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Abstract In this paper, we propose a new methodology for
solving stochastic inversion problems through computer ex-
periments, the stochasticity being driven by a functional ran-
dom variables. This study is motivated by an automotive ap-
plication. In this context, the simulator code takes a double
set of simulation inputs: deterministic control variables and
functional uncertain variables. This framework is character-
ized by two features. The first one is the high computational
cost of simulations. The second is that the probability dis-
tribution of the functional input is only known through a
finite set of realizations. In our context, the inversion prob-
lem is formulated by considering the expectation over the
functional random variable. We aim at solving this problem
by evaluating the model on a design, whose adaptive con-
struction combines the so-called Stepwise Uncertainty Re-
duction (SUR) methodology with a strategy for an efficient
expectation estimation. Two greedy stategies are introduced
to sequentially estimate the expectation over the functional
uncertain variable by adaptively selecting curves from the
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Université de Lyon, UMR 5208, Ecole Centrale de Lyon, Institut
Camille Jordan

Olivier Lepreux
IFPEN, Solaize, France

Miguel Munoz Zuniga
IFPEN, Rueil-Malmaison, France

Clémentine Prieur
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initial set of realizations. Both of these strategies consider
functional principal component analysis as a dimensional-
ity reduction technique assuming that the realizations of the
functional input are independent realizations of the same
continuous stochastic process. The first strategy is based on
a greedy approach for functional data-driven quantization,
while the second one is linked to the notion of space fill-
ing design. Functional PCA is used as an intermediate step.
For each point of the design built in the reduced space, we
select the corresponding curve from the sample of available
curves, thus guaranteeing the robustness of the procedure to
dimension reduction. The whole methodology is illustrated
and calibrated on an analytical example. It is then applied
on the automotive industrial test case where we aim at iden-
tifying the set of control parameters leading to meet the pol-
lutant emission standards of a vehicle.

Keywords functional random variable · Karhunen-Loève
expansion · data reduction · functional quantization · set
estimation · Gaussian process models.

1 Introduction

In recent years, computer models are omnipresent in engi-
neering and sciences, because the corresponding physical
experimentation is costly or even impossible to execute. In-
deed, numerical simulations are often used to replace physi-
cal experiments as underlined in [3,7]. Practitioners are not
only interested in the response of their model for a given set
of inputs (forward problem) but also in recovering the set
of input values leading to a prescribed value or range of the
output of interest. The problem of estimating such a set is
called hereafter inversion problem.
We will consider a system that evolves in an uncertain envi-
ronment, the uncertainties appear for example due to man-
ufacturing tolerances or environmental conditions. The nu-
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merical simulator modelling the system, denoted f , takes
two types of input variables: a set of control variables x2X,
and a set of uncertain variables v 2 V . Making any distri-
butional assumptions for the uncertain variable v, robust in-
version consists in seeking the set of control variables x 2
X such that supv2V f (x,v) is smaller than a threshold c.
Then, the difficulty of solving the robust inversion problem
strongly depends on the uncertainty set V . In our setting, V

is a functional space, and we consider instead the inversion
problem under uncertainty as a stochastic inversion prob-
lem, assuming that the uncertainty has a probabilistic de-
scription. Let V denote the associated random variable, val-
ued in V , modelling the uncertainty. In our framework, we
are interested in recovering the set G ⇤ := {x 2 X , g(x) =
EV[ f (x,V)]  c}, with c 2 R. The functional random vari-
able V is only known through a set of realizations and the
expectation has to be estimated. Moreover, the simulations
are time consuming and thus the usual Monte Carlo method
to estimate the expectation ought to be avoided. Many re-
views have been published to address this issue. Among the
numerous techniques, the paper will focus on the ones based
on the choice of a finite representative set of realizations
of V, among the ones available. More precisely these ap-
proaches aim at minimizing the expected distance between
a random draw from the probability distribution of V and
this finite set. In the case of vector-valued random variables,
this type of methods, introduced in [12] as principal points,
was employed in various statistical applications, including
quantizer design [20,26] and stratified sampling. It is in-
creasingly used for many engineering applications, where
we are often faced with the challenge of working with big

data. It is then necessary to reduce big data to manageable
data. As for the case of functional random variables, various
studies have been done in the Gaussian case (see [21,27] and
references therein). Here we work in the special case where
the functional variable V could be non Gaussian and is only
known through finite sample of realizations. This paper pro-
poses two new methodologies to perform this data reduction
or quantization for functional random variable and we inves-
tigate their performance in terms of integration errors.
Inversion problems have already been carried out in many
applications, notably reliability engineering (see, e.g., [3],
[7]), climatology (see, e.g., [4], [13]) and many other fields.
In the literature, one way to solve the problem is to adopt a
sequential sampling strategy based on Gaussian process em-
ulators. The underlying idea is that Gaussian process emula-
tors, which capture prior knowledge about the regularity of
the unknown function g : x 7! EV[ f (x,V)], make it possible
to assess the uncertainty about G ⇤ given a set of evaluations
of g. More specifically, these sequential strategies for the es-
timation of an excursion set are closely related to the field of
Bayesian global optimization (see, e.g., [9]). In the case of
inversion problems, Stepwise Uncertainty Reduction (SUR)

strategies based on set measures were introduced in [33].
More recently, a parallel implementation of these strategies
has been proposed in [7] and applied to the problem of re-
covery of an excursion set. Briefly, the strategy SUR gives
sequentially the next location in the control space where to
estimate the function g in order to minimize an uncertainty
function. The key contribution of the present paper is to pro-
pose a data-driven adaptation of that procedure in the pres-
ence of functional uncertainties.
The paper is divided into five sections. Following this in-
troduction, Section 2 is devoted to the introduction of two
new adaptive methods to choose the finite representative set
of the functional random variable for a reliable expectation
estimation. In Section 3, we highlight the integration per-
formance of our methods comparing to the standard Monte
Carlo and to an existing method based on a probabilistic
modelling with truncated principal component analysis (PCA).
In Section 4, we introduce the Bayesian framework and fun-
damental notions for Stepwise Uncertainty Reduction (SUR)
infill strategies in the context of computationally costly sim-
ulations. In Section 5, we introduce the new proposed data-
driven methodology for stochastic inversion under functional
uncertainties and describe our algorithm. Finally, in Sec-
tion 6, we illustrate the overall procedure on an analytical
example and then apply it to an industrial test case.

2 Functional data reduction

In this section, we introduce new data reduction strategies
for functional data in a greedy fashion. The first one is based
on notion coming from functional quantization. The second
one is related to notion of space filling design. In this paper,
data reduction aims at reducing the integration error when
computing E[ f (x,V)]. Therefore, we focus in Section 3 on
the performance in terms of integration error of our strate-
gies, comparing to standard procedures.

Context We consider the space H = L2(W ,F ,P;V ) of
random processes V with realizations V(,w)= v in the space
of deterministic square-integrable functions defined on [0,T ]
denoted with V =L2([0,T ]) and equipped with norm ||v||=
(
R

T

0 v(t)2dt)1/2. The random variables V(t, .)=h lie in L2(W),
the space of random variables with finite mean and variance,
defined on (W ,F ,P) and equipped with norm
||h ||L2(W) = (

R
W h2dP)1/2. All random processes discussed

in this paper lie in H which is equipped with norm

||V||L2 =
�
E[||V||2]

�1/2
=

✓
E

hZ
T

0
V(t)2dt

i◆1/2
, (1)

for any V 2 H . The vast majority of realistic engineer-
ing problems can be addressed within this set of assump-
tions. Without loss of generality, we will consider a centred
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stochastic process with finite variance. We aim at summa-
rizing the distribution of V through a finite collection of
deterministic functions {v j}l

j=1 and corresponding weights
{w j}l

j=1. Many reviews have been done on functional quan-

tization [27,21,28]. For instance, Luschgy, Pagès and Wilbertz
[21] propose different strategies for Gaussian processes.
An optimal quantization of V consists in finding the subset
A⇢ V with card(A) l that minimizes

���
���min

a2A

||V�a||
���
���
L2

=

✓
E

h
min
a2A

||V�a||2
i◆1/2

. (2)

Such a set is called an optimal l-quantizer. Lets us de-
note as A = {a1, ...al}. We define a neighbour projection as-
sociated to A as:

pA :=
l

Â
i=1

ai1Cai
(A), (3)

where 8i 2 {1, ..., l} Cai
(A) is the Voronoi partition induced

by A and associated with ai:

Cai
(A) = {v 2 V | 8h 2 {1, ..., l} , ||v�ai|| ||v�ah||}.

(4)

The A-quantization of V is defined by:

V̂l := pA(V). (5)

The projection pA transforms V into its nearest neighbor in
the set A. Voronoi partition is optimal in the sense that, for
any random variable V0

l
: W ! A, one has E||V�V0l ||2 �

E||V� V̂l ||2 (see, [28]). Finally the l-quantization error of
V is defined by

el(V) = inf{
�
E||V� V̂l ||2

�1/2
,

V̂l : W ! V ,card(V̂l(W)) l}.
(6)

From a computational point of view, the cost of minimiz-
ing the error defined in Eq. (6) is not negligible. Even in
the finite-dimensional space Rm, the numerical search of an
optimal solution leads to an increasing computational cost
when l or m grows (see [19]). Luschgy, Pagès propose in
[20] a greedy version of the L2-quantization problem for
U an Rm valued random vector. The greedy-quantization is
easier to compute in terms of complexity but provides a pos-
sible sub-optimal quantizer {û1, ..., ûl}. The authors in [20]
prove that the L2-quantization error at level l induced by
{û1, ..., ûl} goes to 0 at rate l

�1/m. The idea of such a proce-
dure is to determine sequentially the sequence (ûl)l�1. The
first vector û1 achieves the error e1(U). Then, for l � 2,

8l � 2, ûl 2 argminu2Rm

�
E||U� Ûl ||2

�1/2
, (7)

where Ûl is the l-quantization induced by {û1, ..., ûl�1}[
{u}.

In the present work, we propose a sequential strategy in an
infinite-dimensional setting under the assumption that the
random process V may not be Gaussian. In this framework,
Miranda and Bocchini [22,23] propose a one-shot algorithm
that produces an optimal functional quantizer but which de-
pends on a simulation procedure for V. In the following, we
propose a greedy algorithm to compute a l-quantization of
V. In our framework, the functional random variable is only
known through a finite set of realizations. The specificity of
our procedure is first that it does not require a simulation
algorithm of the unknown process V (which is known only
from a finite set of realizations), and secondly our quantizer
can be sequentially increased in a greedy fashion. One in-
gredient in our methodology is the PCA decomposition of
V (also known as Karhunen-Loève expansion).
Let us briefly recall the Karhunen-Loève expansion which
is the most commonly employed method to reduce the sta-
tistical complexity of random fields indexed over bounded
intervals, with continuous covariance function.

The Karhunen-Loève expansion Let V 2H be a random
process with zero mean and continuous covariance function
C(t,s). Then

V(t) =
•

Â
i=1

uiyi(t), t 2 [0,T ], (8)

where {yi}•
i=1 are orthogonal and normalized eigenfunc-

tions of the integral operator corresponding to C:

liyi(t) =
Z

T

0
C(t,s)yi(s)ds. (9)

The {ui}•
i=1 denotes a set of orthogonal random variables

with zero mean and variance li, where li is the eigenvalue
corresponding to the eigenfunction yi. Equation (8) can be
truncated after m-terms:

V(t)'
mKL

Â
i=1

uiyi(t). (10)

Computational details for functional PCA The covariance
structure of the process V is unknown and has to be es-
timated from the data. More precisely, C(s, t) is estimated
from the centered sample X = {vi}N

i=1 by:

C
N(t,s) =

1
N

N

Â
i=1

vi(s)vi(t). (11)

The eigenvalue problem defined by Eq. (9) is then solved
by replacing C by C

N (see, e.g., [6] for convergence re-
sults). That approximated eigenvalue problem is solved, e.g.,
by discretizing the trajectories {vi}i=1,...,N on [0,T ] : k =
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{vi(t j)} j=1,...,NT

i=1,...,N . It leads to the empirical covariance ma-
trix defined as C̃

N = 1
N

k>k . We then have to solve a clas-
sical multivariate PCA with NT variables given by a sam-
ple of size N. Standard PCA involves an O(min(N3

T
,N

3))
search for directions of maximum variance. In the case of
discretized curves NT >> N, thus the complexity of PCA is
O(N3).
Other approaches to implement functional PCA can be found
in the literature. In [31], e.g., the authors propose to ex-
pand the curves as linear combinations of spline basis func-
tions, and to apply PCA to the coefficients of the curves on
the spline basis. There are several criteria for the choice of
the truncation argument mKL [14]. One can cite the Kaiser-
Guttman criterion which consists of choosing the first com-
ponents with eigenvalues higher than 1. Instead of using the
absolute value of the explained variance, as indicated by the
eigenvalue, the choice of mKL could be based on the ”per-
centage of variance” given by the proportion li

ÂN

i=1 li

. By this
way we choose mKL so that the percentage of variance ex-
plained by the first components exceeds a certain threshold.
Often to avoid the arbitrary choice of the threshold, we dis-
play the eigenvalues in a downward curve and extract the
components on the steep slope.
What is important to note is that functional PCA is done
once for all, as an offline pre-processing step in our global
inversion procedure.

L2-Greedy Functional Quantization (L2-GFQ) Now we
aim at optimally exploring the range of variations of V with
a few elements in X . Let
G = {(< v,y1 >,...,< v,ymKL

>)T,v 2 X}= {ui}N

i=1, with
ui = (< vi,y1 >,...,< vi,ymKL

>)T, be the set of the first
m coefficients in KL expansion (see Fig. 1). Since we place

Fig. 1 X is a sample of 100 realizations of V (left) and G the cor-
responding representation in the truncated space of coefficients with
mKL = 2 (right).

ourselves in a finite space G ⇢ RmKL , a first step consists
in an efficient and sequential strategy for the selection of a
vectorial l-quantizer. A first solution is to apply the greedy
vectorial quantization procedure described by Equation (7).

The sequential construction is detailed below

D̂1 = {û1} where û1 is a solution of e1(U) from Eq. (6)
8l � 2 , D̂l = D̂l�1[{ûl}

where ûl 2 argmin
u2G

�
E||U�Ul ||2

�1/2
,

l = l +1,

(12)

U is a random vector with discrete uniform distribution on G

and Ul is the l-quantization induced by {û1, ..., ûl�1}[{u}.
A collection of representative curves associated to our func-
tional random variable V is obtained by recovering the curves
in the initial sample X that correspond to the selected points
D̂l :

D̂l = {ûi}l

i=1 ⇢ G �!Q 0
l
= {q 0

i
}l

i=1 ⇢ X (13)

This step is important as it allows to recover the functional
variability of V and not only the variability of its first mKL

coefficients. Figure 2 shows the algorithm up to step l = 10
on the example of Figure 1. Note that, from this figure, we
can see that L2-quantization leads to selecting central points
and so the sample Q 0

l=10 is mainly representative of the mean
behaviour of V. We also note that the extreme points are not
chosen in the beginning of the construction. To address this
issue, we propose a method that aims at exploring the range
of variations of V by selecting central points and also ex-
treme points. One way to do so consists in the construction
of a space filling design in RmKL . Let D̃ be this design. As
the distribution of V is only known through X , it is natural
to search D̃ included in G such that the chosen points are
well spread all over the space. Let us recall the notion of
space-filling design, from a purely model-free stance.

Fig. 2 Sequential design of 10 points (bold points) in the set of the
coefficients G (left) and their corresponding bold curves in X (right).

Space-Filling Design and criterion Let us define
D = {u1, ...,ul} a collection of l points. We denote by
disti j = ||ui�u j|| the euclidean distance between two de-
sign points ui and u j of D. One must then attempt to make
the smallest distance between neighboring points in D as
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large as possible. We call a design that maximizes fMm(D)=
mini6= j disti j, a maximin-distance design (see Johnson et
al [17]). There are several other intrinsic criteria in literature
such as discrepancy that measures whether the distribution
of the points of D is close to a uniform distribution. See
Pronzato et al. [30] for a detailed overview on the subject.
In the following, we consider the maximin-distance criterion
to construct our design, and since we want to select points
from the set of coefficients G , the design D̃ can be obtained
by finding the design of l points among N, that maximizes
the criterion fMm.

Maximin-Greedy Functional Quantization (Maximin-GFQ)
Finding the design D̃ is a computationally difficult task. We
could adapt one of the optimal design algorithms used in the
literature such as simulated annealing (see Morris et al. [24])
and stochastic evolutionary algorithm (see Jin et al. [16]) for
our purpose. Here we propose a one-point-at-time greedy
algorithm for the generation of our design. The sequential
construction is described below

Initialization: D̃1 = {ũ1} where ũ1 is randomly chosen
8l � 2 , D̃l = D̃l�1[{ũl}

where ũl 2 argmax
u2G

fMm

⇣
D̃l�1[{u}

⌘
,

l = l +1.

(14)

The algorithm starts with a random point ũ1, the next point
is chosen among the points in G in order to maximize the
maximin-distance criterion. Besides the sequentiality as for
the L2-GFQ method, the points are now chosen in order to
explore the range of variations of V at each step using a
distance criterion. Meaning that at each step, the exploration
of the domain is reasonable. The technique to recover the
curves remains the same:

D̃l = {ũi}l

i=1 ⇢ G �!Q 00
l
= {q 00

i
}l

i=1 ⇢ X (15)

In order to make a comparison, we start the Maximin-GFQ
method Eq. (15) with the same point as the L2-GFQ method
Eq. (13), i.e., ũ1 = û1. Figure 3 shows the results up to step
l = 10 of both procedures. One can observe that the greedy
maximin method covers well the range of variation of V
contrary to the L2-GFQ method, which provides a well dis-
tributed points only on the first component. The L2-GFQ
seems to be more influenced by the higher order KL expan-
sion. In the following, in order to improve the readability, we
adopt the simplified notation Ql that refers to one of the two
constructions Q 00

l
and Q 0

l
. In this way and in the same spirit

as before (see equations (3),(5)), we define Ql-quantization

of the stochastic process V as

V̂l =
l

Â
i=1

q i1Cq i
(V), (16)

Fig. 3 Left: Two designs of l = 10 points in the 2D-coefficients set
G . Maximin-GFQ (red circle points) and greedy L2-GFQ (blue square
points). Right: The corresponding red curves for the Maximin-GFQ
procedure (right).

where {Cq i
(Ql) : q i 2 Ql} is a Voronoi partition of X in-

duced by Ql as defined in Equation (4).

Regarding the computational time devoted to perform
the functional quantization, Figure 4 shows the time needed
to compute the whole Greedy Functional Quantization as a
function of point set size l. The KL expansion is done in
a prior unaccounted step that takes 0.11 seconds. These al-
gorithms are implemented in the software R and all com-
putations are performed on a 8-core Intel 2.80 Ghz proces-
sor. From this figure, the running time of the maximin-GFQ
method grows much more slowly than the L2-GFQ one. In-
deed, the discrete optimization in the L2-GFQ method (Eq.(12))
involves an empirical estimation of the expectation at each
step, thus the algorithm has complexity O(N2⇥ l ⇥mKL).
The latter becomes time consuming as l increases compar-
ing to the maximin-GFQ algorithm which has complexity
O(N⇥ l⇥mKL).
The reasons for performing a dimension reduction are twofold.
The first one is computational as illustrated in Figure 4, where
both methods are compared to the L2-GFQ without KL de-
composition with complexity O(N2⇥ l⇥NT ). The second
one is related to the properties of the maximin criterion. In-
deed, the space filling quality is higher in a small dimen-
sional space since in a high one too many points are chosen
at the boundary (see e.g. [1,30]).
We recall that this functional PCA step is done once for all
in a pre-processing step.

In this section, we have introduced two data-driven greedy
original procedures for functional quantization, quantization
being an alternative to Monte Carlo methods for numerical
integration. In the next section we highlight the performance
of these procedures through two analytical examples.

3 Numerical integration

Let h : V = L2([0,T ])�! R be a continuous function, and
let V̂l be a l-quantization. It is natural to approximate E[h(V)]
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Fig. 4 Computation time (in seconds) of the GFQ methods as a func-
tion of point set size (N = 200,NT = 200).

by E[h(V̂l)]. This quantity E[h(V̂l)] is simply the finite
weighted sum:

E[h(V̂l)] =
l

Â
i=1

h(q i)P(V̂l = q i), (17)

where the distribution
�
P(V̂l = q i)

�
i=1:l of V̂l can be ap-

proximated empirically by
�
card(Cq i

(Ql)\X)/card(X)
�

i=1:l .
For a given i, this is the proportion of curves among N which
are closer to q i than to any other q j, j 6= i. This propor-
tion acts as a weight in the computation of the expectation.
Assigning weights can bring a significant improvement (see
L’Ecuyer et al. [18]).

Remark Under regularity assumptions, the integration error
can be bounded by the quantization error. E.g., if h is Lips-
chitz in the sense that 8v,v0 2 V , |h(v)�h(v0)| c||v�v0||,
then

��E[h(V)]�E[h(V̂l)]
�� E|h(V)�h(V̂l)|
 cE||V� V̂l ||

 c(E||V� V̂l ||2)1/2.

(18)

Returning to our original notation E[ f (x,V)], the pro-
posed methodologies for an efficient estimation of the ex-
pectation over a functional random variable are summarized
in Algorithms 1 and 2.

Algorithm 1 maximin-GFQ: Numerical integration
1: Inputs: initial sample (X ), truncation argument (mKL), x value

where the expectation will be evaluated and set size of the quanti-
zation (l).

2: G  truncation of the KL expansion after mKL-terms.
3: Construct the set of representative points D̃l defined by Eq. (14).
4: Induce from D̃l the corresponding set of representative curves Q 00

l

Eq. (15).
5: Define V̂l  Q 00

l
-quantization of V Eq. (16).

6: Perform the computation of the expectation E[ f (x, V̂l)] Eq. (17):
7: E[ f (x,V)]⇡ E[ f (x, V̂l)] = Âl

i=1 f (x,q 00
i
)P(V̂l = q 00

i
).

Algorithm 2 L2-GFQ: Numerical integration
1: Inputs: initial sample (X ), truncation argument (mKL), x value

where the expectation will be evaluated and set size of the quanti-
zation (l).

2: G  truncation of the KL expansion after mKL-terms.
3: Construct the set of representative points D̂l defined by Eq. (12).
4: Induce from D̂l the corresponding set of representative curves Q 0

l

Eq. (13).
5: Define V̂l  Q 0

l
-quantization of V Eq. (16).

6: Perform the computation of the expectation E[ f (x, V̂l)] Eq. (17):
7: E[ f (x,V)]⇡ E[ f (x, V̂l)] = Âl

i=1 f (x,q 0
i
)P(V̂l = q 0

i
).

In the sequel, we compare these two algorithms to the
standard Monte Carlo, whose steps are outlined in Algo-
rithm 3. The estimation of the expectation is sequentially
calculated in the same vein as the GFQ procedures.

Algorithm 3 Crude MC: Numerical integration
1: Inputs: initial sample (X ), x value where the expectation will be

evaluated and set size of the quantization (l).
2: Sample V̄l = {v̄i}l

i=1 where v̄1, ..., v̄l

i.i.d.⇠ UX , where UX a discrete
uniform distribution on X .

3: Estimate the expectation E[ f (x,V)] by l MC runs to f (x, v̄):
4: E[ f (x,V)]⇡ 1

l
Âl

i=1 f (x, v̄i).

We consider two analytical examples to highlight the in-
tegration performances of the two Greedy Functional Quan-
tization methods (GFQ) in comparison with crude Monte
Carlo. The first example is defined as an additive Lipschitz
function, i.e., sum of the 2D Bohachevsky function and un-
certainties. The second example does not verify the Lips-
chitz assumptions to mimic real applications.

Application 1 We consider a functional f defined as

f : (x,v) 7!
�
x

2
1 +2x

2
2�0.3cos(3px1)

�0.4cos(4px2)+0.7
�
+

Z

T

e
vt dt,

where x = (x1,x2) = (50,�80) and V is a standard Brown-
ian motion on R and [0,T ] = [0,1]. We suppose that a sam-
ple X of N = 200 realizations of V is available and that the
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probability distribution of V is unknown. In this example,
we fix the truncation argument at 2 to explain 90% of the
variance. Because of the random choice of the starting curve,
the maximin-GFQ methods have a stochastic behaviour like
the Monte Carlo method. To account for these variabilities
in the test, the performance is averaged over 200 indepen-
dent runs for the MC method and 200 runs related to all
the possibilities of the starting curve for the maximin-GFQ
method.

Fig. 5 Application 1. Sequential expectation estimation. Lines denote
the average estimates, and colored bands mark the 25-th and 75-th
quantiles (Monte Carlo (in green) and maximin-GFQ (in red)). Hor-
izontal axis denotes the number of curves l used for the expectation
estimation.

The results are shown in Figure 5. We observe that for
any choice of l, the integration error induced by any of both
GFQ methods is significantly smaller than the standard Monte
Carlo. One can note that the maximin-GFQ method is less
sensitive to the starting point from set size l � 25. We also
remark that for a small size l  5, the maximin-GFQ method
is not yet stabilized implying more uncertainties in the esti-
mation. From l � 10 (see Fig. 3), stability is reached thanks
to the procedure of selection of different kind of curves (cen-
tred and extreme).

Application 2 We define a function f by mixing control
variables and uncertainties. This function involves max(v)
and min(v), so catching the variability of V becomes impor-
tant. The function f is given by

f : (x,v) 7!max
t

vt .|0.1cos(x1 max
t

vt)sin(x2).(x1 + x2 min
t

vt)
2|.

Z
T

0
(30+vt)

x1 .x2
20 dt,

where x = (x1,x2) = (2.95,3.97) and V is a standard Brow-
nian motion on R and [0,T ] = [0,1]. To mimic real applica-
tions, we assume in the procedure that the probability dis-
tribution of V is unknown. We suppose that a sample X of
N = 200 realizations of V is available. We note that the two
GFQ methods depend on the truncation argument mKL. In

this example, we fix it at 2 to explain 90% of the variance
(results are similar for other truncation argument and x val-
ues, and are omitted for brevity).

Due to the stochastic nature of the Monte Carlo and the
maximin-GFQ methods, the performance of the method is
averaged over 200 independent runs for the MC method and
200 runs related to all the possibilities of the starting curves
for the maximin-GFQ method. The results of the integration

Fig. 6 Application 2. Sequential expectation estimation. Lines denote
the average estimates, and colored bands mark the 25-th and 75-th
quantiles (Monte Carlo (in green) and maximin-GFQ (in red)). Hor-
izontal axis denotes the number of curves l used for the expectation
estimation.

algorithms are shown in Figure 6. The lines indicate aver-
age estimate and the colored bands mark the area between
the 25-th and 75-th quantiles. Here two observations can be
made. First, for any choice of l, the integration error induced
by both GFQ methods is significantly smaller than the stan-
dard Monte Carlo. Secondly, for maximin-GFQ method, the
variability induced by the choice of the starting point is weak
from set size l � 20.
We recall that our procedure is based on a dimension reduc-
tion. However, once the space filling design has been built
in RmKL , we go back to the infinite-dimensional space V

by selecting the corresponding curves. We expect from such
a procedure to be robust to the dimension reduction. To il-
lustrate this intuition, we compare the maximin-GFQ algo-
rithm to an existing method, called hereafter Fpca method.
This latter consists in sampling independently the KL ran-
dom variables U 2 RmKL whose probability distribution is
estimated beforehand and denoted PU (see, e.g., [25] for a
detailed overview on the subject). Then we obtain the de-
sired curves using the linear combination of Equation (10).
The results of the comparison are shown in Figure 7. We
note that the Fpca method leads to a biased estimation due
to the regularization induced by reducing the dimension.
In summary, these simulations show that the two GFQ meth-
ods benefit improved performances over Monte Carlo in nu-
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Fig. 7 Application 2. Sequential expectation estimation. Lines denote
the average estimates, and coloured bands mark the 25-th and 75-th
quantiles (Fpca (in blue) and maximin-GFQ (in red)). Horizontal axis
denotes the number of curves l used for the expectation estimation.

merical accuracy.
In this section, we presented a methodology to efficiently
estimate the expectation over V at a point x in the control
space X. In the next section, we recall an existing method to
address the inversion problem in the control variable space
in the context of computationally costly simulations. This
strategy is defined on a Bayesian framework and on the so-
called Stepwise Uncertainty Reduction strategy (SUR). Let
us start with some presentation of SUR paradigm.

4 Background on SUR strategies

Let f : X⇥V �! R denote a real-valued continuous func-
tion, where X is a bounded subset of Rp, p � 1, and V a
functional space on which a random variable V is defined.
Moreover, we suppose that a finite set of N independent and
identically distributed realizations of the functional random
variable V is available. In the following, we consider the
expectation over the distribution of the functional random
variable and we are interested in characterizing the set of
control variables which leads to safe behaviour of a system:

G ⇤ := {x 2 X , EV[ f (x,V)] 2C}
:= {x 2 X , g(x) 2C} with C = (•,c], c 2 R.

(19)

While the function f depends on two separate types of in-
puts (control and uncertain variables), our objective function
g depends only on the control variables, i.e., for each setting
of control variables, the objective function is the mean of f

over the unknown distribution of the uncertain variable.
The estimation of G ⇤ by evaluating the function g at each
grid point of the discretized version of X requires far too
many evaluations of g. Therefore, statistical methods based
on a reduced number of evaluation points are widely used
to overcome this latter difficulty by focusing the evaluations
on the ’promising’ subregion of the control space.

These methods usually begin by an exploration phase, dur-
ing which the output of the code is computed on an exper-
imental design of size n. This initial design is then sequen-
tially expanded by adding new goal oriented points. These
sequential strategies have been used in recent years for many
purposes, such as the failure probability estimation ([3]) and
target regions ([29]) whose main idea is to decrease the krig-
ing variance at the points where the kriging mean is close to
the threshold c. Unlike the two aforementioned methods, we
are interested in the whole excursion set. In ([10],[11]) the
sampling criterion is based on concept of random closed sets
and applied to identify the set G ⇤. In this work we adopt this
strategy and the procedure is introduced below.

4.1 Random closed set and bayesian framework

In a Bayesian framework, we assume that g is a realiza-
tion of an almost surely continuous Gaussian process Y ⇠
GP(m,k) with a mean structure m, defined as, m(x) = E[Yx],
x 2 X, and a covariance kernel k, defined as, k(x,x0) :=
Cov(Yx,Yx0), x,x0 2X. Due to the stochastic nature of (Yx)x2X,
the associated excursion set,

G := {x 2 X , Yx 2C} (20)

is a random closed set. From the assumption that g is a real-
ization of Y , the true unknown set G ⇤ can be seen as a real-
ization of the random closed set G . It is possible to compute
a mean and deviation for this random set G by the Vorob’ev
approach (see [10]). We use the Vorob’ev expectation Qa⇤

as an estimator of the true excursion set and Vorob’ev devi-
ation E[µ(G4Qa⇤)] to quantify the uncertainty of the ran-
dom closed set G . Therefore, we implement a Stepwise Un-
certainty Reduction strategy (SUR) that aims at reducing un-
certainty on G by adding new evaluation points step by step
as proposed by [10]. The principle of SUR strategies are also
recalled in Subsection 4.2.

4.2 SUR strategies

The principle of stepwise uncertainty reduction (SUR) (see,
e.g., [3]; [7]) is to define an uncertainty measure, depending
on the objective to be fulfilled, and to sequentially choose
the points that decrease most this uncertainty. In other words,
the aim of the SUR strategy is to construct a sequence of
evaluation locations in order to reduce the expected uncer-
tainty on a quantity of interest.
Here, we work in the setting where g is a sample path of
a random process Y . The uncertainty function for an esti-
mate of G is defined as a function H

uncert that associates to
any finite sequence of observations (Xn,gXn) a real value
representing the uncertainty on the estimation of G . When
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n observations are available, we denote by H
uncert

n
the un-

certainty at step n. We assume that we have r evaluations
left. The objective of the SUR strategy is to find r optimal
locations xn+1, ...,xn+r such that the uncertainty H

uncert
n+r

is
as small as possible.
In what follows, we consider the Vorob’ev deviation as the
uncertainty function, at step n,

H
uncert

n
= E[µ(G4Qn,a⇤n ) | YXn

= gXn ], (21)

where Qn,a⇤n is the Vorob’ev expectation conditionally to the
n available observations. One way of constructing the se-
quence xn+1, ...,xn+r is to choose at each step the point that
gives the smallest uncertainty H

uncert
n+1 ,

H
uncert

n+1 (x) = E[µ(G4Qn+1,a⇤
n+1

) | YXn
= gXn ,Yx] (22)

We note that the future uncertainty H
uncert

n+1 is function
of Yx given YXn

= gXn . Therefore, at each step we choose
the point that gives the smallest uncertainty in expectation,
that is :

xn+1 2 argminx2X En,x[H
uncert

n+1 (x)]
:= argminx2X Jn(x),

(23)

where En,x denotes the expectation with respect to Yx|YXn
=

gXn (for detailed formula of Jn(.) see [10]).
After having evaluated the function g at the optimal loca-
tion xn+1, we update the parameters of the posterior mean
and covariance, and we restart until the evaluation budget r

is spent. Such strategy is called one-step lookahead, which
means that we select the next evaluation point as if it were
the last one. A comparison of such a strategy to the space
filling strategy based on Sobol’ sequences is given in [10].
The authors highlight the effectiveness of the SUR strat-
egy through an analytical example. For more theoretical per-
spectives on the SUR strategies, see [2] and references therein.

4.3 SUR strategy adapted to noisy observations

In our context, we can not compute exact evaluations of
the expectation over the probability distribution of V. We
propose in Section 2 sequential algorithms that efficiently
approximate the value of g(x) by E[ f (x, V̂l)]. On the de-
sign points, the n evaluations g(Xn) are replaced by their
approximation g̃(Xn) = (E[ f (x1, V̂l)], ...,E[ f (xn, V̂l)]). For
that reason, we do not want to build an exact interpolant at
points x1, ...,xn. We rather consider that g̃(Xn) are realiza-
tions of a Gaussian vector (Ỹx1 , ...,Ỹxn

)T defined by Ỹxi
:=

Yxi
+ ei where e1, ...,en are independent centred Gaussian

variables of variance t2
1 , ...,t2

n
. Conditionally to Ỹx1 , ...Ỹxn

the process Y is still Gaussian except that we add the vari-
ances {t2

i
}n

i=1 to the diagonal elements of the covariance
matrix.

Remark In our context, we estimate the expectation empir-
ically by l calls to the function f . The well-known Monte
Carlo methods (Crude MC, FPCA) allow us to quantify the
noise of estimation and to integrate it into GP modelling
(kriging with noisy observations). Consequently, we define
the variance components {t2

i
}n

i=1 as t2
i
= var( f (xi, V̄l)) for

the crude MC method and var( f (xi,Vpca
l

)) for the FPCA
method. We also note that the two deterministic GFQ meth-
ods are in the same spirit than the Quasi-MC methods. The
error of estimation depends on the variations of f that is
most often not tractable. Therefore we assume a negligi-
ble integration error and thus the observations are assumed
noise-free.

5 Algorithm coupling SUR and functional quantization

The whole computational aspect is carried out in the R envi-
ronment : we use DiceKriging package [32] for Gaussian
modelling and the sampling criterion Jn Eq. (23), used in
order to select the next evaluation xn+1 of the function g, is
already implemented in the KrigInv package [11]. We ex-
ploit the kriging update formulas [8] for faster updates of
posterior mean and covariance. When xn+1 is identified, l

calls to the simulator have to be performed to approximate
the expectation on that point. The sequentiality of our esti-
mation method of the expectation on xn+1 leads us to define
a stopping criterion on the expectation estimation m̂. Thus l

is chosen sufficiently large so that l0 consecutive ’expecta-
tion variations’ are smaller than a threshold e . Besides, the
number of calls l will naturally depend on xn+1
In practice, at each step of the estimation we evaluate the
absolute difference between two consecutive estimations of
the expectation,

el(xn+1) = |m̂l�1(xn+1)� m̂l(xn+1)|, (24)

where m̂i(xn+1) =E[ f (xn+1, V̂i)], we denote by |.| the abso-
lute value function. In the following, the stopping criterion

is defined by the following relation,

8 0 j  l0 , el� j(xn+1) e (25)

It ensures that the quantities el are smaller than a prescribed
tolerance e on the l0 previous steps in the estimation. These
two parameters are set by practitioners. It allows to use fewer
curves without loosing estimation accuracy.

Remark The parameters (l0,e) are closely linked to the al-
located budget. Moreover the parameter l0 can be set in prac-
tice between [2,5] regarding the stability we want to achieve
with the method. About the parameter e , it will be intuitively
calibrated depending both on the precision and on the scale
of the outputs.
The strategy SUR could be stopped if the allocated number



10 Mohamed Reda El Amri et al.

of simulations is reached. However, we define in this work
an additional stopping criterion based on the Vorob’ev de-
viation and close to the one defined for the expectation es-
timate. Thus, the strategy is carried out until the following
stopping criterion is verified

8 0 j  l
SUR
0 , e

SUR
l� j

(xn+1) eSUR, (26)

where e
SUR
i

= | Ei�1[µ(G4Qi�1,a⇤
i�1

)]�Ei[µ(G4Qi,a⇤
i
)] |

is the absolute error between two successive Vorob’ev devi-
ations. The condition Eq. (26) tests if all the quantities are
smaller than a tolerance eSUR on l

SUR
0 consecutive steps.

The global methodology to perform inversion in presence of
functional uncertainty proposed in this paper is summarized
in Algorithm 4.

Algorithm 4 Data-driven stochastic inversion under func-
tional uncertainties
1: Create an initial design of experiments (DoE) of n points in the

control space X.
2: Alg A  choose one of the Algorithms 1,2 and 3.
3: Estimate the expectation (Alg. A ).
4: Deduce {t2

i
}n

i=1 (if Crude MC or Fpca methods).
5: while Stopping criterion Eq. (26) not met (SUR) do
6: xn+1 Sampling criterion Jn.
7: Set l = 1.
8: while Stopping criterion Eq. (25) not met (Expectation Esti-

mation) do
9: Approximate the expectation by E[ f (xn+1, V̂l)] (Alg. A ).

10: Set l = l +1.
11: end while
12: t2

xn+1
 var( f (xn+1, V̂l)) (if Crude MC or Fpca methods).

13: Update DoE.
14: Set n = n+1.
15: end while
16: end

Remark on stage 2 of Algorithm 4 Due to their sampling
based nature, the Crude MC and Fpca methods are sensitive
to the resulting estimation errors. Consequently, we consider
the adaptation of the SUR strategy for noisy observations
(see, Subsection 4.3).

6 Numerical tests

In this section we apply the proposed data-driven method-
ology for stochastic inversion under functional uncertainties
to two test cases. On an analytical test case, we compare the
methods combining the SUR strategy to the four approach to
estimate the expectation. We then present in Subsection 6.2
an application to the industrial automotive test case which
motivate our study.

6.1 Analytical example

In this example, we define the function f as follows:

f : (x,v) 7!max
t

vt .|0.1cos(x1 max
t

vt)sin(x2).(x1 + x2 min
t

vt)
2|.

Z
T

0
(30+vt)

x1 .x2
20 dt,

(27)

where the control variable x lies in X= [1.5,5]⇥ [3.5,5], and
V is a standard Brownian motion. We suppose that a sam-
ple of N realizations of V is available, denoted by X , and
these realizations are discretized uniformly on 100 points.
The objective is to construct the set G ⇤ := {x 2 X , g(x) =
EV[ f (x,V)] c}, where c = 1.2.
Here we consider a Gaussian process prior (Yx)x2X⇠GP(m,k),
with constant mean function and Matérn covariance kernel
with n = 5/2. The initial DoE consists of a 9 points LHS de-
sign optimized by maximin criterion. The hyper-parameters
of the Gaussian process Y are estimated by Maximum Like-
lihood Estimation (MLE). Figure 8 shows the initial design
of experiments and the target set G ⇤ obtained from a 30⇥30
grid experiment, where at each grid point the expectation is
approximated by a Monte Carlo Method over 5000 realiza-
tions of V. We aim at estimating the set G ⇤ using the SUR
strategy to choose the next evaluation point as defined in
Section 4, and the methods presented in Section 2 to pro-
vide an efficient estimation of the expectation. We proceed

Fig. 8 Analytical example. Contour plot of the function g, the set of
interest (green) with boundary (red line), the initial design of experi-
ments (black triangles).

to add one point at each iteration of the SUR strategy un-
til the condition Eq. (26) for (lSUR

0 ,eSUR) = (4,5.10�3) is
reached. The covariance parameters are re-estimated at each
step by MLE. Since this criterion is based on the Vorob’ev
deviation, the objective is to reduce the uncertainty on the set
estimate until stability. For the sequential estimation of the
expectation, we test the sensitivity to the parameters (l0,e)
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of criterion Eq. (25) (see Table 1).
The estimation of the expectation at the proposed point by
SUR is carried out with one of the methods detailed in Sec-
tion 2 (Fpca, crude MC, maximin-GFQ, L2-GFQ). As pre-
sented in Section 5, the estimation is done sequentially and
it depends on the stopping criteria parameters l0, e and on
the truncation argument mKL. This latter is set at mKL = 7 in
order to explain 97% of the variance. The four expectation
estimation methods are sequential as detailed in Section 2.
Indeed, the two GFQ methods are sequential by definition.
The crude MC method is sequential because at each step a
curve is drawn with replacement from the available sample
X (see Algorithm 3). The same goes for the probabilistic
approach (Fpca), at each step we add a new curve built as
already explained.
The first test consists in fixing the available sample of real-
izations of V (N=200). For this fixed sample, we compare
the obtained results for different l0 and e . Table 1 lists the
parameters tested in this section.

l0 4 2 3 4
e 10�2 5.10�3 5.10�3 5.10�3

Table 1 Analytical example. Estimation of expectation stopping crite-

ria parameters

To compare the performance of the various methods we
use the ratio between the volume of the symmetric differ-
ence between the true set G ⇤ and the estimated set at last
iteration, µ(G ⇤4Qnlast,a⇤nlast

) and the volume of the true
set, µ(G ⇤). As shown earlier in Figure 6, the maximin-GFQ
method is not very sensitive to the starting point. Thus, in
the following test, we consider the deterministic version of
the maximin-GFQ method by fixing the starting point to the
one of L2-GFQ method.

Fig. 9 Analytical example. The relative error obtained by the two GFQ
methods for different values of l0 and e as a function of the number of
calls to the function f .

µ(G ⇤4Qnlast,a⇤nlast
)/µ(G ⇤)

(l0,e) maximin-GFQ L2-GFQ
(4,1.e-2) 11.86 % 7.50 %
(2,5.e-3) 12.34 % 7.93 %
(3,5.e-3) 10.80 % 6.87 %
(4,5.e-3) 8.02 % 6.79 %

Cumulative number of calls to f

(l0,e) maximin-GFQ L2-GFQ
(4,1.e-2) 1144 (21) 1225 (42)
(2,5.e-3) 735 (21) 978 (22)
(3,5.e-3) 989 (18) 1096 (21)
(4,5.e-3) 1259 (19) 1489 (26)

Table 2 Analytical example. (Top) The relative error obtained by the
two GFQ methods for different values of l0 and e . (Bottom) The cumu-
lative number of calls to the function f (in brackets are the number of
iterations required to reach the stopping criterion in the SUR strategy).

From the comparison results displayed in Table 2 and
plotted on Figure 9, we note that the two GFQ methods are
sensitive to the parameters l0 and e . The L2-GFQ method
performs well in set estimation error terms, the maximin-
GFQ provides better results in terms of cost. In the follow-
ing comparison tests, we consider only the L2-GFQ method
as it gives much better set estimation error for a reasonable
number of calls to the function f .
Regarding the second test, the two expectation estimation
methods (Crude MC and Fpca) have a stochastic behaviour
because of the sampling steps. To account for these variabil-
ities, the performance of each method is averaged over 30
independent runs. The results are summarized in Tables 4
and 3. The results indicate that the three methods are sen-
sitive to the parameters l0 and e: larger is the parameter l0,
i.e., when seeking to a stability of the estimation, smaller
is the error but higher is the number of calls to the func-
tion f . The L2-GFQ method performs well in terms of error
and cost. The cumulative number of calls to f has been de-
creased by a factor greater than 3 in comparison with the
two other methods.

µ(G ⇤4Qnlast,a⇤nlast
)/µ(G ⇤)

(l0,e) Crude MC Fpca L2-GFQ
(4,1.e-2) 9.53 % (4.12) 9.89 % (4.14) 7.50 %
(2,5.e-3) 9.84 % (3.24) 10.86 % (2.82) 7.93 %
(3,5.e-3) 9.54 % (3.81) 7.29 % (1.07) 6.87 %
(4,5.e-3) 8.98 % (2.62) 7.01 % (1.21) 6.79 %

Table 3 Analytical example. The average relative error obtained by
the crude MC, Fpca for different values of l0 and e (in brackets are the
standard deviation for the crude MC and Fpca methods).
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Cumulative number of calls to the function f

(l0,e) Crude MC Fpca L2-GFQ
(4,1.e-2) 2849 (27) 2805 (24) 1225 (42)
(2,5.e-3) 2393 (26) 2670 (23) 978 (22)
(3,5.e-3) 3537 (23) 3661 (20) 1096 (21)
(4,5.e-3) 4400 (23) 4278 (20) 1489 (26)

Table 4 Analytical example. The average cumulative number of calls
to the function f (written in brackets are the number of iterations re-
quired to reach the stopping criterion in the SUR strategy).

Figure 10 shows the set estimation error and the Vorob’ev
deviation as a function of the iteration number for the three
methods and (l0,e) = (4,5.e-3). For the crude MC and Fpca
methods, the dotted lines indicate average error decay, and
the coloured bands mark the area between the 25-th and 75-
th error quantiles. Note that the three methods show a strong
decrease in the set estimation error. The main observation
that can be made is that, for a small total number of calls to
f (see, Table 4), the convergence rate for the proposed ap-
proach (L2-GFQ) is better in comparison to the Crude MC
and Fpca methods.

Fig. 10 Analytical example. Results for (l0,e) = (4,5.e�3). Lines de-
note the average, and coloured bands mark the 25-th and 75-th quan-
tiles (Fpca (in red) and Crude MC (in green)). Top: The Vorob’ev devi-
ation. Bottom: The set estimation error µ(G ⇤4Qnlast,a⇤nlast

)/µ(G ⇤).

In the following, the stopping criteria for SUR (lSUR
0 =

4,eSUR = 5.10�3) and for the expectation estimation (l0 =
4,e = 5.10�3) are chosen in order to offer a good compro-
mise between the accuracy and the number of model evalu-
ations.
Table 5 compares the sensitivity of the methods to the size of
the available sample X , denoted by N. In each cell of the ta-
ble, we perform 20⇥20 independent runs. Indeed, for each
value of N, we generate 20 training samples X of size N and

for each sample we perform 20 runs for each method. The
table summarizes the results averaged over the 400 runs.

µ(G ⇤4Qnlast,a⇤nlast
)/µ(G ⇤)

Crude MC Fpca L2-GFQ
N=50 15.38 % (8.76) 13.25 % (5.09) 11.13 % (6.48)
N=100 9.60 % (4.65) 8.80 % (3.60) 9.08 % (5.41)
N=200 8.22 % (2.18) 7.71 % (2.35) 7.02 % (2.31)

Cumulative number of calls to f

Crude MC Fpca L2-GFQ
N=50 4281 (22) 4343 (21) 1044 (27)
N=100 4262 (22) 4313 (21) 1236 (25)
N=200 4152 (22) 4552 (21) 1262 (24)

Table 5 Analytical example. (Top) The average set estimation error
obtained for different sample size and methods and mKL = 7 (in brack-
ets are the standard deviation). (Bottom) The average cumulative num-
ber of calls to the function f (in brackets are the number of iterations
required to reach the stopping criterion in the SUR strategy).

We note that for a larger sample size, the recovering er-
ror is smaller. This can be explained by the fact that with a
large sample size, the available information on variable V
enables an effective estimation of the expectation.
We know that the L2-GFQ and the probabilistic modelling
(Fpca) depend on the truncation argument. To better under-
stand the effect of the number of dimensions m, we fix the
stopping criteria for the SUR strategy and expectation esti-
mation, and we consider different values of mKL = {2,3,4,5,6}.
Each cell of Table 6 represents the result averaged over 14⇥
20 independent runs. For each m, we generate 14 samples X
of size N=200, and for each of them we perform 20 runs of
each method.

µ(G ⇤4Qnlast,a⇤nlast
)/µ(G ⇤)

Fpca L2-GFQ
mKL = 2 11.43 % (3.70) 8.90 % (3.71)
mKL = 3 10.70 % (3.38) 7.72 % (3.38)
mKL = 4 9.24 % (3.18) 7.40 % (3.13)
mKL = 5 8.94 % (2.66) 7.05 % (5.09)
mKL = 6 8.27 % (1.67) 6.96 % (3.32)

Cumulative number of calls to f

Fpca L2-GFQ
mKL = 2 3855 (18) 1286 (26)
mKL = 3 4418 (24) 1139 (21)
mKL = 4 4438 (21) 1236 (20)
mKL = 5 4542 (21) 1214 (25)
mKL = 6 4955 (19) 1142 (21)

Table 6 Analytical example. (left) The average set estimation error
obtained by the Fpca and the L2-GFQ methods for different values of
m (in brackets are the standard deviation). (Right) The average cumu-
lative number of calls to the function f (in brackets are the number of
iterations required to reach the stopping criterion in the SUR strategy).
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Fig. 11 Analytical example. Results based on the initial DoE in the
case mKL = 2. The coverage function, the boundary of the true set (red),
the estimated sets (green).

Table 6 shows that for all values of mKL, the L2-GFQ
method outperforms the probabilistic Fpca modelling. As
shown in Table 7, for high truncation argument, the explained
variance increases, that explains the decrease of the esti-
mation error for the probabilistic modelling (Fpca). On the
other hand, the L2-GFQ accuracy seems to be almost con-
stant for mKL � 3. This can be explained by the fact that the
KL expansion is only used to define a space filling design,
and the information lost by the truncation is recovered by
taking the corresponding curve in the set X . On the con-
trary, the probabilistic modelling which is based on Fpca
gives better results for higher mKL. However the errors in
Table 6 seem to be bounded below. To go below that bound,
we probably need to increase the size of X .

mKL 2 3 4 5 6
Explained variance 90.2 % 93.4 % 95.1 % 96 % 96.7%

Table 7 Analytical example. The explained variance in function of
mKL

Fig. 12 Analytical example. Results at the last iteration in the case
mKL = 2. The coverage function, the boundary of the true set (red), the
estimated sets (green).

6.2 IFPEN test case

In this section we test the proposed method on an automo-
tive test case from IFPEN. The problem concerns an after-
treatment device of diesel vehicles, called Selective Catalytic
Reduction (SCR). This latter consists on a basic process of
chemical reduction of nitrogen oxides (NOx) to diatomic ni-
trogen (N2) and water (H2O) by the reaction of NOx and am-
monia NH3. The reaction itself occurs in the SCR catalyst.
Ammonia is provided by a liquid-reductant agent injected
upstream of the SCR catalyst. The amount of ammonia in-
troduced into the reactor is a critical quantity: overdosing
causes undesirable ammonia slip downstream of the cata-
lyst, whereas under-dosing causes insufficient NOx reduc-
tion. In practice, ammonia slip is restricted to a prescribed
threshold.
We use an emission-oriented simulator developed by IF-
PEN, which models the vehicle, its engine and the exhaust
after-treatment system. It takes the vehicle driving cycle pro-
file as input and provides the time-series of corresponding
exhaust emissions as output. A realistic SCR control law is
used in this simulator. See [5] for an example of such a con-
trol law. In this study, we choose two control variables as
input and a functional one considered as random. The con-



14 Mohamed Reda El Amri et al.

trol variables are parameters of the SCR control law. They
set the targeted level of NH3 storage in the catalyst and
then are indirectly related to the NH3 injected. They lie in
X = [0,0.6]2. The functional random variable describes the
evolution of vehicle speed on I, with I = [0,5400s]. These
functional uncertainties come from an available sample of
100 real driving cycles. Regarding the discretization of the
real-driving cycle, we have one observation per second, so
8i 2 {1, . . . ,100}, vi 2R5400. A subset of that sample is rep-
resented in Figure 13.

Fig. 13 Automotive test case. Sample of 7 real driving cycles.

In short, the ammonia emissions peak during a driving
cycle is modelled as a function,

f : X⇥V ! R
(x,V) 7! f (x,V) = maxt2I NHslip

3 (t)

We are interested in recovering the set G ⇤ = {x2X , g(x) =
EV[ f (x,V)]  c}, with c = 30ppm. Conducting this study
on a full grid would consist in covering the space [0,0.6]2

with a fine mesh and evaluating the code 100 times at each
point. Knowing that each simulation takes about two min-
utes, such study would require many computational hours,
and thus the use of meta-models allows to tackle this com-
putational issue.
Here we consider a Gaussian process prior (Yx)x2X⇠GP(m,k),
with constant mean function and Matérn covariance kernel
with n = 5/2. The initial DoE consists of a 8 points LHS
design optimized with respect to the maximin criterion. The
covariance kernel hyper-parameters are estimated by maxi-
mizing the likelihood.
As for the analytical example, we proceed to add one point at
each iteration for the SUR strategy until the stopping crite-
rion with (lSUR

0 ,eSUR) = (4,5.10�3) is verified. Concerning
the expectation estimation, we set the stopping criterion pa-
rameters at (l0,e) = (4,10�2) and the truncation argument
is set at mKL = 20 in order to explain 80% of the variance.
The algorithm was stopped at the 62-point design because
the Vorob’ev deviation appears as stabilized, in other words,
the absolute error between the Vorob’ev deviations of the
points 58-62 are smaller than 0.005, as shown in Figure 14.
We note that for each additional point, the new observed re-
sponse affects the estimation of the excursion set and its un-

Fig. 14 Automotive test case. Top : Decrease of the Vorobev devia-
tion at each iteration when new points are added. Bottom : Evolution
of the absolute error Eq. (26) and the red line represents the stopping
criterion.

certainty. Thus, although the Vorob’ev deviation generally
decreases, it is not a monotonic decreasing. The stopping
criterion is constructed to check the stability of convergence
by taking into account the last four iterations. In search-
ing for the true set, the SUR algorithm heavily visits the
boundary region of G ⇤ and explore also potentially inter-
esting regions (cf. Fig. 15). In each added point, Figure 15
shows the number of necessary driving cycles to estimate
the expectation. We remark that instead of taking the whole
sample (100 driving cycles), it was sufficient to sequentially
and wisely choose a reduced and representative number of
driving cycles below 35. In the present case, the excursion
domain G ⇤ is well recovered by the algorithm. Actually, af-
ter 62 iterations (1575 evaluations) the whole domain X has
an excursion probability close to either 0 or 1.

7 Conclusions

In this paper, a new method of inversion under uncertainty
was proposed for problems where some of the input param-
eters are functional random variables with unknown proba-
bility distribution (only a sample is available). The objective
is to recover the set of control variables leading to robustly
ensure some constraints by taking into account the uncer-
tainties. The method is composed of two steps : a sequen-
tial strategy to estimate the excursion set, and the modelling
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Fig. 15 Automotive test case. Left : Coverage probability function
(grey scale), estimate set (green) after 62 added points and 1575 func-
tion evaluations, initial DoE (black triangles), the sequentially added
points (red circles). Right : number of driving cycles used to estimate
expectation at each added point.

of functional uncertainties. To solve the first issue a krig-
ing model in the control input space is built. It makes pos-
sible to assess the uncertainty on the set of interest given
a sample of evaluations. Then a sequential strategy (SUR)
proposed by [10] and based on the kriging model is used to
sequentially and efficiently choose new evaluation points to
improve the excursion set estimation. For the second issue,
we consider the expectation to model uncertainties and we
propose two sequential approaches to estimate the expecta-
tion at each point proposed by SUR. Each curve is repre-
sented by its coefficients in a truncated KL decomposition.
The chosen points in the KL coefficients finite set, each one
corresponding to a curve, are sequentially added and cho-
sen either to approximate a maximin space filling design or
to reduce the quantization error. This methodology leads to
an efficient estimation of the expectation, as illustrated on
the application on an analytical test case with two control
inputs and a functional random one. The results illustrate
significant enhancement in term of precision and number of
calls to the simulator. We also applied this method to the
automotive test case which motivated this research work.
The obtained result agrees with the intuitions made from
physics behind the simulator. The paper focuses on the mean
of f (x,V) and here we choose to construct a GP model for
the unobservable integrated response g. In the optimization
context and for discrete and continuous random variables,

existing works deal with the case of unobservable response
(see [34],[15]). The authors propose to build a GP model
for the simulator f and induce a new GP model by inte-
grating the previous one over the distribution of the uncer-
tain variables. The adaptation of these works in the context
of inversion and functional random variables is an on-going
work. Other functionals of the output distribution may also
be of great importance. For example, practitioners may be
interested in ensuring a certain level of reliability, leading
to consider a probabilistic constraint. The proposed method
could be adapted to that case by seeing the probability as an
expectation, at least for moderate risk levels.
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