IfT ket thenT k'’

2. IfTrgcersethenT kg c't/;e.

Proof. The proof follows the usual proof of subject reduction, by induction on the typing derivation and the reduction ¢t — ¢’z’. Since
there is no substitution but for terms (proof terms and contexts being stored), there is no need for auxiliary lemmas about the safety of
substitution. We sketch it by examining all the rules from Figure 3 from top to bottom.
+ The cases for reductions of 1 are identical to the cases proven in the previous chapter for dL,.
« The rules for reducing p and fi are almost the same except that elements are stored, which makes it even easier. For instance in the case
of fi, the reduction rule is:

(Vlfa.cti)rg = crola == V]

A typing derivation in regular mode for the command on the left-hand side is of the shape:

I, I,
I,Ip,a: ATy Fo%% ¢ T Tp,a: Ao 1y : (I1; 01) 0
Iy I,Ip,a: Ar°% crq @
Lo V:A I, F% jia.cry : AL con I,
I,Tp +9% (V| ja.cty) T+ 19 : (To; 00) 0

T +° (V|a.cti)to

Thus we can type the command on the right-hand side:

JIPN Iy
T, Tro 7:(Ty;00) LLIoFo% V:A I,
[T, a: AT roo0lalVior ¢ () T'+9 yla:=V]: (lo, a: A; o0, {a|V})) I,Tp,a: Ar29 ¢y : (I1; 01) ,
I,Ty,a: ATy rooolalVier ¢ T+? ryla:=V]r : (To, a: A Ti;00{alVioy) o =29

T+ crpla:=V]n

As for the dependent mode, the binding {a|p} within the list of dependencies is compensated when typing the store as shown in the last
derivation.

+ Similarly, elimination rules for contexts ji[a;.c1|az.c2], fi(a1,a2).c, fi(x,a).c or fi=.c are easy to check, using Lemma A.1 and the rule ()
in dependent mode to prove the safety with respect to dependencies.

+ The cases for delimited continuations are identical to the corresponding cases for dLﬁ).

12

A sequent calculus with dependent types for classical arithmetic)

« The cases for the so-called “call-by-value” rules opening constructors are straightforward, using again Lemma A.1 in dependent mode to
prove the consistency with respect to the list of dependencies.

« The cases for the lazy rules are trivial.

« The first case in the “lookup” section is trivial. The three lefts correspond to the usual unfolding of inductive and co-inductive fixpoints.
We only sketch the latter in regular mode. The reduction rule is:

alfymla:= cofixt _[plln — (plt/x][b’ /bllfiatal frynlb’ = Ay.cofix! [p]]

The crucial part of the derivation for the left-hand side command is the derivation for the cofix in the store:

I, I,
I, Tr% t:T TTof:T—>Nx:T,b:Vyl fy)=0+7%p: A o i)
T+ 19 : (Ty; 00) I, Ty o0 cofixgx[p] : v]ixA
T+ rgla:= cofixix[p]] : (T, a : v;xA; 00) %)
Then, using this derivation, we can type the store of the right-hand side command:
Ty
TT,y:TH% y:T T,Ty,f:T—->Nx:T,b:Vyl . f(y) =0+-°% p: A (o)
m,, T,y : T 7% cofix) [p]: V;%XA ,
T F9 70 ¢ (To; 00) LI £7% dy.cofixp, [p] : Vy.vt A z :
™p

T+ [:= Ay.cofix] [p]]: To,b’ : —Vylv}IxA

It only remains to type (we avoid the rest of the derivation, which is less interesting) the proof p[¢/x] with this new store to ensure us that
the reduction is safe (since the variable a will still be of type v}xA when typing the rest of the command):

I,
T,T,b: Vy.v;zxA KO plt/x] : A[t/x][v}%xA/ fy) =0] V}XA = A[t/x] [v}%xA/ fy) =0]

ITo,b: Vy.v;xA FO plt/x] : V;XA

(=)

+ The cases for reductions of terms are easy. Since terms are reduced in place within proofs, the only things to check is that the reduction
of wit preserves types (which is trivial) and that the f-reduction verifies the subject reduction (which is a well-known fact).
[m]

B Natural deduction as macros

We give here two examples of typing rules for the macros subst p g and prf pq (in natural deduction) that are admissible in dLPA“. Recall
that we have the following typing rules in dLPA®:
I,x:T,a:A+% ¢ Tro p:A T+ e: Alu/t]

(3n)
T+ ji(x,a).c : (IxT.A)L ' T r f=ple): (t = u)t

(=1

and that we defined prf p and subst p g as syntactic sugar:
prf p 2 pp.{plji(x,a).(al) subst pq £ paplji={qla)).

Observe that prf p is now only definable if p is a NEF proof term. For any p € NEF and any variables a,a, A(wit p) is in A(wit (x,a))((x,a)|p)
which allows us to derive (using this in the (Cur)-rule) the admissibility of the former (prf)-rule:

A Fa:A®X) A(wit p) € AWit (x,0))((x,a)|p)
a:A(x)Fa:AWwit (x,a)) = T|fo:Awit (x,a)) Fg To: Awit p) | A cut
(ala) : T,x : N,a: A(x) g A, 1o : Awit p); o{(x,a)lp}
Trp: AN A| A6 T | ji(x,a){altoy : IV A ry A, fo: Awit p);of-|p} con

Pplji(x,a) (alay) : T +q Ao : Awit p);o{-|p)
Tk ptp.(plji(x,a)(al) : A(wit p) | A
Using the fact that §(B[u]) = §(B[t]), we get that the former (subst)-rule is admissible:
13

Etienne Miquey

(Axp)

Trq:B[t]|A;o Tla:Blulra:Blu]|A .

{(qlla) : T + A, : Blu]; 6{t|u}
Trpit=ull; T |j={qlay:t=ur Aa:Bul;é
(pli=A{qla)) : T+ A, : Blu];§ w
T+ papli=A{qlay) : Blu] | A;8

(=1)
(Curt)

14

A sequent calculus with dependent types for classical arithmetic

C Proof of ACy

We give in Figure 6 a complete typing derivation of the proof term for ACy from Herbelin’s paper [11]. The typing derivation for the proof
term DC is similar and left to the reader.

Notations:

nthy p £ w1 (Fixie[p | m2(s)])
AL = V;X[A(X) A f(S(x)) = 0]

o stri, H £ cofix} [(Hn,b(S(n))]
A(x) £ 3y .P(x.y)

Typing derivation for nth (IT,¢p):

— 5 (Axy)
STAMEs: AL AT = Am) A4S
m:N,s:Agks:A(m)AAﬁm) , =)
nilenn O a: A ka: Al) m:N,s: AM b my(s) - ASM "
a: A%, n: Nk fixt [a|m(s)] : A% A&d)z A(n) /\Afo(n) "
@i A Tk Fixd o m() : A AAY" -
a: A%, n N (fixt[alm(s)]) : An) £
a:A%.n:Nrnthya:An) (e
Typing derivation for strgo (str,):
H V'3 Plog) r H 93y Pley)) mNr il E‘V‘))

H:VxN3yTP(x,y),n : N+ Hn : Iy’ .P(n,y)
FO:N H:VxN3yTP(x,y),n: N,b:VzN . f(z) = 0+ (Hn,b(S(n)) : JyT .P(n,y) A £(S(n)) =0
H: VN3 P(x,y) v cofix) [(Hn,b(S(n))]: v]‘gxayT.P(x,y) A F(S(x)) =0

(def)
H: VN3 TP(x,y) F strd H : A%
Typing derivation for ACy:
Hnth
Moth a:A% n:NFnth,a:An) (def)
a: A%, n:NFnthya: An) a: A%, n:Nrnthya: 3yl .P(ny)
a:A%,n:NFnthya: Wl P(n,y) e a: A% x : Nt prf(nth,a) : P(x,wit (nthy a)) &)
a:A% n:Nrwit(nthya): T (i) a: A%, x : N+ prf(nthy a) : P(x,An.wit (nthy, a)x) =)
a:A% F An.wit (nthpa) :N—> T a: A% F An.prf (nthy, a) : YaN.P(x, (An. wit (nthy, a))x) E\;ri

a: A%+ (An.wit (nthy a),An. prf (nthy, a) : A>TV P(x, f(x)) a
H:VxN3yTP(x,y) F leta = strd Hin (An.wit (nthy, a),An. prf (nth, a) : A>TV P(x, f(x))
FAH.leta = strl Hin (An.wit (nthy, a), An. prf (nthy, @) : VxN3yT.P(x,y) — A>TV P(x, f(x))

where we omit the conversion P(x, (An.wit (nth, a))x) = P(x,wit (nthy a)) on the right-hand side derivation.

et)
(=)

Figure 6. Proof of the axiom of countable choice in dLPA®

15

D Small-step reduction rules

. We give in Figure 7 the full reduction system based on small-step reduction rules which are described in Section 3

Etienne Miquey

Commands

pleder ~s (pleyy
(tm)et v (tl)e

Delimited continuations

(for any 1,0)

(for any 1,0)

(!,ltb.C’{"||e)pT W </1ﬁ3~c,7”||e>pf’ (if ¢, g c(’JT’)
Pl le)pT s (ple)pT
(VIfitp.chet w5 (VIjitp.c')er’ (if ;7 w5 cpT”)

(VI tple)er w5 (Vie)er

Proofs
(e # eﬁ))

(a fresh)
(a fresh)
(a fresh)
(y,a fresh)
(y,a fresh)

(pa.clleypt ~s cc r[a = e]
(pa.cleg,)pt ~s ccleg,/al T
((pr.p2)lle)pT s {p1lljiar {pz2llfiaz.{(a1,az)le)))pT
(L (p)ledpr ~s (pliaui(a)le)),r
(Et.p)le)pt ~s (platptlix(Plia(x,a)le))pt
(Fixt [plqlle),t ~s (utp(tljiy(al®)a = fix] [plqlDle)pr
(cofixl [pllle)pr ~s (utp(tljiy-(al®))[a = cofix] [plle)pt
(Vle)pt s (Ve

Contexts

(Vl@)er[ar = e]t” w5 (Ve)er[a := e]r’
(Vlja.ct’yer w5 cetla == V]r’

Vet s (VIfIvr

Values

(b’ fresh)

(alfivela:= V]t w5 (VIfivrla:= V]’
@Iyt s @l f)pT

(alf)yla = cofix} [pll’ ws plt/x][b’ /Bllfatal fr)prlb := Ay.cofixy [p]]
(alfyvela = Fix)_[po | pslle’ ~s (poljiadal 'yt

(O fresh) (alf)orla=Fixs " [po | pslle’ ~s (pslt/x1[b’ /blliatal f)r e[’ = Fixt [po|ps]]]

Forcing contexts

(g € NEF)
(q ¢ NEF)

Axplt -)57 wos (utp (el ix(pl)le),T
(Aa.plq - e)pt ~s (utpglfa(plod)le),r
(Aa.plq - eypr s (qlfialple)),pt
@i(V)lilar.c! | az.c*])pr wos clrla; = V]
((Vi,V2)li(ar,az).c)p T v cetlar == Vi][az == V2]
((Ve, V)Ifi(x,a).c)p7 s (c[Ve/x])et[a = V]
(refl||[1=.c>fr g CeT

Terms

(x fresh)
(x, a fresh)
(teVe)

(tul)t~ (tlu -)T
(SO)I) 7w (ElixAS () 7)),
it plm), 7 ws (pljilx,a) (xlm))pt
(rect, [t | ts]Im),7 s (tlfiz(reck, [t | ts]lm)), T
(rech, [to | ts]Im), T s (tol)
(recy\ [t | 151y 7 s (ts[Vi/xIlrecyy Lo | ts1/yllnd, T
(Vilmyet wos (Velm)
(At -)57 s (ullfix (), T
(Vilfix.ct)z7 ~os (erT)[Ve/x]
(Vilfix.c)z T ws (cp7)[Vi/x]

Figure 7. Small-step reduction rules

Proposition 3.1 (Subject Reduction). The small-step reduction rules satisfy subject reduction.

16

A sequent calculus with dependent types for classical arithmetic

Proof. The proof is again a tedious induction on the reduction ~»,. There is almost nothing new in comparison with the cases for the
big-step reduction rules: the cases for reduction of terms are straightforward, as well as the administrative reductions changing the focus on
a command. We only give the case for the reduction of pairs (t,p). The reduction rule is:

((t.p)le)pT s (Pl tlfx(tlial(x,a)le)))pT

Consider a typing derivation for the command on the left-hand side, which is of the shape (we omit the rule (I) and the store for conciseness):

I1; 1,
F'rot:T T+ p:Alt/x] ; I,
T+ (t,p): IxT.A T e (AT AL

T (ple) (com

Then we can type the command on the right-hand side with the following derivation:
l-I(x,a) e
(Cur)
L,x:T,a:Alx] v° {(x,a)le) : A[x]* _
= H
L,x: T fia.{(x,a)le) : Alx]* Alt] = ({x|t})(Alx])

= — (Cutg)
F:tp Alt]x:Try Smll,ua&(x,a)lle));a{xlt} i)
IT; F,t;i) tAt/x] kg /]x.(:cpllﬁa.((x,a)lle)) :T;0{-|t} cor)
[t Alf] - (tlpx(tplia{(x,a)le))); o %)
O, T+ itptlpx(wlial(x,a)le))) : Alt]*
T+ (pliatp-(tlax (Pl fa{(x, a)le))),
where I, g) is as expected. O

Proposition 3.2. Ifa closure ct normalizes for the reduction ~, then it normalizes for —.

Proof. By contraposition, one proves that if a command c7 produces an infinite number of steps for the reduction —, then it does not
normalize for ws¢ either. This is proved by showing by induction on the reduction — that each step, except for the contextual reduction
of terms, is reflected in at least on for the reduction ~». The rules for term reductions require a separate treatment, which is really not
interesting at this point. We claim that the reduction of terms, which are usual simply-typed A-terms, is known to be normalizing anyway
and does not deserve that we spend another page proving it in this particular setting. O

E Adequacy

Proposition 4.5. The set Ly = {ct € Cp : ct normalizes} is a pole.

Proof. The first two conditions are already verified for the X[lvrx]-calculus [19]. The third one is straightforward, since if a closure (utp.cle)r
is not normalizing, it is easy to verify that c[e/tp] is not normalizing either. Roughly, there is only two possible reduction steps for a command
(utp.c|le)r: either it reduces to {utp.c’|e)r’, in which case c[e/fp]r also reduces to a closure which is almost (¢’z”)[e/p]; or ¢ is of the shape
{(p|tpy and it reduces to c[e/tp]z. In both cases, if {utp.c|e)r can reduce, so can c[e/p]r. The same reasoning allows us to show that if
¢[V/tp]r normalizes, then so does (V| jitp.c)t for any value V. |

We give here the complete proof of adequacy of the typing rules with respect to the realizability interpretation, defined in Figure 5.

Proposition 4.11. The typing rules are adequate with respect to the realizability interpretation. In other words, if T is a typing context, 1L a
pole, p a valuation and t a store such that (t,p) \ I'; o, then the following hold:

. If v is a strong value such thatT +° v : A or T +q v : A; 0, then (v|7), € |Aply.

If f is a forcing context such thatT +° f: A or T vy f : A0, then (flr), € 1A, Il5.
. If V is a weak value such thatT +° V : A or T +4 V : A;0, then (V7)) € |Aply.

_If e is a context such thatT +7 e : A or T kg e : A0, then (e|r), € [Aple.

. If p is a proof term such thatT +° p: A or T vy p: A; o, then (pl7)p € |Aplp.

. If Vi is a term value such thatT +° V; : T, then (Vi|1), € |Tply,.

. If 7 is a term context such thatT' +° 7 : T, then (7|1), € |Tplx.

. If tisatermsuch thatT +° t: T, then (t|1), € |Tpl;.

. If / is a store such that T +° ¢’ : (T";)o’, then (z7’/,p) v ([,I’;00”).

. If ¢ is a command such thatT +° ¢ or T v4 c; 0, then (cr)p [

11. If ct’ is a closure such that T +° ct’ or T vq ct’;0, then (ct7’)p € L.

RS IR S S T N SN

~
S

Proof. The proof is done by induction on the typing derivation such as given in the system extended with the small-step reduction ;. Most
of the cases correspond to the proof of adequacy for the interpretation of the A[j,,;«]-calculus, so that we only give the most interesting
cases. To lighten the notations, we omit the annotation by the valuation p whenever it is possible.

17

) Etienne Miquey

« Case (d,). We recall the typing rule through the decomposition of dependent sums:
It t:ueT T+ p:Alu/x]
T'Ho (t,p): (ueTAA[u])

By induction hypothesis, we obtain that (t|7) € |u € T|; and (p|7) € |A[u]|p. Consider thus any context-in-store (e|z’) € |lu € T A Alu]l.
such that 7 and 7’ are compatible, and let us denote by 7o the union 7z’. We have:

((t.p)le)pto w5 (plitp(tljix.(Plfia-((x,a)le)))pTo

so that by anti-reduction, we need to show that fitp.(t|| ix.(tp| fia.((x,a)|e))) € ||A[u]lle. Let us then consider a value-in-store (Vlr(;) € |Alu]ly

such that 79 and 7 are compatible, and let us denote by 7; the union 797;. By closure under delimited continuations, to show that
(V| itp.t|jix (o jia.{(x,a) ||€>>>>p7.’1 is in the pole it is enough to show that the closure (t|jix.(V|ia.{(x,a)le)))r; is in AL,. Thus it suffices to
show that the coterm-in-store (fix.(V|ia.((x,a)le))|r1) isin |u € T|,.
Consider a term value-in-store (thrl’) € lu € Tly,, such that 7 and Tl’ are compatible, and let us denote by 7, the union 7; Tl’ . We have:
(Velfix VIfia{(x,a)le)))rz s (VIfial(Ve, a)leyyrz w5 ((V,a)le)rz[a = V]
It is now easy to check that ((V,a)|m2[a := V]) € |[u € T A Alu]|y and to conclude, using Lemma 4.8 to get (e|rz[a := V]) € |lu € T A A[u]lle,
that this closure is finally in the pole.

« Case (=;),(=]). These cases are direct consequences of Lemma 4.10 since if A, B are two formulas such that A = B, in particular A =; B
and thus |Aly, = |Blo.

« Case (refl),(=;). The case for refl is trivial, while it is trivial to show that (fi=.(p|e)|7) isin ||t = ully if (pl7) € |A[t]lp and (e|r) € [|A[u]lle.

Indeed, either t =; u and thus A[t] =; A[u] (Lemma 4.10, or t #; u and ||t = ully = A}.

« Case (V7). This case is standard in a call-by-value language with value restriction. We recall the typing rule:
T v: A x ¢ FV()
'+ v:¥x.A

(%)

The induction hypothesis gives us that (v|7), is in [A,|y for any valuation p[x + t]. Then for any ¢, we have (v|r), € ||Ap[t/x]||jf”
so that (v|7)p, € (Nrea, ||A[t/x]||jﬁ‘”). Therefore if (f|z"), belongs to IVx.Aplly = (Neea, ||A[t/x]||;1‘“)l'-f, we have by definition that
@I7)p L (fI7")p.
« Case (ind). We recall the typing rule:
Tre t:N T2 pg:Al0/x] T,x:T,a: A% ps: A[S(x)/x]
T ro fixhy[po|ps] : Alt/x]
We want to show that (fix’, [po | ps]It) € |A[¢] |p let us then consider (el’) € ||A[t]lle such that r and ¢’ are compatible, and let us denote

(ind)

by 7o the union 77’. By induction hypothesis, we have!® ¢ € |t € N|; and we have:

(Fixt _[po | pslle)pto s (utp(tliy-Cal®dla = Fix!_[po | psIDledpro

so that by anti-reduction and closure under delimited continuations, it is enough to show that the coterm-in-store (jiy.(ale)[a :=
fixzx [po | ps]]izo) is in [t € N|;. Let us then consider (V;|ry) € |t € Nly, such that 7y and 7 are compatible, and let us denote by

71 the union 7o7;. By definition, V; = 5"(0) for some n € N and ¢ =, $"(0), and we have:

(S"(O) Iy alle)la = Fix}_[po | pslDr1 s (alerila = Fixy ©lpo | ps]]

We conclude by showing by induction on the natural numbers that for any n € N, the value-in-store (a|r1[a := ixi;(o) [po | ps]]) is in
|A[S™(0)]|y. Let us consider (flrl’) € ||A[S"(0)]||f such that the store r1[a := fixg:(o) [po | ps]] and Tl/ are compatible, and let us denote by
S"(0)
bx

e If n = 0, we have:

[a = fix [po | ps]]z, their union.
(al frezla = £ix3_[po | ps]ley ws (polliatal fry)rs
We conclude by anti-reduction and the induction hypothesis for py, since it is easy to show that (jia.(al f >T2, |2) € |IA[O]]le.
e If n = S(m), we have:

(alfyeala = Fix5 " O [py | ps]izy s (ps[S™(0)/x][b’ /b]lfatal frrg)pralb” = Fixs. lpo |ps]]

Since we have by induction that (b’|r2[b" := fixi:(o) [po | ps]]) is in |A[S™(0)]ly, we can conclude by anti-reduction, using the
induction hypothesis for ps and the fact that (jia.{al f)7,|r2) belongs to [|A[S(S™ (0))]le.
10Recall that any term ¢ of type T can be given the type ¢ € T.
18

A sequent calculus with dependent types for classical arithmetic)

» Case (cofix). We recall the typing rule:
T+ t:T T,x:T,b:Vyl.X(y)+ p: A X positivein A X ¢ FV(I)

ol oyt
['+7 cofixy [p]: vy, A

(cofix)

We want to show that (cofixix [pllr) € |v)t(xA|P, let us then consider (e|zr’) € ||v)t(xA||e such that 7 and 7’ are compatible, and let us denote
by 7o the union 77’. By induction hypothesis, we have ¢ € |t € T|; and we have:
(cofixt [plle)ymo ~s . (tliy-(al®a = cof ix! [p]Dledyro

so that by anti-reduction and closure under delimited continuations, it is enough to show that the coterm-in-store (jy.(ale)[a :=
cofixzx [p]ll7) is in |t € Nly. Let us then consider (V¢|ry) € |t € Tly, such that 79 and 7; are compatible, and let us denote by 72

the union 797;. We have:
. . .V
(Vilfy-Cale)la := coflxzx[p]]ﬁl ~wg (aleyrifa = coflxb;[p]]
It suffices to show now that the value-in store (a|zi[a := cofix;:; [p]]) isin |V)‘?XA|V. By definition, we have:
Vi _ Ay _ Ay _
Al = (U HER 1™ = (Y IER 1Y = () IRy, Iv
neN neN neN

We conclude by showing by induction on the natural numbers that for any n € N and any V3, the value-in-store (a|r1[a := cof ixZ; [p]]) is
3 n
in |F A, ly.

The case n = 0is trivial since |Fg’ v, ly =1Tly = A{,. Let then n be an integer and any V; be a term value. Let us consider (fl‘[l/) € ”FX,Jer,A”f

such that 71 [a := cof ixZ; [p]] and 7] are compatible, and let us denote by 72[a := cof ixZ; [p]]z, their union. By definition, we have:

(alf)rala = cofix," [pllry ~s (plVi/x][¥’ /Blljiaal f)rs)zalb’ = Ay.cofix} [p]]

It is straightforward to check, using the induction hypothesis for n, that (b’|r2[b’ := Ay.cofixzx [Pl isin|Vy.y e T - F} ylV' Thus we
deduce by induction hypothesis for p, denoting by S the function t — ||F} , ||, that:

(pLVe/x1[b /]Il = Ay.cofix [p]]) € IA[V /x][S/X]lp = AV /xIFD /X ()]lp = IFA3E Iy

It only remains to show that (ga.(a| f)1'2’ |2) € IIFXJ'Vlt |le, which is trival from the hypothesis for f. O

19

) Etienne Miquey

F About the interpretation of coinductive formulas

While our realizability interpretation finally gave us a proof of normalization and soundness for dLPA®, it has two aspects that we could find
unsatisfactory. First, regarding the small-step reduction system, one could have expected the lowest level of interpretation to be v instead of
f- Moreover, if we observe our definition, we notice that most of the cases of || - || are in fact defined by orthogonality to a subset of strong
values. Indeed, except for coinductive formulas, we could indeed have defined instead an interpretation | - |, of formulas at level v and then
the interpretation || - [|f by orthogonality:

A

|J—|v = 0
R {refl ift=u
[t =ulo = .
0 otherwise
|P € Aly = {(Ulf) €Ay v =, P}
IT>Bl, = {(Axplt) :VVir',tot’ A(Vilr') € |Tly = (p[Vi/x]lz7’) € |Blp}
|[A— Bl, = {(Aaplr):VVr',zot’ A(VI!) € |Aly = (pl?[a :=V]) € |Blp}
ITAAL = {((Ve,V)Ir) s (VelT) € Ty, A (ViT) € |A2lv)
[A1 AAzle = (1, W2)l7) : (Vil7) € A1y A (ValT) € |Azly)
A1V Azle = {(Li(V)I7) : (Vi) € |Ailv)
[Ax.Alo = Utea, IAlt/x]lo
|Vx.Aly = mtEA, |A[t/x]lo
Va.Aly = mpeAp |A[P/x]|v
1Al 2 {(flr) :Yor',t o' A (vlT) € |Aly = (v|r”) LL(FI7)}

If this definition is somewhat more natural, it poses a problem for the definition of coinductive formulas. Indeed, there is a priori no
strong value in the orthogonal of ||VJ€UA|| s which is:

(vt Al = (| IR ipte = () UIF, Do)
neN neN

For instance, consider again the case of a stream of type voxA(x) A f(S(x)) = 0, a strong value in the intersection should be in every
|A(0) A (A(1) A ... (A(n) A T)...)|y, which is not possible due to the finiteness of terms!! Thus the definition |V;UA|—U 2 NneN |F2’t|v
would give |V]tch|v =0=|1]p.

Interestingly, and this is the second aspect that we do not find completely satisfactory, we could have define instead the truth value of
coinductive formulas directly by :

VfAlo = 1A[t/x][v] Al f (y) = 0]l

Let us sketch the proof that such a definition is well-founded. We consider the language of formulas without coinductive formulas and
extended with formulas of the shape X(t) where X,Y,... are parameters. At level v, closed formulas are interpreted by sets of strong
values-in-store (v|7), and as we already observed, these sets are besides closed under the relation =, along their component 7. If A(x) is a
formula whose only free variable is x, the function which associates to each term ¢ the set |A() [, is thus a function from A; to P(A])=,, let
us denote the set of these functions by .Z.

Proposition F.1. The set . is a complete lattice with respect to the order < oo defined by:
F<g G2Vte A F(t) CG(t)

Proof. Trivial since the order on functions is defined pointwise and the co-domain P (A%) is itself a complete lattice. O

We define valuations, which we write p, as functions mapping each parameter X to a function p(X) € .. We then define the interpretations
|A|£, 1Al ; ... of formulas with parameters exactly as above with the additional rule!?:

IX(0)15 2 {(v]7) € p(X)(t)}

Let us fix a formula A which has one free variable x and a parameter X such that sub-formulas of the shape X t only occur in positive
positions in A.

Lemma F.2. Let B(x) is a formula without parameters whose only free variable is x, and let p be a valuation which maps X to the function

t = |B(t)lo. Then |Alg = |A[B(t)/X ()]l

1¥et, it might possible to consider interpretation with infinite proof terms, the proof of adequacy for proofs and contexts (which are finite) will still work exactly the same. However,
another problem will arise for the adequacy of the cofix operator. Indeed, with the interpretation above, we would obtain the inclusion (,en(I1F3 , llf) € (Nnew IF , |,)iLf =
I V_;XA”f which is strict in general. By orthogonality, this gives us that |vtxA|V C Unen(||F1'4”t ||f))kV, while the proof of adequacy only proves that (a|r[a := cofix;} [x]1p])
belongs to the latter set.

120bserve that this rule is exactly the same as in the previous section (see Figure 5).

20

A sequent calculus with dependent types for classical arithmetic)

Proof. By induction on the structure of A, all cases are trivial, and this is true for the basic case A = X (t):

IX ()5 = p(X)(t) = |B(t)]o

Let us now define ¢4 as the following function:
<z - Zz
PA:

F - t+—>|A[t/x]|LXHF]

Proposition F.3. The function ¢4 is monotone.

Proof. By induction on the structure of A, where X can only occur in positive positions. The case |X ()|, is trivial, and it is easy to check that
truth values are monotonic with respect to the interpretation of formulas in positive positions, while falsity values are anti-monotonic. O

We can thus apply Knaster-Tarski theorem to ¢4, and we denote by gfp(¢4) its greatest fixpoint. We can now define:

Vi Alo 2 gfp(pa)(t)
This definition satisfies the expected equality:

Proposition F.4. We have:
vixAlo = [A[t/x][vy, AIX)]0

Proof. Observe first that by definition, the formula B(z) = |v} Al satisfies the hypotheses of Lemma F.2 and that gfp(pa) = t - B(?).
Then we can deduce :

X-gf
IV Al = FP(0A)(1) = pa(EfP(0a)(1) = [AL/xIE7E PP < A/, AX @) .
Back to the original language, it only remains to define IV;XAIU as the set Iv;xA[X (y)/f(y) = 0], that we just defined. This concludes
our proof that the interpretation of coinductive formulas through the equation in Proposition F.4 is well-founded.
We could also have done the same reasoning with the interpretation from the previous section, by defining .# as the set of functions from
At to P(AL)=, . The function ¢4, which is again monotonic, is then:

f
2 - <z
PA: F oo te |A[t/x] LXHF]

We recognize here the definition of the formula F}} ,. Defining f 0 as the function t > || T|| r and f n+l & A (f™) we have:

Ve NIIFL llp = f™(1) = o4 (f) @)

However, in both cases (defining primitively the interpretation at level v or f), this definition does not allow us to prove'? the adequacy of
the (cofix) rule. In the case of an interpretation defined at level f, the best that we can do is to show that for any n € N, " is a post-fixpoint
since for any term t, we have:

£ = WFG Il S UEGE e = £771(8) = pa(f™) @)

With ||V;XA||f defined as the greatest fixpoint of ¢ 4, for any term ¢ and any n € N we have the inclusion f"(t) C gfp(pa)(t) = ”foxA”f
and thus:

L IEs e = () £ @) < v Al

neN neN
By orthogonality, we get:

Vi Alv € () IF5 v
neN

and thus our proof of adequacy from the last section is not enough to conclude that cof ixix [p] € |V;xA|p. For this, we would need to prove
that the inclusion is an equality. An alternative to this would be to show that the function t = |, en IIF;"’ ¢|l¢ is a fixpoint for ¢ 4. In that
case, we could stick to this definition and happily conclude that it satisfies the equation:

1vie Ally = IIALt/x][vy AIX ()]l

This would be the case if the function ¢4 was Scott-continuous on .Z (which is a dcpo), since we could then apply Kleene fixed-point
theorem!4 to prove that t = J,en IIFZ |l is the stationary limit of ¢’} (fo). However, ¢4 is not Scott-continuous' (the definition of falsity
values involves double-orthogonal sets which do not preserve supremums), and this does not apply.

13To be honest, we should rather say that we could not manage to find a proof, and that we would welcome any suggestion from insightful readers.

14In fact, Cousot and Cousot proved a constructive version of Kleene fixed-point theorem which states that without any continuity requirement, the transfinite sequence
(o4 (f %))acoy, is stationary [5]. Yet, we doubt that the gain of the desired equality is worth a transfinite definition of the realizability interpretation.

151n fact, this is nonetheless a good news about our interpretation. Indeed, it is well-know that the more “regular” a model is, the less interesting it is. For instance, Streicher showed
that the realizability model induced by Scott domains (using it as a realizability structure) was not only a forcing model by also equivalent to the ground model.

21

	Abstract
	1 Introduction
	1.1 Realizing ACN and DC in the presence of classical logic
	1.2 Normalization of dPA
	1.3 Realizability interpretation of classical call-by-need
	1.4 A sequent calculus with dependent types
	1.5 Contributions of the paper

	2 A sequent calculus with dependent types for classical arithmetic
	2.1 Syntax
	2.2 Reduction rules
	2.3 Typing rules
	2.4 Subject reduction
	2.5 Natural deduction as macros

	3 Small-step calculus
	3.1 Values
	3.2 Terms
	3.3 Co-delimited continuations

	4 Normalization of dLPA
	4.1 A realizability interpretation of dLPA

	5 Conclusion and perspectives
	Acknowledgments
	References
	A Subject reduction
	B Natural deduction as macros
	C Proof of ACN
	D Small-step reduction rules
	E Adequacy
	F About the interpretation of coinductive formulas

