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Abstract—Offering fluid multi-device interactions to users
while protecting their privacy largely remains an ongoing chal-
lenge. Existing approaches typically use a peer-to-peer design and
flood session information over the network, resulting in costly and
often unpractical solutions. In this paper, we propose SPRINKLER,
a decentralized probabilistic dissemination protocol that uses a
gossip-based learning algorithm to intelligently propagate session
information to devices a user is most likely to use next. Our
solution allows designers to efficiently trade off network costs
for fluidity, and is for instance able to reduce network costs by
up to 80% against a flooding strategy while maintaining a fluid
user experience.

I. INTRODUCTION

These last decades have witnessed an exponential prolifer-
ation of devices connected to the Internet. We are entering
a new era, a further step towards Mark Weiser’s vision of
ubiquitous computing [39], where the paradigm of a single
user for a single device no longer applies. Users own multiple
devices (PCs, smartphones, smart watches, tablets, notebooks),
and no longer spend their time on a single desktop screen
to perform their daily digital activities (browsing, searching,
online shopping and gaming, video streaming) [20], [25].

This emerging trend is far from being without challenges.
Accessing everything, anytime, anywhere, in a continuous
manner across various heterogeneous devices at the right time
and at the right place, may become a daunting task for users.
Particularly, support for streamlining the user experience is
lagging behind. As introduced by Levin [33], applications tar-
geting a multi-device ecosystem should be designed with three
key fundamental concepts in mind: Consistency, Continuity,
and Complementarity (for short the 3Cs). For instance, one
application may not have a consistent user interface across
heterogeneous devices, undermining the user’s multi-device
interaction, and hence increasing user frustration. Similarly,
with applications not designed for continuity, users may have
to manage themselves how to resume their interaction context
from their current device to the next one. This implies,
most often, that users have to manually transfer up-to-date
application data, back and forth across devices, in order to
recreate interaction sessions, thus compromising the fluidity
of interaction. Finally, multiple devices may be used simulta-
neously to complement each other, e.g., one device may act
as a remote control to pilot another device.

This paper explicitly targets the issue of providing con-
tinuous interaction. Indeed, with the latest advances in Web
technologies, we consider that the problem of designing con-
sistent applications is almost solved. In particular, through the
use of HTML, CSS, and JAVASCRIPT natively embedded in
Web browsers, web-based applications have become mostly
consistent across heterogeneous devices [2], [4], [8], and are
now the most adequate candidates to support users’ multi-
device experience [11], [13], [21], [22], [30], [34], [37].

Additionally, from a recent study led by Google [20],
90% of users who grew up in a multi-device ecosystem,
switch between devices in a sequential way. In other terms,
a given application may only be active on a single device
at a given point in time. The prevalence of sequential usage
leads us: (i) to focus our work on sequential interactions,
and (ii) to consider the simultaneous usage of devices, i.e the
complementary aspect of users’ interaction, for future works.

Finally, the problem of providing continuous interaction
across heterogeneous devices is currently massively addressed
by relying de facto on cloud providers that act as a central
point of synchronization. For instance, popular applications
such as EVERNOTE [6], IPASSWORD [1], WUNDERLIST [9],
CHROME [7], AMAZON KINDLE [3], etc. rely on either
GOOGLE DRIVE, DROPBOX, ICLOUD, AMAZON S3 and/or
their own servers to perform session handoff, i.e to save
and transfer the interactive session of an application in the
multi-device ecosystem. However, such solutions suffer from
a key shortcoming: users’ activity and their related personal
and private information are recorded by application providers.
Users do not expect to have their digital life tracked and
analyzed by a third party that collects data on their behalf.

To the best of our knowledge, only few approaches have
sought to protect users’ privacy in a multi-device ecosystem.
These approaches typically exploit a peer-to-peer architecture
to save and transfer application sessions only on devices
owned by users, avoiding the need to trust any third party
[17], [18], [32]. However, as the behavior of users is not
known in advance, the aforementioned solutions blindly flood
the ongoing interactive session to all devices of the ecosystem,
as no device is able to predict which device will be used next.
Such a brute-force broadcast mechanism, despite its simplicity,
leads to very poor performances as it implies: (i) redundant



messages, (ii) overconsumption of network bandwidth, (iii)
a higher latency that inherently impacts the fluidity of user
interaction, and (iv) faster energy depletion. Further, it does not
scale well with the number of devices. Although the current
number of devices owned by a user is on average around 4
devices [20], this number is expected to increase with the
advent of the Internet Of Things.

In this paper, we introduce SPRINKLER, a novel approach
to perform predictive session handoff by learning in a decen-
tralized manner how the user behaves. SPRINKLER combines
a probabilistic dissemination protocol and a proactive session
handoff mechanism in order to provide seamlessly fluid user
interactions in a multi-device ecosystem. Our solution: (i) does
not rely on any centralization point, (ii) has a bounded and
known network resource consumption, (iii) is able to predict
which device is the most likely to be used next, enabling
the transfer of the ongoing interaction session without blind
flooding, (iv) respects the user’s right to privacy, and (v) scales
to an arbitrary number of devices.

Our contributions are as follows:

e« We have designed SPRINKLER, a protocol based on
two algorithms: the SPRINKLER Gossiper, which allows
devices to gain knowledge of the user’s behavior in a
distributed manner; and the SPRINKLER Session Handoff
mechanism, which uses this knowledge to proactively
send chunks of the current session to devices that will
most probably be used next;

o We have evaluated our approach with 8 different discrete
time Markov models to emulate user behaviors;

o We have demonstrated that there is no ideal dissemination
protocol. It is all about the tradeoff between prediction
accuracy, latency, and network consumption. We show
in particular that the performance of SPRINKLER greatly
depends on the user’s behavior. The more predictable a
user is, the better SPRINKLER performs;

o SPRINKLER allows designers to efficiently trade off net-
work costs for fluidity, and is for instance able to reduce
network costs by up to 80% against a flooding strategy
while maintaining a fluid user experience.

In the following we detail SPRINKLER’s concepts and
approach (Section II). Section III then evaluates the proposed
approach regarding performance and different models emu-
lating different types of user behavior. Finally, Section IV
considers related work, and Section V discusses future work
and conclusions.

II. CONCEPTS AND SOLUTION APPROACH

Our goal is to provide a communication protocol such that
every time the user (that we call Alice) opens one of her
devices, she finds her Web applications as she left them,
regardless of the device she has used previously. Because the
day-to-day usage information of one’s appliances is a private
asset, we wish to avoid relying on an external storage system,
which would threaten the user’s right to privacy. To this end,
our protocol should only involve Alice’s devices, by leveraging
distributed communication strategies. Secondly, we want our

Fig. 1. Pipeline of the Session Handoff: from user behavior to model inference
to sharing of the session data.

protocol to be lightweight, to avoid draining power from the
mobile appliances running it.

The state of the user’s applications is stored in a blob, arbi-
trarily heavy in size, thereafter called a session. Our protocol,
SPRINKLER, proactively shares portions (chunks) of the user’s
session whenever she leaves a device, by predicting the device
she will use next. This prediction is achieved by letting devices
learn the user’s behavior by gossiping information among
themselves. We wish to minimize, on one hand, the time Alice
has to wait for her previous session to be fetched when she
opens a new device, and on the other hand, the network traffic
induced by session exchanges.

Towards this aim, our protocol is constituted of two algo-
rithms: the SPRINKLER Gossiper will allow devices to gain
knowledge of the user’s behavior; the SPRINKLER Session
Handoff algorithm will use this information to proactively
send chunks of the current session to devices that will most
probably be used next.

A. Overall approach

We consider a user, Alice, who uses a number of N devices,
D = {di,...,dn}. We can model Alice’s use of her devices
as a sequence of interactions: S = {ry,rs,...,1;,...}. Each
interaction 7; is characterized by a pair (d,,,t,,) € D x R,
which means that Alice started using the device d,, at time
t,, (and stopped using it before ¢, ). We assume that Alice
only uses one device at a time, such that no two interactions
share the same timestamp.

For the purpose of our experiments, we consider that Alice’s
devices have access to a synchronized physical clock, creating
a total order on the sequence. The same total order could be
obtained with logical clocks, e.g. Lamport timestamps [29],
since interactions are never concurrent.

Our Session Handoff procedure is illustrated in Fig. 1.

Propagating the user’s behavior: From a global point of
view, the sequence S}, contains all the & interactions performed
by the user since the beginning of the program’s execution.
Locally, however, each device d initially only knows about
the sequence Sy |4 of interactions that took place on it, that is:

Skld = {7“ S Sk, Ti,'D = d} — Sk = U Sk|d7
deD

where r | D represents the projection of interaction r on the
set of devices, i.e., the device on which 7 took place.



To gain knowledge on the user’s behavior, the devices gossip
information about interactions among themselves. This way,
at step k, every device d knows a (possibly incomplete) local
sequence Sy q of the user’s actions, such that:

Skla € Sk,a € Sk-

Inferring a probabilistic model: An ordered sequence S
of interactions can be used to compute a discrete time Markov
chain, representing the probability that the user swaps from
a device to another, for each pair of devices in D. To do
so, we firstly need to compute the matrix of transition counts
C = (cd,,4;)(d:,d4,)eD? between devices:

Cdi;dj = |{Tt7rt+1 S S7 (TtJ/D) = dl A (Tt+1\LD) = dj}l .

C captures the number of times Alice switches between each

pair of devices (d;,d;) in S. From C, we can derive the

matrix of transition probabilities P = (pa, d,)(d;,d,)ep?» (i€

the weights of the Markov chain’s edges):

_ cdq',dj
de eD Cdidy

where d; — d; means “Alice uses the device d; right after d;”.
Dd;q; thus represents the probability that Alice switches from
d; to dj, according to the sequence of the user’s interactions,
S. We call U the operation of generating a Markov transition
matrix P from a sequence S: P = U(S5).

A device d.; that is currently being used by Alice at step
k (i.e. dy in Fig. 1) uses its local sequence Sy 4, to compute
the transition matrix Py g, = U (S d., ). This provides dey
with the transition vector pj that contains, for each d € D,
the probability that the user will switch from dgy, to d:

Pk = Pk',dcm (dcurra *) = (P [dcurr —d ‘ Sk-,dcurr])dep : 1

Note that pg (deyr) is usually not null: the user sometimes
switches back to the same device.

Performing Session Handoff: After Alice closes her
current device dgyr, We want to proactively send the blob
containing her application state—her session—to the next
device she will use: dpex;.

Throughout the rest of the article, we assume that every
session weighs wgess bytes. Because dgy; cannot be sure of
which device will be used next, it sends portions of its
session to several selected peers. We call these portions session
chunks, and assume that they can weigh any size from O to
Weess. Finally, we define the set D’ of devices to which deyy
can potentially send session chunks: D' = D \ {dcyr}-

deyr sends wy g € [0, wsess] bytes of the session to each
device d € D', resulting in the vector W}, of all data chunks
sent by d.y at step k:

Dd;d; =Pl[d; — d;],

=f(Px)- 2

The performance of the Session Handoff depends on the
accuracy of py, which depends on the local sequence of dy,
Sk, dus- In the following, we first present SPRINKLER Gossiper,

Wi = (w;%d S [0,’wsess])deD’

curr

which reliably propagates a user’s sequence of interactions to
all devices, before discussing SPRINKLER Session Handoff,
which handles the proactive migration of a user’s session.

B. Decentralized knowledge aggregation

Initially, a device can only observe interactions taking
place locally. In order to predict a user’s future behavior, all
devices must, however, gain a global overview of the user’s
past behavior, and thus aggregate their local knowledge into
a global interaction sequence. We propose to perform this
aggregation with a probabilistic dissemination protocol [12],
[15], [26] that we have called SPRINKLER Gossiper.

1) Intuition: The Gossiper implements a reactive and in-
cremental aggregation that involves all of a user’s devices.
The protocol is invoked every time the user (say Alice) leaves
a device to move to another one, signaling the end of an
interaction, and the start of a new one. SPRINKLER Gossiper
is gossip-based, i.e., it uses randomized message exchanges
between devices to propagate the sequence of interactions
performed by Alice. This randomized approach makes our
protocol both lightweight and robust, two properties that are
central to decentralized session handoff. We use a push-pull
strategy [23] to propagate information, i.e., when a device p
contacts a device ¢, p sends new information to ¢ (push), but
also requests any new information ¢ might have (pull).

In order to avoid redundant communication rounds, the
Gossiper further keeps track of each device’s local perception
of other device’s knowledge using a mechanism inspired from
vector clocks [31] combined with incremental diffs.

2) Algorithm: The pseudo-code of SPRINKLER Gossiper is
shown in Figures 2 and 3. To ease our explanation, the request
part of the push/pull exchange is shown in Fig. 2 from the
point of view of p, while the reply part is shown in Fig. 3
from the point of view of g. (All devices execute both parts
in practice.) We assume that p and q are owned by Alice, and
that she is currently using device p. p’s current knowledge
of Alice’s sequence of interactions is stored in variable S,
while the array RV,,[-] stores p’s remote view of other devices’
knowledge of Alice’s sequence (Table I).

The algorithm starts when Alice begins a new interaction by
opening device p (line 1). The algorithm inserts a new inter-
action record (p,timestamp) into p’s local interaction view
Sp (lines 3-4), and launches the probabilistic dissemination,
implemented in GOSSIPUPDATE().

GOSSIPUPDATE() first selects a small random set of f
other devices from p’s local sequence S, (lines 6-8). As a
consequence, the only devices that participate in SPRINKLER
are the ones that Alice already used at least once.

These random devices are selected from S, i.e., the se-
quence of interactions already learned by p, from which we
exclude p and the most recent device found in S, (which
is likely to be up to date). p initiates a push/pull exchange
with each selected peer ¢ which is not known to know
at least as much as p (lines 9-13). This knowledge check
is performed at lines 10-11, using RV,[g], p’s idea of the
interactions that are known to g. By construction, and in the



TABLE I
VARIABLES & PARAMETERS OF SPRINKLER

Variables maintained by the device p belonging to Alice

Sp p’s knowledge of Alice’s interaction sequence, i.e. its local se-
quence. Sy is initialized with a small number of core devices
(possibly only one) that Alice uses regularly.

RVp[-]  RVjp[g] contains p’s idea of what is known to device g. Initially
RVylgl = @ for all ¢ € D\ {p}.
Parameters of the algorithm

f The fanout of the probabilistic broadcast, that is the number of

devices that each device communicates new information with.

1: on event Alice opens device p
2: r < (p, timestamp)
3: Sp S, U{r}

4: GOSSIPUPDATE()

> New interaction r
> Updating p’s local view
> Triggering the dissemination

5: function GOSSIPUPDATE(exclude|= @])

6 last_device < most recent device in .S,

7: exclude < exclude U {p, last_device}

8: peers < f devices from {devices from S} \ exclude
9

for ¢ € peers do > Looping through random peers

10: Saittpush < Sp \ RVp[q]

11: if |Saiffpush| > 0 then > Only sending new data
12: send (REQ : Sqifipush) t0 ¢ > Push/pull to ¢
13: RVp[q] — RVp[q] U Sdiffpush > Tracking ¢

14: on receive (ANS : Sgipun) from g: > Pull reply
15: Sp — Sp U Sdiffpull

16: RV,[q] < RV, [q] U Saitrpun

Fig. 2. SPRINKLER’s push/pull request (on device p)

—

> Push/pull request
> Tracking p
> Is Sdiffpush new?

7. on receive (REQ : Sgifpush) from p:
18: RV, [p] <= RV [p] U Saifrpush
19: | if Sqittpusn € Sy then

20: Sq — Sq @] Sdiffpush

21: GOSSIPUPDATE({p})

22: Saittput <— Sq \ RV [p]

23: if ‘deffpu11| > 0 then

24: send (ANS : Sgigpul) t0 P
25: RV:I [P] — RV‘q [p} U Sdiffpull

> Propagating new data

> Anything new for p?
> Answering pull

Fig. 3. SPRINKLER’s push/pull reply (on device q)

absence of communication faults, RV,[g] underestimates ¢’s
actual knowledge (i.e., RV,[g] C S,)!, which means no new
information is missed.

The send operation at line 12 starts the actual push/pull
exchange with ¢: the incremental update Sgifipush is sent to gq.
On receiving Saisrpush (line 17, Fig. 3), ¢ first processes p’s
incremental update (lines 18-21), by (i) adding it to ¢’s idea
of p’s view (line 18), (ii) updating its own view if needed
(line 20), and (iii) launching a cascading dissemination in case
the diff contains information new to g. The condition at line 19

IThis is because any interactions added to RVj[g] by p have either been
sent to ¢ (lines 13 and 25) or received from ¢ (line 16).

®

Alice stops working
on device dcuxf Alice moves to d,
4
{
Alice‘g H —
D | Wywait = WsessWi,d
Y, 1

> next
- TW € Wyait

Alice waits for the whole
session to reach d, .. Alice can now use d, ..

device timeline
interactions ry, ry,,
session request

::> session transfer

Alice is waiting

next*

Fig. 4. Timeline of the session handoff from device deurr to dnext.

ensures the dissemination eventually stops, as increments are
never gossiped twice by the same device. {p} is passed as a
parameter to GOSSIPUPDATE() to increase the probability of
hitting uninformed devices.

Lines 22-25 implement ¢’s reply to p’s pull request. Again,
q only replies to p if it might possess new information (test
of line 23), in order to reduce communication. The (possible)
reply from ¢ to p is processed by p at lines 14-16 (Fig. 2).

3) Bootstrap and reliability of SPRINKLER Gossiper:
Because a device p only gossips with other devices found
in its sequence view S,, p’s view needs to be initialized
to a default value of a few core devices regularly used by
Alice e.g. {{(a,0), (b, 0)}, where 0 is an arbitrary bootstrapping
timestamp. The use of S, as a source of gossiping candidates
prevents devices not used by Alice to be involved in the
protocol. When a new device is used by Alice, on the other
hand, it propagates updates containing at least itself (lines 2-3),
and automatically becomes known to the rest of the system.

The overall reliability of the gossip diffusion is governed
by its fanout coefficient f (which appears at line 8). In a
reliable network, a fanout f slightly over log (IV) ensures that
all devices will be reached with a very high probability [27].
In practice we therefore use f = [log (N)].

Although we assume a reliable network, transient commu-
nication failures might occur. When this happens, the protocol
might temporarily fail to reach all nodes, but full propagation
will resume when the network recovers. While the network is
degraded, RV, [g] might diverge, and might contain informa-
tion not included in S,. This is because we do not insure that
the message (REQ : Sgiffpush) sent at line 12 is successfully
received by ¢ before modifying p’s remote view RV, [q]. In
most situations, however, other nodes will provide g with the
missed information when the network recovers. This choice
favors communication lightness over reliability, but turns out
to work well in practice (as shown in Section III-B1).

C. The Session Handoff algorithm

Fig. 4 shows the different steps undertaken by SPRINKLER
Session Handoff when Alice moves from device d.,, (her mo-
bile phone here) to another device dex (her laptop) between
interactions 7 (on device deyy) and 741 (on device dpex)-



When Alice leaves her mobile phone (d...:, label @) at the
end of interaction 7, SPRINKLER proactively sends a partial
session state to her other devices (label (B). (We assume here
that we can detect the end of an interaction, e.g., using some
activity recognition mechanism.) The amount of state each
device receives is decided using the user behavioral model
constructed so far by SPRINKLER Gossiper. (We detail this
below.) We note wy, 4 the amount of session state proactively
received by device d at the end of interaction 7. In Fig. 4,
Alice’s laptop proactively receives wy, g, of Alice’s session
on her mobile phone.

When Alice reaches her laptop @, SPRINKLER Session
Handoff reactively requests the remainder of the session state
that has not reached the laptop yet (B)>. While the remaining
session state Wyait = Wsess — Wh,dye 1S downloaded from
deurr, Alice must wait (@), hashed bar on the laptop timeline)
until she can finally use her device @. Assuming latency is
negligible compared to the download time of wy,;;, the waiting
time of Alice Tyy is proportional to Wy

The perfect session handoff algorithm would always provide
its user with the last state of her applications when she opens
a device, whichever of her appliances she has previously
used, and without any waiting time. In addition, given that
at least some of her devices are mobile assets with limited
resources, this algorithm should consume no more than the
bare minimum: it would have sent the application session once,
from the device Alice just quit to the one she is about to use.

Such an algorithm is not feasible, since no one can predict
the future. Instead, the current device d.,,; infers which devices
are most likely to be used next, to proactively send them
chunks of the session’s blob when the user quits deyyr. If deyr
sends more session chunks to the other devices, the waiting
time Ty will lower at the cost of higher network traffic. On the
other hand, if d.,, does not send any of the current’s session
state, the waiting cost will be maximal, as dyex Will have to
reactively fetch the entire session when she opens it. We call
this network cost C. There is clearly a trade-off between the
waiting time Ty, and the network traffic Cy.

1) Formulating the handoff cost: Thanks to the Gossiper,
dewr knows a subset of the user sequence of interactions
Sk, du- By computing the transition vector py, (see Equation 1)
out of S 4., the Session Handoft algorithm outputs the data
vector Wy, (see Equation 2), that contains the amount of bytes
of the session to send to each other device.

We formulate the waiting time Ty, and the network cost
C described earlier:

2In order to fetch this remaining state, dpext must know the address of deyrr.
It can be achieved by several means: if dcyr sent chunks of the last session
to dpext (Which is not the case when wy 4,,, = 0) or by looking at the
penultimate interaction in Siy1 g, (though dhex’s local sequence can be
incomplete). In addition, when dyex¢ Wrongly believes that a given device d
is the device used at interaction r and asks it the last session, d uses its own
knowledge to redirect dpext to the right device, deurr. If dnext Was still unable
to locate dcurr, the Session Handoff would fail completely: Alice’s previous
session would never be loaded on dyext. Consequently, we evaluate a reactive
handoff in Section III-B3.

o Ty X Wyait = Wsess — Wh,dye: 1he waiting time Ty is
proportional to the quantity of the current session that the
next device dyex, still needs to download. In the particular
case where deyr = dhext, the session is already fully on
the device, leading to a null waiting cost Ty = 0;

e Cn = Y wg,q: the network cost Cy is the sum of all
deD’
the session chunks proactively sent from d to the other

appliances in D’.

2) Computing Wy,: The goal of the Session Handoff algo-
rithm is to figure out the best vector of sent data W;, based
on the transition vector pg. dey Wants to minimize 7y given
that it will send a total of C'y bytes of the session to its peers.
We introduce the parameter -y, that controls the amount of data
the device dgy Will send to the other appliances.

We propose two different solutions for the calculus of Wj:

e Uniform: As a baseline, our first solution is to send

the same quantity of the session to each device in D',
regardless of py:

Vd € D/a Wk,d = Wsess * ﬁ
« Proportional: Our second solution is to make W}, propor-
tional to py. This way, devices having a high probability
of being used next will naturally receive a bigger portion
of the user’s session. The most simple computation would

be the following:
Vd € ’D/7 Wg,d = Wsess * min(’y * Pk (d)7 1)

However, a device dj,, may have a very low probability
Pk (diow) of being chosen. The preceding calculus would
result in a negligible wy 4., compared to the cost of
the network exchange. Therefore, we compute a new
transition vector p’,, such that any probability inferior
to a certain threshold « is null. In practice, we arbitrarily
set « = 1/(N — 1). We introduce a second parameter
to ensure that p’;, sums to one. It is computed as follows:

1
f=——""5;
Y. pr(d)
deD’
pr(d)>a
if <
vdeD, pld)=1" i De(d) < o
B pr(d) else

The vector of sent data is then simply proportional to this
new pruned vector of probabilities:

vd € D’, Wg,d = Wsess * min(7 * p/k(d)v 1)

This way, we send session chunks only to devices that
have a high enough probability of being used.

We have proposed two solutions to dispatch session chunks
to the devices on session handoff. The first (uniform) will
give us a comparison point to observe the influence of the
behavioral knowledge inferred with SPRINKLER Gossiper (in
the proportional approach). The parameter v will allow us to
tune the overall quantity of data that dg,, will send to its



peers: from vy = 0, that solely relies on reactive handoff, to a
maximal +, that consists of sending the entirety of the session
to each device having a non-null probability of being used
next.

III. EVALUATION
A. Experimental approach

We evaluate our contributions by launching several virtual
devices used by an emulated user. In our futuristic scenario,
we imagine a user controlling a dozen of devices sequentially.
In the following, we first propose several behavioral models
that emulate a fictitious user’s activity, before presenting our
experimental setup.

1) Proposed user behavior models: In Section II-A, we
have represented a user’s behavior as a growing sequence .S of
interactions with her appliances. To emulate these interactions,
we propose to use a number of discrete-time Markov models
M, from which we then generate the sequences of interactions
driving the evaluation of our contributions. Given the set D =
{dy,...,dn} of a user’s devices, a discrete-time Markov user
model Py, takes the form:

Pam = (pdivdj)(dhdj)epz s.t. pa,a; = Pld; = dj].

We propose to use 5 different strategies to generate these
user models, and for 3 of these, we create two variants, leading
to a total of 8 user models. These models differ in terms of
density (representing how many potential next devices might
be picked after the current one) and uniformity (representing
the extent to which selection of a next device is biased or not).

Figure 5 shows examples of the transition matrices P g
generated by the 8 models, represented as heatmaps (using
N = 12 devices). The creation strategies are explicated below:

1) uniform: The worst case scenario for our framework is
a completely uniform model, where Alice chooses her
next device with an even probability of 1/N. In this
situation, the currently used device cannot guess what
appliance will be used next, making the session handoff
as good as random;

2) cyclic: The best usage pattern is when Alice uses her de-
vices in a cyclic order (making a circular Markov chain),
because the devices always succeed in the prediction of
the appliance she will use next. In this model, every
transition vector Paq(d, *) is constant;

3) sequence: This model is computed from a random
model sequence Sx containing [ interactions. S is
populated by devices randomly selected with an uneven
probability Pieyices € [0,1]Y. Plievices thus favors the
use of certain devices (e.g. Alice uses her smart-phone
more often than her mother’s laptop). We compute
the transition matrix Pyy = ¥(Spq) as was shown
in Section II-A. The longer the model sequence Siy,
the denser the output matrix. We thus generated two
sequence models: 3.1, with [ = 2 x N, and 3.2, with
[ =10x% N;

4) zipf: Many processes in real life follow a Zipf law
[36]: word occurrences, citations of scientific articles,

1. uniform 2. cyclic 3.1 sequence (1=24) 3.2 sequence (1=120)
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Fig. 5. Heatmaps of the transition matrix P of each proposed model, with
N = 12 devices. For each model, the i row of the heatmap represents the
vector of transition probabilities from d;: Paq(d;, *). Model 1. uniform has
a constant probability of 1/N.

wealth per inhabitant... Zipf’s discrete law of probability
z(k;n, s) is defined by a constant population size n € N,
arank k € NT, and a constant exponent s € [1, +oo[. It
states that: z(k;n, s) = z(1;n,s) « k~*, i.e., the proba-
bility of occurrence of the k™ most frequent element
z(k;n, s) equals the probability of occurrence of the
most frequent element z(1;n,s) times k~*°. The bigger
the exponent s, the faster the function approaches zero,
and the more z(1; n, s) dominates the other probabilities.
In our futuristic scenario where a user would own and
frequently use a dozen of devices, the assumption that
the transition probability between her devices follows a
Zipf law seems plausible.
We propose a model where, to each device d’s transition
vector Ppq(d, *), we assign a random permutation of
Zipf’s law’s PMF using n = N and a random exponent
s. We propose two variants: in model 4.1, we pick
s from [1,2.5], which keeps the biggest probability
z(1;n, s) € [0.32,0.75]. In model 4.2, we draw s from
[2.5,5], such that z(1;n,s) € [0.75,0.96]. Note that
Pa is always dense using the zipf model, but the
probabilities’ heterogeneity grows with the exponent s;
5) sparse: A sparse transition matrix contains null prob-
abilities: there are certain devices d; and d; such that
d; will never be used after d;. This is realistic, e.g.,
two desktop computers from two faraway locations will
never be accessed in a row. For SPRINKLER’s handoff,
this sparsity prevents the used device to have to choose
between too many appliances to send session chunks
to. For each d € D, we compute the transition vector
Pam(d, «) by drawing samples from a Zipf law Z(n, s)
with a “big” n (e.g. 1000) and a fixed s:

X ={Z(n,s) — 1}V
PM(CZ,*): gxs.t. Z.T#O
zeX zeX

The bigger the exponent s, the bigger the probability
that Z(n, s) yields one, i.e., that an outgoing transition
equals zero. We proposed two models 5.1 and 5.2 with



s = 1 and s = 4 respectively. We see that Pp’s sparsity
is proportional to the exponent s.

While creating these models, we always ensure that the
Markov graph is strongly connected, in order to effectively
see the user switch between the IV devices, instead of looping
through a small subset of D.

To generate sequences of the user’s activity for each model,
we randomly walk on the Markov graph derived from P4,
starting from a random device. The resulting sequence Sy is
then used to drive the evaluation of the session handoff.

2) Experimental testbed: To evaluate our system, we de-
ploy N virtual devices implementing the SPRINKLER al-
gorithm. We perform one evaluation per behavioral model
presented above. From each of them, we obtain an interaction
sequence Sior = {r1,...,rp} of size L. It is split in two: the
first subsequence Sipie = {r1,...,7rL,, | of size Ly < L is fed
to the devices on bootstrap (cf. Section II-B3) to let them know
their respective addresses, and to give appliances an initial
knowledge of the user’s behavior. The second subsequence
Sexp = {"Liet15-- 7L} (Of size Lexy = L — Liny) provides
the interactions performed during the experiment.

In our experiments, a user interaction is atomic: opening
and closing a device is instantaneous, and generates a new
session. While the SPRINKLER Gossiper algorithm has been
effectively implemented by the devices, the Session Handoff is
only simulated: based on the (genuine) current device’s local
sequence, we determine the amount of session data it sends
to its peers, and finally compute the network cost C'y and the
waiting time Ty for this interaction (cf. Section II-C1).

Experimental parameters: We set the number of devices
to N = 12. We argue that this number of devices is already
three times above current usage behaviors [20]. The initial
sequence length Li,; is set to 30. We consider that a tech-
hungry user, owning and regularly switching among twelve
devices, would easily achieve 30 interactions per day. Such a
sequence length is big enough to contain most devices’, yet
small enough to provide only a coarse estimation of the user’s
real behavior. The second subsequence is set to a length of
Ly, = 70.

The SPRINKLER protocol has three parameters: the Gos-
siper’s fanout f, the Session Handoff parameter -y that controls
the overall amount of session data sent, and « that controls the
probability of usage below which we do not send any session
data to a device. As already stated, we fix f = [log(N)],
because this value has been proven sufficient for a probabilistic
broadcast to reach all of its participants with a very high
probability [27]. « has been arbitrarily set to 1/(N — 1). v
is set to 1 when comparing the different usage behaviors in
Figure 6 (thus bounding the network cost C'y to the session’s
SIZ€ Wyess); it varies from O to N — 1 in Figure 7.

According to [37], a web application session can weigh
between 10kB to an unbounded value depending on the
state-collection method (e.g. snapshots or event logging), and
obviously on the application. Hence, we consider that a session
weighs between 10kB and 1MB.

B. Evaluation of SPRINKLER

We first evaluate the SPRINKLER Gossiper. Then, we dis-
cuss the performance of the proactive session handoff, and of
the reactive fallback.

1) Performance of the SPRINKLER Gossiper: The goal of
the Gossiper algorithm (Section II-B) is to successfully prop-
agate a user’s overall interaction sequence S; to all devices.
To assess the Gossiper’s efficiency, we thus compare the size
of the real sequence S; with the local version of the sequence
Sq4.+ maintained by each device at that time.

We aggregate the traces from all our experiments (one per
user model), thus leading to 6391 studied local sequences.
577 (9.0%) of them are incomplete. Among incomplete local
sequences, the median difference from the real sequence
(IS¢] — |St,a) is 1, while the maximal difference is 7 (one
tenth of Lexp).

We conclude that our algorithm is able to perfectly prop-
agate the sequence of the user’s activity most of the time.
When not the case, the drift of the local sequence is controlled:
the devices eventually get the missing information from other
peers, and end up perfectly knowing the user’s behavior again.
Overall, we believe the local sequences are generally able to
generate a fairly unbiased py, for the Session Handoff to share
session chunks.

Additionally in terms of network cost, each device receives
a median amount of activity-related data of 3.5kB per user
interaction, leading to a global of 42kB for N = 12 de-
vices for each interaction. Hence, the median amount of the
global traffic generated by the SPRINKLER Gossiper is of
2.9MB (42kBx* L) per experiment (using a single behavioral
model). Obviously, increasing the number of different devices
that the user owns inherently has a direct impact on the traffic.

2) The session handoff: We want to understand the kind of
user behavior for which our algorithm is best suited. To do so,
we compare the waiting times obtained with the different user
models for a fixed . Thus, we set Sprinkler’s parameter ~y to
1, i.e., in total, the currently used device can only proactively
share as much as the session’s size wsess, distributed among
the possible next devices.

Remember that a centralized session handoff solution only
functions reactively: the normalized user’s waiting time Ty
is always one in this situation. However, it always scores a
proactive network cost Cy; of zero.

Figure 6 shows the boxplots of the normalized waiting times
(8.t. Ty = Wit/ Weess) Tor each user model (see Figure 5). The
box edges show the first and last quartile, while the whiskers
represent 3/2 of the interquartile range. The models are sorted
by increasing lower quartile and median. A waiting time of
zero means that the entire session was sent proactively; Ty =
1 means that none of it was sent, and that the entire session
had to be downloaded reactively when the user opened her
device. The dotted line represents the median waiting time of
the baseline (Section II-C2). It is constant, because the baseline
does not take transition probabilities into account.

As expected, the Session Handoff algorithm performs best
with the 2. cyclic model, where the next used device djex 1S
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Fig. 6. Box plots of the user’s waiting time (normalized) after the session
handoff, grouped by behavioral model. Here, v = 1: each device shares
no more than the session’s size to all the other devices. Lower is better: a
null waiting time means that the session was sent proactively in its totality; a
waiting time of one means that the current device needs to download the whole
session reactively. We see that the handoff’s performance highly depends on
the user model.
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Fig. 7. The user’s waiting time (normalized) as a function of the handoff’s
network cost (normalized by wsess), for several behavioral models, using v €
[0, N — 1]. Lower is better: the handoff is more efficient when a small
consumption increase yields big waiting time gains.

always known. As a result, the cyclic model scores a constant
waiting time Ty, = 0, meaning that the session is always
entirely sent proactively to the right device. The algorithm
performs worst with the 1. uniform model, where dpex i8S
unpredictable. It leads to a wait time Ty > 0.75 in 75% of
the cases. The second best model for the Session Handoff is
the 4.2 zipf with s € [2.5, 5], where one transition probability
greatly overpowers the others in each row (as can be observed
in Figure 5). This model is very similar to the cyclic one, with
some added noise: the proactive handoff is mostly perfect.

The next two models, 5.2 sparse (s = 4) and 3.1 sequence
(I = 24), show fairly similar results. Both models’ upper
whiskers reach one: the waiting time is highly variable. Fig-
ure 5 shows nearly identical transition matrices for these two
models: mostly deterministic, apart from some equiprobable
transitions. We argue that the difference of median waiting
time (0.46 for model 3./ against O for 5.2) is caused by the
uniform probability of switching among 7 devices when using
device #1 in model 3./. For these two models, we observe
that a little loss in predictability of the user’s behavior causes
more unsteady results, even though the session handoff scores
are still good most of the time.

The last three models, 4.1 zipf (s € [1,2.5]), 5.1 sparse
(s = 1) and 3.2 sequence (I = 120) all show a median
waiting time above 0.5 (resp. 0.75, 0.73 and 0.88). The three of
them display very dense transition matrices (apart from some
constant vectors in 3.2): we consider them as different types
of unpredictable behavior. Indeed, in the 4.1 zipf model, one
transition probability continues to dominate the others, while
the two others show many uniform probabilities of transition.
This leads to d.. always sending small chunks of the session
to several devices, which hampers the overall results.

This experiment shows that the performance of the proactive
session handoff greatly depends on the user’s behavior. Given
our simple inference model, we get better results when the
user has predictable habits, despite some variability (e.g. 4.2
zipf, 5.2 sparse, 3.1 sequence).

We performed a second study (Figure 7), this time by
varying the  parameter for a fixed user model, allowing us to
observe the influence of the normalized proactive network cost
Cn on the waiting time Tyy. The figure shows the normalized
waiting time Ty = Wyait/Wsess as a function of the network
cost Oy, for four different user models, and for every value
of v €[0, N —1].

The baseline, represented as a dotted line, shows a linearly
decreasing waiting time as the network cost increases. Each
dot represents the outcome of a single handoff. The full line
represents the average of the waiting time over a sliding
window of the network cost. Note that, in our Session Handoff
algorithm, the proactive network cost Cy is often lower than
~: indeed, the current device will only send its session to
devices that have a non-null probability of being used next
according to p’, (cf. Section II-C2). In this graphic, lower
is better: the 4.2 zipf (s € [2.5,5]) model shows a close-
to-perfect handoff. Then, we displayed results for 5.2 sparse
(s = 4), 3.1 sequence (I = 24) and 4.1 zipf (s € [1,2.5]), in
the same order that they appear in Figure 6.

Very good session handoff traces will look like 4.2 zipf: a
small increase in the allowed network cost leads to a dramatic
decrease in waiting time. Furthermore, 4.2 zipf is very short
tailed: devices never send more than twice the session size. On
the other hand, 4./ zipf shows poor results: at Cy = 1, the
average waiting time is above 0.5. The function monotonically
decreases until Cy = 5: only very unpredictable handoffs
cause that much data exchange, thus scoring more than for
Cx = 4. Finally, 5.2 and 3.1 show a combination of the first
and last plots: they attain a very low waiting time at Cy = 1
(i.e. deterministic handoffs), and a longer Ty as the network
cost increases (i.e., unpredictable handoffs).

We also observe many points at Ty, = 1: this situation only
arises when a device is being used for the first time ever. As
it is not in the sequence of interactions, the previous device
could not have sent it any session chunks, resulting in a failure
of the proactive handoff. Fortunately, once this device joins the
gossip, it will be able to proactively receive the session.

Looking at this experiment, we observe two possible use-
cases for SPRINKLER: it could either be preferable to keep
a bounded network cost, leading to variable waiting times
(as in Figure 6); or it could be preferable to have mostly
perfect proactive handoffs, while keeping network costs at a
reasonable level. Indeed, combining all our models except the
uniform one, we see that the proactive network cost C'y never
exceeds 7 times the session size, which is far for flooding.

Overall, we find our predictive approach for distributed
session handoff promising: for a bounded cost, it can send
most of a user’s session to her next device in the majority
of cases. Future works on the behavioral model (e.g., using
timestamps or locations) and on the session handoff decision



algorithm hold further potential to drastically lower the user’s
waiting time.

3) Reactive handoff: Since our proactive session handoff
might be imperfect, we ought to propose a functioning reactive
fallback. In a situation where the previous session was only
partly downloaded, dcu; needs to locate dp., to be able to
retrieve the remainder of the last session from it. We assume
that dpy is always connected when dcu; requests the session.

There are four ways deur can find dprey’s address:

1) If dcyr has an up-to-date local sequence Sy 4, contain-
ing dprey in its last interaction (i.e. dprey is in Sk, d,,.)s

2) If dprey has sent chunks of its session to dey, (that is
when wy_1 4., 7 0);

3) If the previous and current devices are the same (dcyy =
d/prev);

4) If deyr wrongly believed that the previous device was d,
but d (which knew the right dp,) redirected d. to the
right device.

It is only when none of these solutions work that we fail to
provide Alice with her last session.

TABLE 11
HOW DOES dcyrg KNOW THE ADDRESS OF dprgy ?

Failed
2 (0.36%)

Redirected
16 (2.90%)

deyrr = dprev
15 (2.71%)

Wh—1,degy 7 0
407 (73.7%)

dprev I Sk, deye
523 (94.7%)

Table II shows how d, identifies dp, in all handoff
occurrences of our experiment (using the 8 models and v = 1).
In total, there are 8 x 69 = 552 data points. Note that
the first and second categories are not exclusive. We see
that, even though 5% of the used devices have an erroneous
sequence during handoff, the current device quasi always finds
the address of its ancestor. As a result, the reactive handoff
succeeds in 99.64% of the cases.

We still consider a complete failure of the handoff unac-
ceptable. To address this issue, we should avoid relying solely
on dprey to retrieve the previous session: indeed, other devices
received parts of it. One could for instance accept session
chunks from any online device, in a similar fashion to the
BitTorrent file exchange protocol [14].

IV. RELATED WORK

The problem of providing seamless cross-device session
handoff for Web applications has received considerable atten-
tion from both the research community and the industry, and
nowadays represents a hot topic of research. State-of-the-art
works can be divided into different categories according to the
different facets of session handoff that they target [19], [34]: (i)
triggering the transfer of a session manually or automatically;
(i) dumping and restoring a session; and (iii) forwarding a
session either in a centralized or in a distributed manner.

The first category of works is mostly focused on mecha-
nisms for saving/restoring the state of an application in an
optimized manner [11], [16], [24], [28], [30], [37], [38]. State
saving and restoration are achieved by injecting code into the

application’s data path, either via code transformation or via
proxies that intercept HTTP requests in order to instrument
code in the application’s Web page. Other facets of session
handoff are dealt superficially. The session state is stored
on a cloud-based server, from where it is transfered to the
target device either by direct transfer, or by providing a URL
that the user can load on the target device. Additionally,
session handoff is either explicitly triggered by the user,
or automatically initiated in a reactive way based on user
preferences and context.

A second category of works specifically addresses session
migration among a set of servers from a broader perspective
(i.e., without considering web applications) [10], [35]. These
works rely on SIP signaling protocol to manage the migration.
Although it enables forwarding of a session among different
servers, it requires a traditional SIP architecture based on SIP
servers (i.e., registrar, proxy and redirect server) for session
management, making it a centralized solution. Session transfer
is either triggered by the user or automatically triggered when
the user’s IP address changes.

A third category of works addresses session handoff in an
ad hoc fashion, relying on a peer-to-peer architecture to save
and transfer application sessions among devices owned by
users [17], [18], [32]. However, these works do not take user
behavior into consideration, and as the target device is not
known in advance, they rely on blind flooding to propagate
the session state.

It is also worth mentioning a number of industry initiatives
to provide seamless end-user experience with applications
that work across devices, such as Apple Handoff [5], or
Google Drive applications. Nevertheless, these approaches are
proprietary, centralized and isolated from each other.

Compared to all the aforementioned works, SPRINKLER
leverages on the first category, focused on session dumping
for Web applications. However, SPRINKLER is based on a
totally decentralized approach, and does not rely on the user
(or user preferences) to trigger session handoff: it is performed
automatically and proactively according to a distributed pre-
diction algorithm. The strength of SPRINKLER is its ability
to be decentralized and to predict user behavior in order to
optimize session handoff.

V. CONCLUSION AND FUTURE WORK

We have presented SPRINKLER, a novel probabilistic dis-
semination protocol that exploits decentralized learning to
enhanced the fluidity of peer-to-peer multi-device user in-
teraction while reducing unnecessary network costs. More
generally, SPRINKLER highlights the potential interest of
decentralized learning methods to enable private pervasive
interactions. In the future, we would like to investigate the
use of additional information, such as geolocation and activity
duration, to further improve the approach.
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