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Abstract. Storage Class Memories (SCMs) are promising technologies
that would change the future of storage, with many attractive capabili-
ties such as byte addressability, low latency and persistence. Existing key-
value stores proposed for block devices use SCMs as block devices, which
conceal the performance that SCMs provide. A few existing key-value
stores for SCMs fail to provide consistency when hardware supports such
as cache flush on power failure are unavailable. In this paper, we present
a key-value store called SCMKV that provides consistency, performance
and scalability. It takes advantage of characteristics of key-value work-
loads and leverages the log-structured technique for high throughput. In
particular, we propose a static concurrent cache-friendly hash table to
accelerate accesses to key-value objects, and maintain separate data logs
and memory allocators for each worker thread for achieving high con-
currency. To reduce write latency, it tries to reduce writes to SCMs and
cache flushing instructions. Our experiments show that SCMKV achieves
much higher throughput and has better scalability than state-of-the-art
key-value stores.

Keywords: storage class memory, key-value store, memory manage-
ment, log structure

1 Introduction

Emerging Storage Class Memory (SCM) technologies such as phase-change mem-
ory(PCM) [15], spin-torque transfer RAM (STT-RAM) [10] and resistive RAM
(ReRAM) [11] have been gaining great attentions from both academia and in-
dustry. They have both DRAM-like and disk-like features, such as byte address-
ability, low latency and persistency. The most promising solution to integrating
SCMs into current computer systems is to attach them directly to the memory
bus along with traditional DRAM. Thus it is possible to access SCMs through
regular load/store instructions. Such hybrid volatile/non-volatile memories offer
an opportunity to build more effective and voluminous storage systems such as
file systems and databases.

Nowadays, key-value stores such as LevelDB [9], and Dynamo [6] have been
very important applications in many Internet companies like Google and Ama-
zon. Many data-intensive services provided by these companies rely on fast ac-
cess to data. However, today’s state-of-the-art key-value stores are optimized



for block-based devices (e.g. disks and SSDs). These stores rely on file systems
to persist data to devices. There exist file systems designed for SCM such as
PMFS[7] and NOVA[17]. However, this will introduce some overheads caused by
the software layer of file systems and lost the chances to improve the performance
of key-value stores by directly accessing SCMs via load/store instructions.

Many researchers have focused on in-memory key-value caches. Memcached [8]
and MICA [12] are popular key-value caches. They act as lookaside caches, keep
a small part of workloads in DRAM for fast access, and rely on key-value stores
to hold all data. Figure 1 shows different roles key-value caches and stores play
in today’s software stack. These cache systems can’t act as key-value stores on
SCMs because they are designed for different purpose and don’t consider differ-
ences between SCMs and DRAM and data inconsistency due to system crashes.

DRAM

Disk/SSD

Key Value Store

Applications

Key Value StoreKey Value 
Cache

Externed
Memory

External
Storage

Block-Oriented Access

SCM

Byte-Oriented Access

Fig. 1: Various Key Value Systems on Different Storage Devices

One of the most challenging problems for SCM key-value stores is consis-
tency. Modern memory systems keep recently updated data on CPUs’ caches
and reorder stores to memory for performance. It may lead to inconsistency
of data in the face of system crashes. To ensure key-value objects stored on
SCM are consistent after recovery, writings of key-value objects must survive
unexpected crashes. A simple method to persist data is to flush CPUs’ caches
explicitly and use memory barriers (e.g. sfence) to enforce write orders. How-
ever, frequently flushing CPUs’ caches can introduce significant overheads and
degrade the performance of the system. In this paper, we present a key-value
store named SCMKV that takes advantage of characteristics of key-value work-
loads and adapts the log-structured technology to maximize throughput of SCMs
while providing good scalability and consistency. SCMKV adapts conventional
log-structured approach to manage memory, and appends new data to the se-
quentially written logs. It uses per-thread logs to avoid overheads caused by
synchronization primitives and lock-free data structures to provide high concur-
rency. It uses cache flushing instructions to persist metadata, and data corrup-
tion is detected by checksums when SCMKV recovers. Thus the number of cache



flushing instructions is reduced greatly. Some information such as next version
number and current active log usages can be constructed from the key-value
store when SCMKV recovers. Thus they are allocated to DRAM and omitted
from key-value store to reduce accesses to SCM.

The contributions of this paper are summarized as follows.

– It adapts existing log-structuring technology to SCMs and exploits the char-
acteristics of key-value workloads to develop a key-value store.

– It designs a memory allocator for SCMs that moves some information to
DRAM that reduces accesses to SCMs.

– It shows that SCMKV outperforms existing in-memory key-value cache and
block-device optimized key-value store.

The remainder of the paper is organized as follows. Section 2 provides an
overview of SCMKV Design. Section 3 gives details of SCMKV’s implementation.
Section 4 evaluates this work. Section 5 presents related work and section 6
concludes.

2 Overview of SCMKV

SCMKV is a log-structured key-value store optimized for SCMs while taking
advantage of the key-value workloads characteristics. Log-structuring technology
is first introduced to build a file system to maximize disk bandwidth [14]. We
adapt it to SCMs to offset the performance and wear out weaknesses of SCM
and achieve more concurrency.

We designed SCMKV based on following observations. First, because the
recently updated data are always appended to logs, the corruption of data due
to power failure can only occur at the tail of logs. Thus it is easy to recover key-
value store to the consistent state by scanning few logs. Second, there is only
single log on storage systems based on disk because of the limited ability of disk
sequential addressing. SCMs support random access, thus using multiple logs
can achieve more concurrency. Third, a log of 2MB can contain more than 4,000
key-value objects, if the size of each key-value object is less than 500 bytes. So
we fix the size of the log and use small logs, thus it is easy to reserve contiguous
free regions for garbage cleaning. Finally, according to [1], the sizes of key-value
objects show strong modalities. Over 90% of SYS’s keys are less than 40 bytes,
and values sizes around 500B take up nearly 80% of the entire cache’s values. So
given the size of an SCM device, we estimate the number of key-value objects it
can contain.

Based on these observations, we have the following design decisions in SCMKV.
Maintaining Logs in SCM. SCMKV appends key-value objects to logs

and inserts them into a hash table. Both logs and the hash table are located
in SCM. It doesn’t cache updated key-value objects in DRAM as LevelDB. As
we observed, the throughput of LevelDB for write-intensive workloads can be
limited by the processing that merges data in DRAM to disk. It happens on
SCM too. The logs’ usages are often changed, thus they are kept in DRAM to



reduce the latency of accesses to them. SCMKV can learn the logs’ usages by
scanning them when it recovers.

Not Persisting Key-Value Objects. Persisting data needs flushing CPUs’
caches to SCM and restricting write orders. Both operations can increase the la-
tency of writes. Furthermore, persisting key-value objects will need many flush-
ing instructions, because their sizes are often bigger than the size of the cache
line. Instead, SCMKV doesn’t flush appended key-value objects. It only flushes
some metadata of the hash table, and stores key-value object’s checksums in
SCM. When power fails, some key-value objects in the end of logs may be cor-
ruptible. SCMKV detects errors in active logs, discards them and rolls back to
the latest valid key-value objects when it recovers. After SCMKV boots up, it
is in the consistent status and doesn’t need to check errors anymore.

Using Static Hash Table and Dynamic Chains. Many dynamic hashing
schemes have been developed to index keys. These schemes allow the size of the
hash table to grow and shrink gracefully according to the numbers of records.
However, they cause some overheads when enlarging the size of the hash table.
The size distribution of key-value objects can be predicted in the real scenario.
Thus we can use a static hash table as the index of the store. To reduce the size
of the statically allocated hash table, buckets of the hash table are 64-bit words.
Each word contains a pointer point to a key-value object or a chain of the hash
table.

3 Design and Implementation of SCMKV
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Fig. 2: The Architecture of SCMKV.

3.1 Architecture

SCMKV is a persistent key-value store whose permanent data is maintained in
non-volatile SCM. Figure 2 shows the architecture of SCMKV. It supports mul-



tiple threads to access key-value objects. To achieve good scalability, it uses per-
thread allocators and per-thread data logs. These allocators are put on DRAM
to support fast allocation. All threads share a global hash table to index key-
value objects. The hash table uses dynamically allocated arrays to resolve hash
collisions. Using arrays instead of lists can accelerate accesses to key-value ob-
jects by taking advantage of CPU’s hardware prefetching. The source code is
available on GitHub: https://github.com/page4/scmkv.

3.2 Memory Layout

Figure 3 shows the memory layout of SCMKV. The entire volume is divided into
five segments. Superblock has the basic partition information and parameters
of the store, which are not changeable after the store is created. Checkpoint
keeps the status of the store, such as a pointer to free page list, locations of
current active logs. A successful checkpoint gives a consistent status that enables
the store to recover fast. The Page Information Table (PIT) contains per-page
information. Each page contains a data log or some chains of the hash table. An
element in the table contains information of the corresponding page, such as the
number of key-value objects or chains, the size of live data and the time when
the page is modified. For a free page, the element contains a pointer to next free
page. The static hash table is a global hash table to locate key-value objects or
its chains. Its size is not changed since the store is created. Data Area (DA) is a
set of 2MB pages. Each page is allocated and typed to be data or chain. A data
page contains key-value objects, while a chain page contains chains of the hash
table. A page does not store data and chains simultaneously.
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Fig. 3: SCM Memory Layout

3.3 Concurrent Cache-Aware Hash Table

Figure 4 shows our compact, concurrent and cache-aware hashing scheme. The
numbers in the figure indicate the number of living key-value objects in a bucket,
which may be smaller than the size of the chain. The bucket contains the address
of a key-value object or an array. SCMKV accesses key-value objects directly
when no collisions happen, and allocates dynamic arrays as chains when collisions
occur. The implementation details are as follows.

Buckets Management. Figure 5 shows the representation of the hash table
in C/C++. It is used to give the details of Fig 4. A bucket in the hash table is
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Fig. 4: Hash Table Structure

uint64_t htable_size;

struct hash_table_t {

uint64_t has_writer:1;

uint64_t reserved:7;

uint64_t nr_items:8;

uint64_t scm_addr:48;

} g_htable[htable_size];

Fig. 5: Layout of Hash Table

a 64-bit word. It allows multiple readers and a single writer to access the same
bucket. The first field has writer is used to guarantee only one writer is visiting
the bucket. It is set or cleared by atomic operations. The third field nr items
indicates the number of key-value items located in the bucket. If nr items is 1,
scm addr is the address of the key-value object in SCM. If nr items is greater
than 1, scm addr is the address of a chain in SCM. Each chain contains the
addresses of key-value objects.

Chains are cache aligned arrays that are dynamically allocated in the Data
Area. They are multiple of cache line size. When a chain is full, SCMKV allocates
a new chain whose size increases by a cache line size, copies data in the old chain
to the new chain and sets scm addr to the new chain.

16-bit tag 48-bit scm addr

Fig. 6: Layout of a Chian Element

Cache-Friendly Lookup. An element in a chain is a 64-bit word as shown
as Fig 6. The 48-bit scm addr is the address of a key-value object on SCM.
The 16-bit tag field is a short summary of a key and can be represented as the
high 16 bits of the key’s hash. To keep the hash table compact, the actual keys
are not stored in the hash table. When SCMKV lookups a key in a chain, it
matches tags, retrieves the inspected key and compares the retrieved key with
the target key. Tag helps to avoid unnecessary retrieves and comparisons of
keys. It is possible that two different keys have the same tag. However, with a
16-bit tag, the chance of a collision is only 1/216 = 0.000015. For a negative
lookup operation that checks a bucket with 16 candidate elements, it makes
0.000015 ∗ 16 = 0.00024 pointer dereferences on average.

Consistency. SCMKV stores a key-value object (kvobj ), the object’s check-
sum (kvobj chsum), the object’s size (obj size) and address of the old object
with the same key (addr of oldobj ). It persists obj size and addr of oldobj by
flushing CPUs’ cache. While the object is not guaranteed to be durable. If an



object is corruptible, it can be rolled back to the old object by recursively visiting
addr of oldobj.

3.4 Memory Allocator

In this section, we describe the per-thread memory allocators on SCM. Each
thread in SCMKV has its own memory allocators, which reduces overheads
caused by synchronization primitives. SCMKV uses a multilevel memory allo-
cation model to manage memory effectively. At the bottom of this model is the
page management layer which keeps a pool of empty pages, allocates and releases
pages. At the middle of this model are log allocators. The allocator requires a
page from the bottom level when a new log is allocated. It will release the page
to the bottom level if a page becomes empty. At the top are object allocators
which allocate memory for chains or key-value objects. These object allocators
require memory from the tail of logs. They can’t reuse space before the tail of
logs. Thus there exist many unavailable holes in the logs when key-value objects
are deleted. To reuse these holes, allocators need to perform garbage collection.
Garbage collection moves some living key-value objects in the evicted log to a
new log, and release the page of the evicted log to the bottom level.

Fig. 7: SCM Memory Allocators

Keep Current Page Information in DRAM. For every page, there is
an element in the PIT that records usages of the page. Page usages are often
changed for write-intensive workloads. To reduce the number of writes to SCM,
log allocators copy the element to DRAM, thus updates of page usages are kept
in DRAM. When the page becomes full, the log allocator stores its usages to
SCM, persists data in the log using clwb or clflushopt instructions and requires
a new page from the memory pool to start a new log.

Lock-Free Updates when Allocating Memory. Due to per-thread logs,
there are no multiple threads appending key-value objects to the same log. How-
ever, page usages can be modified by two threads when they want to remove key-
value objects in the same log. So the updates of page usages must be atomic.



SCMKV uses atomic writes or compare-and-swap (CAS) to guarantee consis-
tency.

3.5 Garbage Collection

SCMKV uses a Garbage Collection thread to reclaim free memories that ac-
cumulate in the logs when key-value objects or chain arrays are deleted. After
SCMKV boots up, the thread scans the PIT to learn usages of the pages, then
it uses a similar cost-benefit approach as LFS [14] to select evicted logs. The
evicted logs are chosen based on the amount of free space in the log and the age
of the log. The age of log is estimated by the time when the log is modified. For
each of the chosen logs, the garbage collection thread scans key-value objects
stored in the log, copies live objects to a new log and re-insert them to the store.
Then it releases the evicted logs to the memory pool, making the evicted logs’
memory available for new logs.

3.6 Shutdown and Recovery

When SCMKV shuts down normally, it flushes all current active logs and some
data structures (e.g. allocators) to SCM. Thus it can recover fast. In the case of
unclean shutdown(e.g., system crash), SCMKV must recover to the consistent
status and rebuild some data structures by scanning the data logs. The recovery
process is fast due to following designs. First, the size of logs is not bigger than
the size of a page. Second, when a log is full, key value objects in the log are
persisted to SCM by memory allocators. Thus there are only several possible
unclean logs. Third, SCMKV starts a recovery thread for each possible unclean
log. The recovery thread scans all key-value objects in its log, records the first
corruption object, sets the tail of the log to the address of the object, and pushes
the remaining objects’ addr of oldobj to a recovery stack. In the last, it rolls back
all the objects in the stack.

4 Evaluation

We now describe the experimental setup for the evaluation of SCMKV. Then we
present results from a detailed evaluation with several micro-benchmarks.

Experimental Setup. In our test, we use a Dell-R730 server running Linux
2.6.32. It is equipped with dual 10-core CPUs (Intel Xeon E5-2650-V3 @2.3GHz,
Ivy Bridge EP). Each CPU has 25MB of L3 cache and each core has 10 x 256
KB of L2 cache. The total size of DRAM is 128GB. We use DRAM to emulate
SCM, thus some features of SCMKV can’t be evaluated.

In the evaluation, we compare SCMKV with LevelDB [9] and Masstree [13].
LevelDB relies on file systems to persist data. To test LevelDB, we reserve a con-
tinuous memory area from OS when Linux boots. An ext4 file system is created
on the reserved memory. Masstree is a typical in-memory key-value store, and it
has outperformed other stores as reported by [13] and [12]. In our evaluation,



Table 1: Datasets with Different Key Value Size

Dataset Key Size Value Size Count

Small 16 B 100 B 64 Mi

Large 128 B 512 B 8 Mi

data of all these systems are stored in memory, and it will not involve any disk
or network overheads.

Benchmark We use Yahoo’s YCSB [4] benchmark suite to generate read
and write requests. The datasets are shown in Table 1. These datasets are gen-
erated according to two workload types: uniform and skewed. Uniform workload
generates an item uniformly at random, while skewed workload generates an
item according to Zipfian distribution.

4.1 Write/Read Throughput of Single Thread.
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Throughput of Different Datasets.
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Figure 8 plots the write throughput of a single thread. To show the influences
of enforcing write orders, SCMKV has been run in two modes: in scmkv-noflush
mode, it doesn’t use any flush or memory barries instructions, while in scmkv-
flush it uses clflush and sfence to enforce write orders. We don’t enforce write
orders in Masstree and LevelDB. The overall performance of scmkv-noflush is
better than Masstree. With enforcing write orders, SCMKV suffers 40% perfor-
mance reducing for small key-value objects and 20% performance reducing for



large key-value objects in the skewed workloads. As expected, SCMKV has lower
overheads caused by cache flushing on larger key-value objects.

In the following descriptions, we compare scmkv-flush with Masstree and
LevelDB. As shown in the Fig 8, SCMKV has 2.6x throughput in small uniform
datasets and 7x throughput in large uniform datasets than Masstree. And it
has 10x throughput in small uniform datasets and 30x throughput in larger uni-
form than LevelDB. There are similar results in large skewed datasets. However,
SCMKV has smaller throughput than Masstree in the case of small skewed
datasets. This is limited by overheads caused by write orders. Besides, the
throughputs of skewed datasets are almost same as uniform data in scmkv-flush
because SCMKV doesn’t benefit from the data locality of skewed datasets. We
expect the occurrence of instruction CLWB will improve this problem in future.

Figure 9 plots the read throughput of a single thread. Like Masstree, SCMKV
returns the pointer to the value and the size of value when retrieving the value
of a key. SCMKV performs better than Masstree and LevelDB in both uniform
and skewed datasets due to the efficiency of our design choices. Throughputs of
skewed datasets are better than uniform datasets because of the data locality of
workloads.

4.2 Scalability
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Fig. 10: Write Throughput of Small Uniform Dataset Using a Varying Number
of Cores.

Figure 10 shows write throughputs of small uniform datasets with the in-
crease in number of cores. Both SCMKV and Masstree scale well, while the
throughput of LevelDB grows from 0.11Mops to 0.21Mops when we augment
the number of cores from 1 core to 10 cores. SCMKV achieves 2.1Mops at 1 core
and 5.4Mops at 4 cores. Due to frequency of hash collisions raising with number
of cores, throughput per core becomes decreasing. SCMKV has a throughput of
6.7Mops at 10 cores.



5 Related Work

In this section, we discuss previous studies on storage systems related to SCM
and key-value systems.

Storage Class Memory Systems Many efforts have been devoted to providing
different abstractions on SCM. NV-heaps [3] and NVML [5] provide general pro-
gramming interface with persistent memory and transaction mechanisms for fail-
ure recovery. NOVA [17] and PMFS [7] are file systems optimized for persistent
memory. They allow for traditional file-based access to memory by POSIX file
interface. PMFS uses multi-granularity atomic updates with different CPU in-
structions and fine-grained logging for metadata consistency and Copy on Write
for data consistency.

Key-Value Systems Key-value systems have been always been optimized for
storage media. There are many systems optimized for disk, flash and DRAM. For
example, LevelDB is a system based on log-structured merge trees to reduce the
latency of disk by sequential writes to disk. NMVKV is a flash-aware key-value
store and relies on the Flash Translation Layer(FTL) capabilities to minimal
data management at the key-value store.

There are also some key-value systems optimized for Non-volatile Memory.
NVMcached [16] is a key-value cache for the non-volatile memory that tries to
avoid most cache flushes by using checksums to weed out corrupted data. It
acts as a lookaside cache and requires re-inserted for any lost key-value objects.
Echo [2] presents a persist key-value storage system that using two-level memory
architecture that combining DRAM and SCM. It employs snapshot isolation to
support concurrency and consistency, keeps a set of local stores on DRAM for
each worker threads and a master store on SCM for master threads.

6 Conclusions

This paper presents a key-value store optimized for Storage Class Memory
(SCM). It is intended to effectively manage storage class memory. It uses per-
thread data structures to reduce competitions among threads. And it also re-
duces the number of some expensive operations such as cache flushing (e.g.
unnecessary writes to SCM, explicitly cache flushing) to lower write latency.
Experimental results have shown that it achieves high throughput and good
scalability for both uniform and skewed datasets.
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