F. Alauzet, A changing-topology moving mesh technique for large displacements, Engineering with Computers, vol.222, issue.13, pp.175-200, 2014.
DOI : 10.1016/j.jcp.2006.08.012

URL : https://hal.archives-ouvertes.fr/hal-01114995

F. Alauzet, B. Fabrèges, M. A. Fernández, and M. Landajuela, Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures, Computer Methods in Applied Mechanics and Engineering, vol.301, pp.300-335, 2016.
DOI : 10.1016/j.cma.2015.12.015

URL : https://hal.archives-ouvertes.fr/hal-01149225

M. Astorino, J. Gerbeau, O. Pantz, and K. Traoré, Fluid???structure interaction and multi-body contact: Application to aortic valves, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.45-46, pp.45-463603, 2009.
DOI : 10.1016/j.cma.2008.09.012

URL : https://hal.archives-ouvertes.fr/inria-00542238

F. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction, International Journal for Numerical Methods in Fluids, vol.79, issue.7, pp.743-761, 2001.
DOI : 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A

Y. Bao, A. Donev, B. E. Griffith, D. M. Mcqueen, and C. S. Peskin, An Immersed Boundary method with divergence-free velocity interpolation and force spreading, Journal of Computational Physics, vol.347, pp.183-206, 2017.
DOI : 10.1016/j.jcp.2017.06.041

URL : http://arxiv.org/pdf/1701.07169

K. J. Bathe, Finite Element Procedures, 1996.

D. Boffi, N. Cavallini, F. Gardini, and L. Gastaldi, Local Mass Conservation of Stokes Finite Elements, Journal of Scientific Computing, vol.18, issue.2, pp.383-400, 2012.
DOI : 10.1051/m2an/1984180201751

D. Boffi, N. Cavallini, F. Gardini, and L. Gastaldi, Stabilized Stokes elements and local mass conservation, Boll. Unione Mat. Ital, vol.5, issue.93, pp.543-573, 2012.

D. Boffi, N. Cavallini, and L. Gastaldi, FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES, Mathematical Models and Methods in Applied Sciences, vol.21, issue.12, pp.2523-2550, 2011.
DOI : 10.1016/j.cma.2003.12.044

D. Boffi, N. Cavallini, and L. Gastaldi, The Finite Element Immersed Boundary Method with Distributed Lagrange Multiplier, SIAM Journal on Numerical Analysis, vol.53, issue.6, pp.2584-2604, 2015.
DOI : 10.1137/140978399

URL : http://arxiv.org/pdf/1407.5184

D. Boffi and L. Gastaldi, A fictitious domain approach with Lagrange multiplier for fluid-structure interactions, Numerische Mathematik, vol.193, issue.232, pp.711-732, 2017.
DOI : 10.1016/j.cma.2003.12.024

URL : http://arxiv.org/pdf/1510.06856

E. Burman, Ghost penalty, Comptes Rendus Mathematique, vol.348, issue.21-22, pp.21-221217, 2010.
DOI : 10.1016/j.crma.2010.10.006

URL : https://hal.archives-ouvertes.fr/inria-00543248

E. Burman and M. A. Fernández, An unfitted Nitsche method for incompressible fluid???structure interaction using overlapping meshes, Computer Methods in Applied Mechanics and Engineering, vol.279, pp.497-514, 2014.
DOI : 10.1016/j.cma.2014.07.007

URL : https://hal.archives-ouvertes.fr/hal-00918272

E. Burman, M. A. Fernández, and P. Hansbo, Continuous Interior Penalty Finite Element Method for Oseen's Equations, SIAM Journal on Numerical Analysis, vol.44, issue.3, pp.1248-1274, 2006.
DOI : 10.1137/040617686

URL : http://www1.mate.polimi.it/CN/CSFluid/Progetti_old/2008/Burman-Fernandez-Hansbo.pdf

H. Casquero, C. Bona-casas, and H. Gomez, NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow, Computer Methods in Applied Mechanics and Engineering, vol.316, pp.646-667, 2017.
DOI : 10.1016/j.cma.2016.09.031

H. Casquero, C. Bona-casas, H. Gomez, and Y. Zhang, Divergence-conforming and fullyimplicit simulation of microscale blood flow, International Conference on Isogeometric Analysis, 2017.

D. Chapelle and K. J. Bathe, The Finite Element Analysis of Shells -Fundamentals, 2011.
DOI : 10.1007/978-3-642-16408-8

URL : https://hal.archives-ouvertes.fr/hal-00839738

D. Chapelle and A. Ferent, MODELING OF THE INCLUSION OF A REINFORCING SHEET WITHIN A 3D MEDIUM, Mathematical Models and Methods in Applied Sciences, vol.325, issue.04, pp.573-595, 2003.
DOI : 10.1016/S0021-7824(00)00170-7

URL : https://hal.archives-ouvertes.fr/hal-00839241

G. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.8, issue.3, pp.471-492, 2008.
DOI : 10.1007/BF01084616

URL : https://hal.archives-ouvertes.fr/hal-00297711

J. Hart, G. W. Peters, P. J. Schreurs, and F. P. Baaijens, A three-dimensional computational analysis of fluid???structure interaction in the aortic valve, Journal of Biomechanics, vol.36, issue.1, pp.103-112, 2003.
DOI : 10.1016/S0021-9290(02)00244-0

N. Diniz, D. Santos, J. Gerbeau, and J. Bourgat, A partitioned fluid???structure algorithm for elastic thin valves with contact, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.1750-1761, 2008.
DOI : 10.1016/j.cma.2007.03.019

URL : https://hal.archives-ouvertes.fr/hal-00701780

E. Boyce, X. Griffith, and . Luo, Hybrid finite difference/finite element immersed boundary method, International Journal for Numerical Methods in Biomedical Engineering, vol.33, issue.12, pp.2888-2017

B. Fabrèges and B. Maury, Approximation of Single Layer Distributions by Dirac Masses in Finite Element Computations, Journal of Scientific Computing, vol.197, issue.2, pp.25-40, 2014.
DOI : 10.1016/j.cma.2007.07.009

M. A. Fernández and J. Gerbeau, Algorithms for fluid-structure interaction problems, Cardiovascular mathematics, pp.307-346, 2009.
DOI : 10.1007/978-88-470-1152-6_9

K. J. Galvin, A. Linke, L. G. Rebholz, and N. E. Wilson, Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection, Computer Methods in Applied Mechanics and Engineering, vol.237, issue.240, pp.166-176, 2012.
DOI : 10.1016/j.cma.2012.05.008

A. Gerstenberger and W. A. Wall, An eXtended Finite Element Method/Lagrange multiplier based approach for fluid???structure interaction, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.19-201699, 2008.
DOI : 10.1016/j.cma.2007.07.002

A. J. Gil, A. Arranz-carreño, J. Bonet, and O. Hassan, An enhanced Immersed Structural Potential Method for fluid???structure interaction, Journal of Computational Physics, vol.250, pp.178-205, 2013.
DOI : 10.1016/j.jcp.2013.05.011

URL : https://doi.org/10.1016/j.jcp.2013.05.011

R. Glowinski, T. W. Pan, T. I. Hesla, and D. D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.
DOI : 10.1016/S0301-9322(98)00048-2

E. Boyce and . Griffith, On the volume conservation of the immersed boundary method, Communications in Computational Physics, vol.12, issue.2, pp.401-432, 2012.

E. Hachem, S. Feghali, R. Codina, and T. Coupez, Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation, International Journal for Numerical Methods in Engineering, vol.230, issue.4, pp.805-825, 2013.
DOI : 10.1016/j.jcp.2010.11.021

URL : https://hal.archives-ouvertes.fr/hal-00815641

C. Hesch, A. J. Gil, A. Carreño, and J. Bonet, On continuum immersed strategies for Fluid???Structure Interaction, Computer Methods in Applied Mechanics and Engineering, vol.247, issue.248, pp.247-24851, 2012.
DOI : 10.1016/j.cma.2012.07.021

URL : https://doi.org/10.1016/j.cma.2012.07.021

C. Kadapa, W. G. Dettmer, and D. Peri´cperi´c, A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure interaction with solid???solid contact, Computer Methods in Applied Mechanics and Engineering, vol.335, pp.472-489, 2018.
DOI : 10.1016/j.cma.2018.02.021

D. Kamensky, Y. Hsu, M. Yu, E. J. , M. S. Sacks et al., Immersogeometric cardiovascular fluid???structure interaction analysis with divergence-conforming B-splines, Computer Methods in Applied Mechanics and Engineering, vol.314, pp.408-472, 2017.
DOI : 10.1016/j.cma.2016.07.028

URL : http://europepmc.org/articles/pmc5319417?pdf=render

D. Kamensky, M. Hsu, D. Schillinger, A. John, A. Evans et al., An immersogeometric variational framework for fluid???structure interaction: Application to bioprosthetic heart valves, Computer Methods in Applied Mechanics and Engineering, vol.284, pp.1005-1053, 2015.
DOI : 10.1016/j.cma.2014.10.040

URL : http://europepmc.org/articles/pmc4274080?pdf=render

D. Kamensky, M. Hsu, Y. Yu, A. John, . Evans et al., Immersogeometric cardiovascular fluid???structure interaction analysis with divergence-conforming B-splines, Computer Methods in Applied Mechanics and Engineering, vol.314, pp.408-472, 2017.
DOI : 10.1016/j.cma.2016.07.028

URL : http://europepmc.org/articles/pmc5319417?pdf=render

M. Landajuela, M. Vidrascu, D. Chapelle, and M. A. Fernández, Coupling schemes for the FSI forward prediction challenge: Comparative study and validation, International Journal for Numerical Methods in Biomedical Engineering, vol.301, issue.45-46, p.2813, 2017.
DOI : 10.1016/j.cma.2015.12.015

URL : https://hal.archives-ouvertes.fr/hal-01239931

A. Massing, M. G. Larson, and A. Logg, Efficient Implementation of Finite Element Methods on Nonmatching and Overlapping Meshes in Three Dimensions, SIAM Journal on Scientific Computing, vol.35, issue.1, pp.23-47, 2013.
DOI : 10.1137/11085949X

U. K. Müller, A. Wasim, E. Fontaine, O. Berg, Y. Cao et al., Fish and Flag ??? Exploring Fluid-Structure Interaction during Undulatory Swimming in Fish, 6th World Congress of Biomechanics, pp.44-47, 2010.
DOI : 10.1007/978-3-642-14515-5_12

A. Patel, Lagrange multiplier method with penalty for elliptic and parabolic interface problems, Journal of Applied Mathematics and Computing, vol.43, issue.6, pp.37-56, 2011.
DOI : 10.1137/040605357

C. S. Peskin, The immersed boundary method, Acta Numer, vol.11, pp.479-517, 2002.

C. S. Peskin and B. F. Printz, Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries, Journal of Computational Physics, vol.105, issue.1, pp.33-46, 1993.
DOI : 10.1006/jcph.1993.1051

P. Isabelleramì-ere, M. Angot, and . Belliard, A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Computer Methods in Applied Mechanics and Engineering, vol.196, pp.4-6766, 2007.

T. Richter, A Fully Eulerian formulation for fluid???structure-interaction problems, Journal of Computational Physics, vol.233, pp.227-240, 2013.
DOI : 10.1016/j.jcp.2012.08.047

URL : http://archiv.ub.uni-heidelberg.de/volltextserver/13215/1/main.pdf

S. Roy, L. Heltai, and F. Costanzo, Benchmarking the immersed finite element method for fluid???structure interaction problems, Computers & Mathematics with Applications, vol.69, issue.10, pp.1167-1188, 2015.
DOI : 10.1016/j.camwa.2015.03.012

T. Sawada, A. Tezuka-stein, T. Tezduyar, and R. Benney, LLM and X-FEM based interface modeling of fluid???thin structure interactions on a non-interface-fitted mesh, Computational Mechanics, vol.408, issue.EM3, pp.319-33258, 2003.
DOI : 10.1038/35048530

T. E. Tezduyar, Stabilized Finite Element Formulations for Incompressible Flow Computations, Advances in applied mechanics, pp.1-44, 1992.
DOI : 10.1016/S0065-2156(08)70153-4

F. Tian, H. Dai, H. Luo, J. F. Doyle, and B. Rousseau, Fluid???structure interaction involving large deformations: 3D simulations and applications to biological systems, Journal of Computational Physics, vol.258, pp.451-469, 2014.
DOI : 10.1016/j.jcp.2013.10.047

URL : http://europepmc.org/articles/pmc3884079?pdf=render

R. Van-loon, P. D. Anderson, J. De-hart, and F. P. Baaijens, A combined fictitious domain/adaptive meshing method for fluid???structure interaction in heart valves, International Journal for Numerical Methods in Fluids, vol.46, issue.5, pp.533-544, 2004.
DOI : 10.1002/fld.775

X. Wang and L. T. Zhang, Interpolation functions in the immersed boundary and finite element methods, Computational Mechanics, vol.227, issue.2, pp.321-334, 2010.
DOI : 10.1137/0731054

T. Wick, Fluid-structure interactions using different mesh motion techniques, Computers & Structures, vol.89, issue.13-14, pp.13-141456, 2011.
DOI : 10.1016/j.compstruc.2011.02.019

T. Wick, Flapping and contact FSI computations with the fluid???solid interface-tracking/interface-capturing technique and mesh adaptivity, Computational Mechanics, vol.227, issue.6, pp.29-43, 2014.
DOI : 10.1016/j.jcp.2007.11.019

G. Zhou and N. Saito, Analysis of the fictitious domain method with penalty for elliptic problems, Japan Journal of Industrial and Applied Mathematics, vol.46, issue.6, pp.57-85, 2014.
DOI : 10.1137/060671681

URL : https://link.springer.com/content/pdf/10.1007%2Fs13160-013-0124-2.pdf

A. Zilian and A. Legay, The enriched space???time finite element method (EST) for simultaneous solution of fluid???structure interaction, International Journal for Numerical Methods in Engineering, vol.90, issue.3, pp.305-334, 2008.
DOI : 10.1002/nme.2258

URL : https://hal.archives-ouvertes.fr/hal-01371129

S. Zonca, S. Vergara, and L. Formaggia, An Unfitted Formulation for the Interaction of an Incompressible Fluid with a Thick Structure via an XFEM/DG Approach, SIAM Journal on Scientific Computing, vol.40, issue.1, pp.59-84, 2018.
DOI : 10.1137/16M1097602