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FINITE ELEMENT APPROXIMATION OF ELECTROMAGNETIC
FIELDS USING NONFITTING MESHES FOR GEOPHYSICS∗

THÉOPHILE CHAUMONT-FRELET†, SERGE NICAISE‡ , AND DAVID PARDO§

Abstract. We analyze the use of nonfitting meshes for simulating the propagation of electro-
magnetic waves inside the earth with applications to borehole logging. We avoid the use of parameter
homogenization and employ standard edge finite element basis functions. For our geophysical ap-
plications, we consider a 3D Maxwell’s system with piecewise constant conductivity and globally
constant permittivity and permeability. The model is analyzed and discretized using both the E-
and H-formulations. Our main contribution is to develop a sharp error estimate for both the electric
and magnetic fields. In the presence of singularities, our estimate shows that the magnetic field
approximation is converging faster than the electric field approximation. As a result, we conclude
that error estimates available in the literature are sharp with respect to the electric field error but
provide pessimistic convergence rates for the magnetic field in our geophysical applications. Another
surprising consequence of our analysis is that nonfitting meshes deliver the same convergence rate as
fitting meshes to approximate the magnetic field. Our theoretical results are numerically illustrated
via 2D experiments. For the analyzed cases, the accuracy loss due to the use of nonfitting meshes is
limited, even for high conductivity contrasts.
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Introduction. Electromagnetic (EM) methods are used in geophysics for reser-
voir characterization and, more generally, subsurface imaging. EM methods are
sensitive to the high conductivity contrast that occurs between oil-saturated and
water-saturated rocks. For this reason, they are routinely employed in geophysi-
cal surveys, such as well logging [18] (including laterolog [40], logging-while-drilling
[39], through casing [41], and cross-well configurations [45]), controlled source EM
[16], and magnetotellurics [44].

Forward modeling of the electromagnetic fields is a key aspect of the aforemen-
tioned applications. It is used either directly to compare a synthetic model to in-situ
measurements, or as part of an inversion algorithm if the aim is to reconstruct a
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conductivity model from observed data [23]. In both cases, it is crucial to design a
forward modeling method that is fast, accurate, and robust [3].

To describe the propagation of electromagnetic fields inside the earth, we consider
3D Maxwell’s equations in a convex isotropic domain. The permittivity and perme-
ability are assumed to be constant, and the conductivity is taken piecewise constant
onto a polyhedral partition of the domain. Apart from the isotropy assumption, these
hypotheses are rather general regarding geophysical applications.

Different discretization techniques are available to solve 3D Maxwell’s equations
[3]. Here, we focus on first order edge finite element (FE) discretizations (also known
as Nédélec’s elements [36]) and consider both electric and magnetic field formulations.

In FE methods, the mesh is typically aligned with the conductivity model. How-
ever, this mesh design constraint presents important limitations. On the other hand,
nonfitting meshes permit us to simplify implementations and/or reduce computational
costs. Figure 1 depicts a well logging application. As shown there, nonfitting meshes
allow the user to design a single “sliding” mesh adapted to the tool configuration
(sources, receivers, and skin-depth) and to use it for different tool positions. Other
interesting applications include layers or shapes that are smaller than the mesh size,
or taking into account inclined layers in a Cartesian grid mesh, as in [35]. More gen-
erally, in the context of inverse problems, nonfitting meshes enable the user to employ
the same mesh for all iterations and to decouple the discretization of the forward
problem with the conductivity model representation [23].

Here, we focus on the use of “nonfitting” meshes, where the conductivity may
be discontinuous on the interior of an element. Standard Lagrange and Nédélec’s
elements are known to perform well only if the medium parameters are smooth inside
each mesh cell. In the presence of nonfitting meshes, a usual technique is then to use
homogenization or averaging formulae to upscale a varying parameter to one constant
value inside each cell.

In the simplest case, the averaging consists of an explicit formula [30, 35, 24].
However, these averaging formulae are rigorously validated only under some specific
assumptions, such as small-scale periodicity or one-dimensional variations. In or-
der to overcome these difficulties, “numerical homogenization” techniques have been
developed. The homogenized parameter can be obtained through the solution of
a local problem inside each cell [19]. In general, numerical homogenization can be
linked to multiscale methods, and the parameter upscaling algorithm can be viewed
as a particular choice of basis functions satisfying a local boundary value problem
[26, 42, 4]. For recent advances concerning multiscale methods and upscaling algo-
rithms for Maxwell’s equations, we refer the reader to [15, 25].

In the context of seismic wave propagation problems, similar averaging tech-
niques are currently used [5, 10]. Recently, a simpler technique, which avoids the use
of averaging, homogenization, and multiscale basis functions, has been introduced by
Chaumont-Frelet and collaborators for the propagation of acoustic waves inside the
earth [6, 11]. The main idea is to keep unmodified the basis functions and the earth
model. Subcell variations of the model are then taken into account through accurate
quadrature schemes. We will refer to this technique as the “exact quadrature tech-
nique” since the essence of the method is just to use standard FE shape functions and
exactly (or at least, sufficiently accurately) integrate the corresponding variational
formulation. In the context of seismic wave propagation, the exact quadrature tech-
nique is proven to be numerically efficient [13], and a convergence analysis shows that
the method is well suited to approximate high-frequency waves, even if the solution
can be rough inside the mesh cells [12]. The method is also compared to an averaging
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Fig. 1. Sliding mesh.

technique in [11], where it is shown that the exact integration technique outperforms
averaging, especially when the characteristic size of the heterogeneities is not small
enough compared to the solution wavelength.

The key point in the success of the exact quadrature technique for wave propaga-
tion is that most of the error is due to dispersion [12]. When considering Maxwell’s
system for geophysics, the situation is different, because the earth highly absorbs
electromagnetic waves, so that dispersion errors are small. As a result, the main
advantages and limitations of an exact quadrature technique for EM problems are
unclear.

As presented in [31], a number of methods are currently proposed in the literature
for solving smooth interface problems with nonfitting meshes. Specifically, two types
of methods are described: standard curved FEs that approximate the interface “suffi-
ciently well” and FE spaces with modified shape functions that can handle arbitrary
meshes. Though the problem we consider has connections to those analyzed in [31],
our work stands out as we consider arbitrary meshes (in the sense that we do not
assume any approximation of the interfaces) with unmodified FE shape functions.
Additionally, most of the methods mentioned in [31] target the Poisson equation and
use Lagrange-type basis functions, while we focus on solving Maxwell’s equations with
Nédélec’s basis functions.

In this work, we investigate the possible advantages of using the exact quadra-
ture technique for borehole logging geophysical applications. To do so, we develop a
rigorous convergence analysis of the aforementioned FE methods. Though our aim
is to investigate nonfitting mesh discretizations, it turns out that our main result is
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also useful for fitting meshes. Since we focus on geophysical applications, the medium
permeability is constant, and the magnetic field always exhibits H1 regularity. On
the other hand, because the conductivity is piecewise constant, the electric field only
presents Hs regularity, where 0 < s ≤ 1 can be arbitrarily small, depending on the
conductivity contrasts [17].

Recent H(curl)-norm error estimates exist in the literature [28, 34]. These re-
sults are optimal in the H(curl)-norm and predict an O(hs) convergence rate in this
configuration. The H(curl)-norm can be viewed as a weighted sum of the L2-norms
of the electric and magnetic fields. Therefore, the aforementioned estimate predicts
at least convergence rates of O(hs) for both the electric and magnetic fields in the
L2-norm.

Here, we focus on proving optimal L2 error estimates for both the electric and
magnetic fields. We classically demonstrate that the electric field approximation
converges as O(hs). The novel result is that the magnetic field error decreases as
O(hmin(1,2s)); its proof relies on a sort of Aubin–Nitsche trick.

An interesting consequence is that both fitting and nonfitting meshes deliver the
same convergence rate for the magnetic field. In order to illustrate this feature, let us
consider a layered medium without singularities. In this case [17], the electric field ex-
hibits local H1 regularity inside each layer but only H(1−δ)/2 global regularity (δ > 0
being an arbitrarily small but strictly positive constant), since the normal component
jumps across each interface. Because both fields are locally H1, standard convergence
arguments indicate linear convergence rates for both electromagnetic fields if a fitting
mesh is used. If a nonfitting mesh is used, then the electric field only converges as
O(h(1−δ)/2). However, our new estimate shows that the magnetic field error decreases
as O(h1−δ); that is, the convergence rate of the magnetic field approximation is al-
most linear, even for nonfitting meshes. This observation actually extends to general
conductivity models with singularities. Hence, an important conclusion of our work
is that fitting and nonfitting meshes virtually provide the same convergence rate for
the magnetic field approximation.

Our convergence theory is validated and illustrated using 2D numerical experi-
ments. We consider the E- and the H-formulation in order to approximate transverse
magnetic (TM) and transverse electric (TE) polarized problems, respectively. In these
test cases, we compare the accuracy between fitting and nonfitting meshes as well as
the impact of the conductivity contrast on the precision. These numerical tests show
that our convergence analysis is sharp and that fitting and nonfitting meshes provide
a comparable accuracy for the magnetic field approximation.

The proofs we provide are carried out for the 3D Maxwell’s system, and the tech-
niques we use are typical of FE analysis. The main conclusion stating that increased
accuracy can be expected for the magnetic field shall be useful in analyzing other dis-
cretization techniques, such as finite differences [3], and might give additional insight
when deriving homogenization formulae. Also, we expect our conclusions to hold true
for simplified EM models such as the 2.5D Maxwell’s system [2]. In addition, though
we essentially focus on borehole logging, we believe that our main conclusions will
also apply to other EM geophysical applications, such as controlled source EM and
magnetotellurics.

Issues related to nonfitting meshes arise in a variety of methods, such as discontin-
uous Galerkin [37] or nonconforming [9] discretizations. The aim of our work is thus
not to discuss the efficiency of a particular discretization strategy but to study the
usefulness of nonfitting meshes. Hence, though our results are rigorously established
only for FE discretizations, we believe they are insightful for a range of mesh-based
discretization methods.
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The paper is organized as follows. In section 1, we introduce Maxwell’s equations
and analyze the regularity of their solutions. We introduce the FE spaces and carry
out the error analysis in section 2. Finally, numerical results are presented in sec-
tion 3, confirming our predicted convergence rates and the efficiency of the proposed
numerical methods.

1. Maxwell’s equations.

1.1. Notation. Hereafter, Ω ⊂ R3 is a bounded convex polyhedral open set.
The symbol ∂Ω is used to denote the boundary of Ω, and n is the unit vector normal
to ∂Ω and pointing outside Ω.

We assume that Ω is covered by a partition P = {Ωk}Sk=1 of polyhedron Ωk.
Then, the conductivity model σ : Ω → R∗

+ takes one constant positive value σk on
each Ωk. We define σ� = mink σk and σ� = maxk σk. By assumption, we have
0 < σ� ≤ σ� < +∞.

We denote by F the set of faces related to the partition P . For each face F ∈ F
we define an associated normal vector nF such that nF = n if F ⊂ ∂Ω. Also, for each
k ∈ {1, . . . , S}, we denote by nk the unit vector normal to ∂Ωk and pointing outside
Ωk. The jump of σ through a face F ∈ F is defined as

[[σ]]F =

{
(σknk + σjnj) · nF if F = ∂Ωk ∩ ∂Ωj ,
σk if F = ∂Ωk ∩ ∂Ω.

Throughout the rest of this paper, symbol h will be reserved to denote the FE
mesh size. Also, β ∈ (0, 1) will be a fixed constant representing the geometric regu-
larity of the FE meshes (see (20) in section 2.1), and δ > 0 will be a strictly positive,
arbitrarily small constant. If A,B are positive real numbers, we shall write A � B if
there exists a constant C(Ω,P, σ, β, δ) depending on Ω, P , σ, β, and δ but indepen-
dent of h, such that A ≤ C(Ω,P, σ, β, δ)B.

For an arbitrary open set U ⊂ Rd with d = 2 or 3, L2(U) is the space of square
integrable, complex-valued functions. For s ∈ R, we classically denote by Hs(U) the
Sobolev space of complex-valued function defined in U . We also introduce the spaces

of vector functions Hs(U) = (Hs(U))3 and L2(U) =
(
L2(U)

)3
. We use the notation

‖.‖s,U and |.|s,U for the usual norm and seminorm of Hs(U) and Hs(U). The notation
(., .)U is used for the L2(U) and L2(U) inner-products. We drop the domain subscript
if U = Ω. We refer the reader to [1, 32] for a discussion of these spaces.

If u ∈ L2(U), ∇ · u and ∇× u denote its divergence and rotational in the sense
of distributions, respectively. H(div,U) and H(curl,U) are the subspaces of L2(U)
having square integrable divergence and rotational, respectively [22]. These spaces
are embedded with the norms

‖u‖2div,U = |u|20,U + |∇ · u|20,U ∀u ∈ H(div,U)

and

‖u‖2curl,U = |u|20,U + |∇ × u|20,U ∀u ∈ H(curl,U).

We denote by D(U) the space of C∞ functions having compact support in U . If
H(U) is any of the aforementioned scalar (resp., vectorial) Sobolev spaces, then H0(U)
denotes the closure of D(U) (resp., (D(U))3) in H(U).

Finally, for s ∈ R+, we shall also use “broken” Sobolev spaces of piecewise smooth
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functions onto the partition P. These spaces are defined as

PHs(Ω,P) =
{
u ∈ L2(Ω) | u ∈ Hs(Ωk) ∀Ωk ∈ P

}
and PHs(Ω,P) = (PHs(Ω))3. If s < 1/2, then PHs(Ω,P) = Hs(Ω). For s ≥ 1/2,
if u ∈ PHs(Ω,P), then u ∈ H1/2−δ(Ω). Analogous properties hold for the vectorial
broken spaces [32].

1.2. Model. For a given electric source J and magnetic source M, Maxwell’s
equations governing the electromagnetic fields for a nonzero frequency ω read

(1)

{
iωμ0H−∇×E = M,

(σ + iωε)E+∇×H = J

in Ω. In addition, the following conditions are imposed on the boundary ∂Ω:

(2) E× n = 0, H · n = 0.

In the above model, we assume that the permeability μ is constant and set to the
vacuum value μ0 = 4π×10−7NA−2. Also, following [44], we assume that σ+iωε � σ,
so that ε is set to zero. Actually, the only hypothesis that is mandatory on the
parameters is that μ is constant. But to simplify notation in the proofs, we consider
ε = 0.

We assume that all parameters are scalar valued, which corresponds to an isotropic
propagation domain. This hypothesis is actually restrictive because most rocks are
anisotropic. However, the isotropy hypothesis is mostly made to simplify the analysis
(in particular, we can apply the results presented in [17]). Indeed, the extension of
the proposed FE methods to anisotropic propagation media is straightforward.

As detailed before, the domain Ω is a convex polyhedron. In most geophysical
applications, this hypothesis is rather realistic, because the boundary of the domain
is not physical but artificially designed to bound the computational domain. The size
of the domain is related to the skin-depth relation [44], and the shape of the domain
is generally a cube or a sphere-like polyhedron. For a nonconvex domain, re-entrant
corners might generate singularities that are not considered in the present analysis.
We refer the reader to [17, 7, 28, 38].

The assumptions we make about the medium of propagation are justified by the
type of applications we consider. Let us further describe each of them:

1. The assumption that ε = 0 (which is common in the geophysical applications
we consider) is only made to simplify notation in the paper, and our results
hold unchanged as long as σ > 0. On the other hand, the case corresponding
to purely dispersive medium with ε > 0 and σ = 0 is much more difficult to
analyze. In the following, we briefly mention some of the difficulties that arise
in this last setting, and we refer the reader to [33, 34] for additional details:

• Unless boundary conditions are modified, there exist resonance frequen-
cies for which the problem is not well-posed.

• When the problem is well-posed, apart from frequencies below the first
resonance frequency, the sesquilinear form associated with the boundary
value problem is not coercive, which greatly complexifies the discretiza-
tion.

• The loss of coercivity manifests itself by the so-called “pollution effect”:
discrete stability is lost, unless the mesh is sufficiently refined [27]. As a
result, quasi-optimality of the FE solution is lost, apart from an “asymp-
totic range” (corresponding to sufficiently refined meshes).
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In this work, we focus on the easiest case where σ > 0. As a result, the
problem is well-posed and the sesquilinear forms are coercive at all frequen-
cies. This means that the pollution effect is avoided, and that the FE is
quasi-optimal for arbitrary meshes at all frequencies (we note, however, that
the stability constant depends on the ratio max ε/minσ). Though we believe
our main results could help characterize the “asymptotic range” and derive
asymptotic error estimates in the case where σ = 0, we do not address this
case here, as it brings multiple additional difficulties.

2. The assumption that μ is constant (or at least smooth) is fundamental, as it
allows for the magnetic field to be regular. A symmetric situation exists if we
assume that μ is variable and ε and σ are constant, for which the convergence
rate of the electric field is improved. Here, we focus on the case where μ = μ0,
as it is a typical assumption for the applications we consider.

3. The case where Ω is not convex is unrelated to the use of nonfitting meshes,
in the sense that all the meshes we consider perfectly match the boundary.
Then, for both fitting and nonfitting meshes, singularities can occur close
to the boundary of Ω, and our main results essentially hold unchanged, as
long as the meshes are geometrically refined close to the singular edges and
vertices of the boundary (see [17, 38]).

4. Dirichlet boundary conditions are satisfactory to bound the computational
domain for the borehole applications we consider, since the EM fields decay
fast away from the emitter. On the other hand, some applications require the
Silver–Müller radiation condition to be approximated with elaborated bound-
ary conditions (see [34], for instance), such as absorbing boundary conditions
(ABC) or perfectly matched layers (PML). We do not address these boundary
conditions as they make the analysis more complex:

• For ABC, dedicated functional spaces with well-defined traces are re-
quired. These functional spaces are more complicated to handle than
the standard H(curl,Ω) space we employ.

• For PML, the coefficients ε and μ are artificially modified. Then, we have
to consider a varying μ, which we avoid here for the sake of simplicity.

Nevertheless, the authors do not foresee fundamental reasons that would pre-
vent the improved convergence rate of the magnetic field to occur with these
boundary conditions.

Assuming that J,M ∈ L2(Ω), we can prove existence and uniqueness of weak
solutions E,H ∈ H(curl,Ω) to (1)–(2) using the variational framework (see, for in-
stance, [34]). We recast the first order system (1)–(2) into a second order system,
having only one unknown. As the original system features two unknowns, two choices
are possible.

The electric field formulation is obtained by eliminating H from (1)–(2). Then,
the equation for the electric field reads

(3)

{
iωμ0σE+∇×∇×E = iωμ0J−∇×M in Ω,

E× n = 0 on ∂Ω.

In the sense of distributions, boundary value problem (3) is equivalent to finding
E ∈ H0(curl,Ω) such that

(4) iωμ0(σE,v) + (∇×E,∇× v) = iωμ0(J,v) − (M,∇× v) ∀v ∈ H0(curl,Ω).

Alternatively, for the magnetic field formulation, we look for H ∈ H(curl,Ω)
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satisfying

(5) iωμ0(H,v) + (σ−1∇×H,∇× v) = (M,v) + (σ−1J,∇× v) ∀v ∈ H(curl,Ω).

In order to shorten notation, we introduce the sesquilinear forms

bE(u,v) = iωμ0(σu,v) + (∇× u,∇× v) ∀u,v ∈ H0(curl,Ω)

and

bH(u,v) = iωμ0(u,v) + (σ−1∇× u,∇× v) ∀u,v ∈ H(curl,Ω),

associated with (4) and (5).
We start by introducing some technical results that will be of use for the proofs

of regularity of solutions.

1.3. Technical preliminary results. When analyzing the solutions of Max-
well’s system (1), the variational theory easily shows that E,H ∈ H(curl,Ω) assuming
that J,M ∈ L2(Ω). A more subtle issue is to find optimal values 0 < s, s′ ≤ 1 such

that E ∈ PHs(Ω,P) and H ∈ PHs′(Ω,P).
The exponents s, s′ depend on the smoothness of the domain and the coefficients

ε, μ, and σ. In our settings, because μ is constant and Ω is convex, we can easily
show that H ∈ H1(Ω) under the assumption that M ∈ H(div,Ω), so that s′ = 1.
However, the regularity of E will be harder to analyze, and we shall require technical
results from [17, 7]. Here, the singularities of E are due to the conductivity parameter
σ. Hence, we will denote by τ(σ) the highest value so that E ∈ PHs(Ω,P) for all
0 < s < τ(σ).

The convergence rate of FE discretizations mostly depend on the elementwise
regularity of E. The elementwise regularity corresponds to τ(σ) for fitting meshes.
However, for nonfitting meshes, this elementwise regularity is given by min(τ(σ), 1/2).
This is the reason why fitting and nonfitting meshes may exhibit different convergence
rates.

The characterization of τ(σ) is rather involved [17, 7]. As we depict hereafter, it
is linked to the Poisson equation with coefficient σ.

The regularity of the electric field is analyzed through a Helmholtz–Hodge decom-
position E = ψ +∇p, where ψ ∈ H0(curl,Ω) is divergence free and p ∈ H1

0 (Ω). In
our settings, it turns out that ψ ∈ H1(Ω), so that the singularities of E are contained
in p. Furthermore (see [17]), p ∈ H1

0 (Ω) can be characterized as the solution of a
“Poisson type” variational problem,

(6) (σ∇p,∇q) = (f, q) +
∑
F∈F

(gF , q)F ∀q ∈ H1
0 (Ω),

where f ∈ L2(Ω) and gF ∈ H1/2(F ) for all F ∈ F . As depicted in the proof of
Theorem 2, f and g, respectively, depend on J and ψ, and one can show (see [17])
that

(7) p ∈ PH1+s(Ω,P)

for some 0 < s ≤ 1, with continuous dependence. Then, τ(σ) is the highest value
such that (7) holds for all 0 < s < τ(σ).

Boundary value problem (6) is rather unusual, because its right-hand side involves
surface sources on the interfaces of partition P , and as a result it does not belong to
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L2(Ω). But Theorem 4.1 of [17] shows that the regularity of the solution p of (6) is
the same as the regularity of u ∈ H1

0 (Ω) solution to

(8) (σ∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω),

with f ∈ L2(Ω). Hence, we can think of the electric field regularity as that of the
gradient of a solution to the standard Poisson equation (8). Note that τ(σ) also
corresponds to the convergence rates of a Lagrange FE method in the H1-norm for
the case of fitting meshes [8, Thm. 9.25].

An important particular case occurs when the conductivity model is made of
horizontal layers in a cubic domain. Indeed, in this configuration, we have τ(σ) = 2
(for smooth enough right-hand side), and in particular E ∈ PH1(Ω,P) (see [17]).
For other configurations, some lower bounds for τ(σ) based on the values of σ are
presented in the appendix of [17].

We also refer the reader to [7] for regularity results in more general domains and
medium parameters.

1.4. Electric field formulation. We start with an existence and uniqueness
result for (4). The analysis is greatly simplified because we assume that the conduc-
tivity is strictly positive. As a result, the proof of the following theorem relies simply
on the Lax–Milgram lemma and avoids the use of Fredholm alternative and compact
embeddings (see Chapter 4 of [34]).

Theorem 1. There exists a unique solution E ∈ H0(curl,Ω) to (4). Further-
more, it holds that

(9) ‖E‖curl � |J|0 + |M|0.

Proof. If v ∈ H0(curl,Ω), we have

bE(v,v) = iωμ0(σv,v) + (∇× v,∇× v) = iωμ0|σ1/2v|20 + |∇ × v|20,

and it follows that

(10) |bE(v,v)| � ‖v‖2curl.

Inequality (10) implies that the sesquilinear form bE is coercive. It is also easily
seen that bE is continuous. Finally, because J,M ∈ L2(Ω), the functional

H0(curl,Ω) 
 v → iωμ0(J,v) − (M,∇× v) ∈ C

is an element of (H0(curl,Ω))
′. As a result, we can apply the Lax–Milgram lemma

(see, for instance, Chapter 2 of [34]), and the existence and uniqueness of E follows.
To prove (9), we select v = E in (4) and (10). Then, we have

‖E‖2curl � |bE(E,E)| = |iωμ0(J,E)− (M,∇×E)| � (|J|0 + |M|0)‖E‖curl.

Now, we show that if additional regularity is assumed on J and/or M, additional
regularity can be expected for the electric field. The proof involves the exponent τ(σ)
associated with the Poisson equation that is introduced in subsection 1.3.

Theorem 2. If J ∈ H(div,Ω), then E ∈ PHs(Ω,P), and it holds that

(11)

S∑
k=1

|E|s,Ωk
� ‖J‖div + |M|0
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for all 0 < s < τ(σ). Also E ∈ Ht(Ω), and we have

(12) |E|t � ‖J‖div + |M|0

for all 0 < t < τ̃ (σ) = min(τ(σ), 1/2).
If M ∈ H(curl,Ω), then ∇×E ∈ H1(Ω), and it holds that

(13) |∇ ×E|1 � |J|0 + ‖M‖curl.

Proof. As depicted in section 1.3, we have E = ∇p + ψ with ψ ∈ H0(curl,Ω),
∇ · ψ = 0, and p ∈ H1

0 (Ω). We select a test function v = ∇q in (4) and see that p is
the solution to

(σ∇p,∇q) = (J− σψ,∇q) ∀q ∈ H1
0 (Ω).

Theorem I.3.7 of [22] ensures that ψ ∈ H1(Ω) and ‖ψ‖1 � |∇ × E|0. Hence, it
remains to study the regularity of p. We will show that p ∈ PH1+s(Ω,P) and

S∑
k=1

|p|1+s,Ωk
� |∇ · J|0 + |∇ ×E|0

for all 0 < s < τ(σ), which proves (11), since |∇ × E|0 has already been bounded in
Theorem 1.

Since ψ ∈ H1(Ω), by applying Green’s formula in each Ωk, we have

(σψ,∇q) =
S∑

k=1

σk

∫
Ωk

ψ · ∇q

=
S∑

k=1

σk

{∫
∂Ωk

ψ · nKq −
∫
Ωk

∇ ·ψq
}
.

Because ∇·ψ = 0, the second term vanishes. Furthermore, we can rearrange the first
term so that

(σψ,∇q) =
∑
F∈F

[[σ]]F

∫
F

ψ · nF q.

We thus find that p ∈ H1
0 (Ω) is a solution to (6) with f = −∇ · J ∈ L2(Ω) and

gF = −[[σ]]Fψ · nF ∈ H1/2(F ) for all F ∈ Fint.
According to [17], it follows that for 0 < s < τ(σ), p ∈ PH1+s(Ω,P), with

S∑
k=1

|p|1+s,Ωk
� |∇ · J|0 +

∑
F∈Fint

[[σ]]F ‖ψ · nF ‖1/2,F .

Therefore, by a trace theorem, we obtain

S∑
k=1

|p|1+s,Ωk
� |∇ · J|0 + ‖ψ‖1,

and we recover (11) by the previous estimate on ‖ψ‖1.
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Recalling that τ̃(σ)=min(τ(σ), 1/2), we have τ̃ (σ)≤τ(σ), so that E∈PHt(Ω,P)
for all 0 < t < τ̃ (σ). As τ̃(σ) < 1/2, we have PHt(Ω,P) = Ht(Ω), and (12) follows.

We now prove (13). In order to simplify notation, we write φ = ∇×E ∈ L2(Ω).
Assuming that M ∈ H(curl,Ω), we can write from (4) that

(φ,∇× v) = (−iωμ0σE+ iωμ0J−∇×M,v) ∀v ∈ H0(curl,Ω).

As a result, we have ∇× φ ∈ L2(Ω) and

|∇ × φ|0 ≤ ωμ0σ
�|E|0 + ωμ0|J|0 + |∇ ×M|0.

From (9), it follows that

|∇ × φ|0 � |J|0 + |M|0 + |∇ ×M|0.

As φ = ∇ × E, we have ∇ · φ = 0 on Ω and φ · n = 0 on ∂Ω. Hence, applying
Theorem I.3.9 from [22], we obtain (13).

1.5. Magnetic field formulation. In the previous subsection, we have refor-
mulated the first order system (1)–(2) into second order boundary value problem (4)
in terms of the electric field. In this subsection, we study the analogous formulation
(5) in terms of the magnetic field.

In Theorem 3, we state an existence and uniqueness result for the magnetic field.
The proof is similar to the electric field formulation and is not reproduced here.

Theorem 3. There exists a unique solution H ∈ H(curl,Ω) to (5). Furthermore,
it holds that

(14) ‖H‖curl � |J|0 + |M|0.

Following the analysis of the electric field formulation, we show that if additional
regularity is assumed on J and/or M, the regularity of H is improved. Here again,
the exponent τ(σ) defined earlier plays a crucial role.

Theorem 4. If M ∈ H0(div,Ω), then H ∈ H1(Ω), and it holds that

(15) |H|1 � |J|0 + ‖M‖div.

If σ−1J ∈ H0(curl,Ω), then ∇×H ∈ PHs(Ω,P), and it holds that

(16)

S∑
k=1

|∇ ×H|s,Ωk
� ‖σ−1J‖curl + |M|0

for all 0 < s < τ(σ). Consequently ∇×H ∈ Ht(Ω) and

(17) |∇ ×H|t � ‖σ−1J‖curl + |M|0

for all 0 < t < τ̃ (σ) = min(τ(σ), 1/2).

Proof. We first show (15). Taking v = ∇p with p ∈ H1(Ω) in (5), we have that

iωμ0(H,∇p) = (M,∇p).

Since M ∈ H0(div,Ω), H ∈ H0(div,Ω) and ∇ ·H = ∇ ·M ∈ L2(Ω). Recalling (14),
we also have that ∇×H ∈ L2(Ω), and (15) follows from Theorem I.3.9 of [22].
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In order to prove (16), we define R = σ−1∇×H. SinceH ∈ H(curl,Ω) and σ−1 ≤
σ−1
� < +∞, we have R ∈ L2(Ω). Furthermore, because ∇× (σ−1J) ∈ H0(curl,Ω), a

simple manipulation of (5) shows that

(18) (R,∇× v) = (M+∇× (σ−1J)− iωμ0H,v) ∀v ∈ H(curl,Ω).

It follows that R ∈ H0(curl,Ω). Let us introduce the Hodge–Helmholtz decomposi-
tion R = ψ +∇p, where ψ ∈ H0(curl,Ω) satisfies ∇ ·ψ = 0 and p ∈ H1

0 (Ω).
Since Ω is convex, Theorem I.3.7 of [22] ensures that ψ ∈ H1(Ω) and ‖ψ‖1 �

|∇ ×R|0. Recalling (18) and (14), it follows that

‖ψ‖1 � ‖σ−1J‖curl + |M|0.

It remains to analyze p, which contains the singularities. To do so, we observe
that since σR = ∇×H, we have (σR,∇q) = 0 for all q ∈ H1

0 (Ω). As a result, we see
that p is the unique solution in H1

0 (Ω) of

(19) (σ∇p,∇q) = −(σψ,∇q).

We now apply the same transformation to the right-hand side of (19) as in The-
orem 2 to show that p is actually solution to

(σ∇p,∇q) = −
∑
F∈F

[[σ]]F (ψ · nF , q)F ∀q ∈ H1
0 (Ω),

and it follows (see subsection 1.3) that R ∈ PHs(Ω,P) and

S∑
k=1

|R|s,Ωk
�

∑
F∈F

‖ψ‖1/2,F � ‖ψ‖1

for all 0 < s < τ(σ).
Then (16) follows since ∇ × H = σR and σ is constant on each Ωk ∈ P by

construction.
Finally, we also have (17) since Ht(Ω) = PHt(Ω,P) for all t < τ̃(σ) ≤ τ(σ).

2. Finite element discretization.

2.1. Settings. The FE spaces we use consist of the standard Nédélec’s edge
elements [36]. Because we work with low-regularity fields, we will employ special
“quasi-interpolation” operators defined in [20]. These operators are rigorously ana-
lyzed for meshes obtained from a single reference element through linear mappings.
In particular, meshes made of tetrahedra or cubes are covered. For further discussions
on quasi-interpolation operators, we refer the reader to [28, 20, 21, 43].

We introduce a family of tetrahedral (or cubic) meshes Th = {K} of Ω, with
parameter h > 0. We assume that this family of meshes is regular in the sense of [14].
Every mesh is conforming, which means that the intersection of two cells K+ ∩K− is
either a full face, a full edge, or a node of the two cells. Additionally, each cell K ∈ Th
is a “shape regular” tetrahedron, i.e., it satisfies

(20) diamK ≤ h,
ρ(K)

diamK
≥ β,

where β ∈ (0, 1) is an h-independent constant and

ρ(K) = sup {r > 0 | ∃x ∈ K, B(x, r) ⊂ K} , diam(K) = sup {|x− y| | x,y ∈ K} .
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We say that a mesh Th is a P-fitting mesh (or simply, a fitting mesh) if

(21) ∀K ∈ Th, ∃Ωk ∈ P such that K ⊂ Ωk.

On the other hand, a mesh that does not satisfy (21) will be called a non-P-fitting
mesh (or simply, a nonfitting mesh).

For a given h > 0, the space of first order Nédélec’s element space is defined in
[36] as

Vh = {vh ∈ H(curl,Ω) | vh|K ∈ R(K) ∀K ∈ Th},

where

R(K) = {v ∈ P1(K)3 | ∇v + (∇v)T = 0}.

While the space Vh is actually used to approximate the magnetic field, it misses the
essential boundary conditions of the electric field. Thus, in order to approximate the
electric field, we further introduce

Vh,0 = Vh ∩H0(curl,Ω) = {vh ∈ Vh | vh × n = 0 on ∂Ω}.

We also introduce the space Sh of Lagrange FEs, defined by

Sh =
{
qh ∈ H1(Ω) | qh|K ∈ P1(K) ∀K ∈ Th

}
and

Sh
0 = Sh ∩H1

0 (Ω) =
{
qh ∈ Sh | qh = 0 on ∂Ω

}
.

It is easily seen that if qh ∈ Sh (resp., if qh ∈ Sh
0 ), then∇qh ∈ Vh (resp. ,∇qh ∈ Vh,0).

For sufficiently regular functions v : Ω → C3 and q : Ω → C, it is customary to
introduce the edge and the nodal interpolant ΠN

h v ∈ Vh and rh,N (q) ∈ Sh.
The edge interpolant was first designed by Nédélec [36] for regular fields v ∈

H2(Ω). As pointed out in section 4.1 of [28], the definition can be extended for fitting
meshes as soon as v ∈ PHs(Ω,P) and ∇× v ∈ PHs(Ω,P) with s > 1/2.

Similarly, the nodal interpolant rh,N (q) ∈ Sh requires the function q to be con-
tinuous [14], and as a result it is well defined if q ∈ H1(Ω) ∩ PH1+s(Ω,P) with
s > 1/2.

In addition, there exist interpolants ΠN
h,0v ∈ Vh,0 and rh,N0 (q) that incorporate

essential boundary conditions and are well defined under the same conditions as ΠN
h

and rh,N .
Since we work with low regularity fields, the aforementioned interpolation opera-

tors are insufficient. Hence, we will also employ “quasi-interpolation” operators which
are well defined when v ∈ L2(Ω) and q ∈ L2(Ω). Specifically we will use the operators

ΠQ
h : L2(Ω) → Vh, Π

Q
h,0 : L2(Ω) → Vh,0, r

h,Q : L2(Ω) → Sh and rh,Q0 : L2(Ω) → Sh
0

that are defined in sections 5 and 6 of [20].
For nonfitting meshes, we employ the quasi-interpolation operators. For fitting

meshes, we employ the quasi-interpolation operators when τ(σ) ≤ 1/2, and the stan-
dard Nédélec and Lagrange interpolants otherwise. We summarize the results we shall
require in Propositions 5 and 6.

Proposition 5. For all v ∈ L2(Ω), there exists an element ΠQ
h,0v ∈ Vh,0 such

that
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• if v ∈ Ht(Ω) for some t ∈ [0, 1], then it holds that

(22) ‖v −ΠQ
h,0v‖0 � ht|v|t;

• if ∇× v ∈ Ht(Ω) for some t ∈ [0, 1], we have

(23) ‖∇× (v −ΠQ
h,0v)‖0 � ht|∇ × v|t;

• if v = ∇q for some q ∈ H1
0 (Ω), then there exists an element rh,Q0 (q) ∈ Sh

0

such that

ΠQ
h,0(∇q) = ∇rh,Q0 (q).

In addition, if Th is a P-fitting mesh and if v ∈ PHs(Ω,P) with s > 1/2, then
there exists an element ΠN

h,0v ∈ Vh,0 such that
• we have

(24) ‖v−ΠN
h,0v‖0 � hs

S∑
k=1

|v|s,Ωk
;

• if ∇× v ∈ PHt(Ω) for some t ∈ (1/2, 1], then

(25) ‖∇ ×
(
v −ΠN

h,0v
)
‖0 � ht

S∑
k=1

|∇ × v|t,Ωk
;

• if v = ∇q for some q ∈ H1
0 (Ω) ∩ H1+s(Ω), then there exists an element

rh,N0 (q) ∈ Sh
0 such that

ΠN
h,0(∇q) = ∇rh,N0 (q).

If Th is a nonfitting mesh, we define the interpolation operators as Πh,0 = ΠQ
h,0

and rh0 = rh,Q0 . For a fitting mesh Th, we set Πh,0 = ΠQ
h,0 and rh0 = rh,Q0 when

τ(σ) ≤ 1/2, and Πh,0 = ΠN
h,0 and rh0 = rh,N0 otherwise.

Proof. Interpolation estimate (22) is a direct consequence of Theorem 6.4 of [20].

To establish (23), we require the interpolation operator RQ
h,0 : L2(Ω) → Wh,0 ⊂

H0(div,Ω), where Wh,0 is the space of first order Raviart–Thomas elements, that is
introduced in section 6 of [20]. Then, for v ∈ H0(curl,Ω) with ∇ × v ∈ Ht(Ω), we
have

∇× (v −ΠQ
h,0v) = ∇× v −RQ

h,0(∇× v),

and by applying Theorem 6.4 of [20], we obtain that

‖∇× v −RQ
h,0(∇× v)‖0 � ht|∇ × v|t.

On the other hand, the operators ΠN
h,0 and rh,N0 , respectively, correspond to the

standard Nédélec’s edge and Lagrange nodal interpolants. These are well defined
under the assumed regularity, and interpolation error estimates (24) and (25) follow
from standard arguments (see, for instance, [29]).
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In Proposition 6, we introduce the quasi-interpolation operator Πh, which is the
analogue of Πh,0 for the space Vh.

Proposition 6. For all v ∈ L2(Ω), there exists an element ΠQ
h v ∈ Vh such that

• if v ∈ Ht(Ω) for some t ∈ [0, 1], then it holds that

(26) ‖v−ΠQ
h v‖0 � ht|v|t;

• if ∇× v ∈ Ht(Ω) for some t ∈ [0, 1], we have

(27) ‖∇× (v −ΠQ
h v)‖0 � ht|∇ × v|t;

• if v = ∇q for some q ∈ H1(Ω), then there exists an element rh,Q(q) ∈ Sh

such that

ΠQ
h (∇q) = ∇rh,Q(q).

In addition, if Th is a P-fitting mesh and if v ∈ PHs(Ω,P) with s > 1/2, then
there exists an element ΠN

h v ∈ Vh such that
• we have

(28) ‖v −ΠN
h v‖0 � hs

S∑
k=1

|v|s,Ωk
;

• if ∇× v ∈ PHt(Ω) for some t ∈ [0, 1], then

(29) ‖∇×
(
v −ΠN

h v
)
‖0 � ht

S∑
k=1

|∇ × v|t,Ωk
;

• if v = ∇q for some q ∈ H1(Ω) ∩ H1+s(Ω), then there exists an element
rh,N (q) ∈ Sh such that

ΠN
h (∇q) = ∇rh,N (q).

If Th is a nonfitting mesh, we define the interpolation operators as Πh = ΠQ
h and

rh = rh,Q. For a fitting mesh Th, we set Πh = ΠQ
h and rh = rh,Q when τ(σ) ≤ 1/2,

and Πh = ΠN
h and rh = rh,N otherwise.

Proof. The proof is similar to the proof of Proposition 5, using Theorem 5.2 of
[20] instead of Theorem 6.4.

2.2. A discussion on fitting and nonfitting meshes. As depicted in Figure
1, nonfitting meshes have interesting applications, as they can simplify implementa-
tions and/or reduce computational costs. Unfortunately, they also come with addi-
tional difficulties that we shall discuss in this subsection. These complications occur
because material discontinuities are allowed inside mesh cells. As a result, the normal
component of the electric field jumps through the interfaces inside mesh cells, so that
a discontinuous function must be approximated by continuous FE shape functions.
Also, numerical integration becomes more challenging.

We will describe these two issues and explain precisely what are the implications
and the possible solutions. For simplicity, we only analyze the electric field formulation
in this discussion. However, all our remarks remain unchanged for the magnetic field
formulation.
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2.2.1. Linear system assembling. The FE linear system associated with vari-
ational formulation (4) has entries given by Mij = bE(φj , φi), where φi, φj ∈ Vh,0 are
FE shape functions. In particular, it is required to compute the quantities

(30)

∫
K

σφj · φi,

where K is a mesh cell. When a fitting mesh is used, σ takes one constant value
σK on K, so that computing (30) amounts to integrating a polynomial function onto
a tetrahedron. This can be done analytically, and optimized techniques using affine
mappings can be used to do it efficiently [14, 34]. When the mesh does not fit the
conductivity model, additional techniques are required [11]. Fortunately, as shown in
[13], an efficient and accurate technique has been developed. Briefly speaking, the
key idea is to introduce an approximation σε to σ such that

(31)

∫
K

σεφj · φi

is easily computed and is a good approximation to (30). Specifically, we partition the
reference cell K̂ into a submesh T̂ε. For each cell K, σ is approximated by

σε|K =
∑
A∈T̂ε

σ(FK(xA))1FK(A),

where xA denotes the center A and FK is the linear map between K̂ and K. If σ
is discontinuous at F(xA), the minimum neighboring value is taken for σ(F(xA)).
Figure 2 illustrates this process. Thanks to this definition, we can compute (31)
efficiently based on the precomputed integrals

Iklnm(A) =

∫
A

ψ̂k
nψ̂

l
m ∀A ∈ T̂ε,

where ψ̂k and ψ̂l are the shape functions associated with the reference element K̂.

2.2.2. Convergence rates. The second problem is due to the lack of regularity
of the solution inside the mesh cells. In terms of Sobolev spaces, the accuracy of the
FE solution is directly related to the regularity of the solution inside each cell.

If the mesh is P-fitting, then each cell K ∈ Th is included inside one subdomain
Ωk ∈ P. As a result, K ⊂ Ωk, and E ∈ PHs(Ω,P) implies that E|K ∈ Hs(K) for
all 0 < s < τ(σ). On the other hand, if the mesh does not fit the partition P , then
we only have E|K ∈ Ht(K) for 0 < t < τ̃ (σ) = min(τ(σ), 1/2). Thus, in the absence
of singularity or, more generally, if τ(σ) > 1/2, we cannot expect nonfitting meshes
to be as accurate as fitting meshes, because the electric field is less regular inside each
cell. Indeed, we will show that the convergence rate of the electric field approximation
in the L2-norm is O(hτ(σ)) for fitting meshes and only O(hτ̃(σ)) for nonfitting meshes.

In order to illustrate this point, let us consider the case of a cubic domain with
plane horizontal interfaces. Then according to [17], we have E ∈ PH1(Ω,P) and,
if Th is a fitting mesh, then E|K ∈ H1(K) for all K ∈ Th. It follows that the
convergence rate of Nédélec’s FE will be linear if fitting meshes are used. However,
for a nonfitting mesh, we only have E|K ∈ H(1−δ)/2(K), since the vertical component
of E might jump inside K. (Recalling subsection 1.1, δ > 0 is an arbitrarily small
constant.) As a result, the convergence rate of Nédélec’s FEs with nonfitting meshes
will be at most O(h(1−δ)/2).
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K̂ K

FK

σ|K σε|K

A ∈ T̂ε
FK(A)

Fig. 2. Construction of σε.

The main novelty of our analysis is that when the permeability is constant, the
approximations of the electric and magnetic fields have different convergence rates.
Indeed, we are able to show that if the electric field converges as O(hs), then the
magnetic field error decreases as O(hmin(1,2s)). For a cubic domain with horizontal
layers, it means that the magnetic field approximation on a nonfitting mesh will
converge as O(h(1−δ)). As a result, the observed convergence rate is linear, just as in
the case of fitting meshes. More generally, it implies that fitting and nonfitting meshes
will provide the same convergence rate for the magnetic field error in the L2-norm:
O(hmin(1,2s)), where 0 < s < τ(σ).

Thus, our main claim is that if nonfitting meshes do imply an accuracy loss
concerning the electric field approximation, they provide the same convergence rate
as fitting meshes for the magnetic field approximation. In the following subsections,
we support this claim with rigorous proofs, both for the electric and magnetic field
formulations of Maxwell’s equations.
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2.3. The electric field formulation. We first discretize the electric field for-
mulation (4). In this case, we seek a Galerkin approximation Eh to E in the space
Vh,0. As usual, the approximation is defined using the discrete variational problem:
Find Eh ∈ Vh,0 such that

(32) bE(Eh,vh) = iωμ0(J,vh)− (M,∇× vh) ∀vh ∈ Vh,0.

Solving (32) amounts to factorizing a linear system. Then, the discrete represen-
tation of the magnetic field Hh is obtained by postprocessing as

(33) Hh =
1

iωμ0
(M+∇×Eh) .

From (33), it is clear that the error committed on the approximation of the
magnetic field in the L2-norm is proportional to |∇× (E−Eh)|0. Thus, we will speak
of “magnetic field” error to denote |∇× (E−Eh)|0. On the other hand, we will name
“electric field” error the quantity |E−Eh|0.

In view of Theorem 2, throughout this subsection we require that J ∈ H(div,Ω)
and M ∈ H(curl,Ω).

2.3.1. Interpolation error estimates. In order to simplify the following proofs,
let us define, for arbitrary j,m ∈ L2(Ω), E(j,m) ∈ H0(curl,Ω) as the solution to

bE(E(j,m),v) = iωμ0(j,v) − (m,∇× v) ∀v ∈ H0(curl,Ω).

In particular, E = E(J,M), and Theorems 1 and 2 hold if E, J, and M are replaced
by E(j,m), j, and m, respectively.

Later, we will need to quantify, for arbitrary right-hand sides j,m ∈ L2(Ω) the
ability of the interpolant Πh,0E(j,m) to approximate the solution E(j,m). Hence, we
introduce for h > 0

ηEh = sup
j∈H(div,Ω),m∈L2(Ω)

|E(j,m)− Πh,0E(j,m)|0
‖j‖div + |m|0

and

ηHh = sup
j∈L2(Ω),m∈H(curl,Ω)

|∇ × (E(j,m) −Πh,0E(j,m))|0
|j|0 + ‖m‖curl

.

The quantities ηEh and ηHh control the interpolation error on the electric and
magnetic fields, respectively, since by definition, we have

|E(j,m)−Πh,0E(j,m)|0 � ηEh (‖j‖div + |m|0, ) ∀j ∈ H(div,Ω), ∀m ∈ L2(Ω)

and

|∇ × (E(j,m)−Πh,0E(j,m))|0 � ηEh (|j|0 + ‖m‖curl) ∀j ∈ L2(Ω), ∀m ∈ H(curl,Ω).

We point out that the conditions j ∈ H(div,Ω) and m ∈ H(curl,Ω) are “built
in” the definitions of ηEh and ηHh , respectively.

In the following theorem, we bound the quantities ηEh and ηHh . We observe that
the P-fitting property impacts the behavior of ηEh but not that of ηHh .
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Theorem 7. It holds that

(34) ηHh � h,

whether or not the mesh is P-fitting.
If Th is a P-fitting mesh, then we have

(35) ηEh � hs

for all 0 < s < τ(σ).
If T̃h is a non-P-fitting mesh, we only have

(36) ηEh � ht

for all 0 < t < τ̃ (σ).

Proof. The proof is a direct combination of Theorem 2 and Proposition 5.

2.3.2. Electric field error estimates. According to Theorem 7, we see from
(34), (35), and (36) that the interpolation error in the L2-norm is smaller for the mag-
netic field than for the electric field. Unfortunately, as shown in Theorem 8, a direct
application of Céa’s lemma gives the same convergence rate for both electromagnetic
fields. Hence, the improved accuracy of the interpolant for the magnetic field stays
hidden.

Theorem 8. For all h > 0, there exists a unique Eh ∈ Vh,0 solution to (32).
Furthermore, the discrete solution Eh satisfies

(37) ‖E−Eh‖curl �
(
ηEh + ηHh

)
(‖J‖div + ‖M‖curl) .

Proof. Since bE is coercive, the proof is a simple application of Céa’s lemma.
Indeed, by Galerkin orthogonality, we have

‖E−Eh‖2curl � |bE(E−Eh,E−Eh)|
= |bE(E−Eh,E−Πh,0E)|
� ‖E−Eh‖curl‖E−Πh,0E‖curl.

Then, we have

‖E−Πh,0E‖curl = |E(J,M)−Πh,0E(J,M)|0 + |∇ × (E(J,M) −Πh,0E(J,M))|0
� ηEh (‖J‖div + |M|0) + ηHh (|J|0 + ‖M‖curl)
� (ηEh + ηHh ) (‖J‖div + ‖M‖curl) ,

and (37) follows.

As pointed out in [33], once the interpolation error estimates are established, Céa’s
lemma trivially implies the convergence of Nédélec’s FEs when the conductivity is
strictly positive. In [33], Céa’s lemma is used exactly as in Theorem 8, with the notable
difference that the conductivity σ is assumed to be continuous, and the solution
E ∈ H2(Ω). In this case, we immediately have ηEh � ηHh � h, so that Céa’s lemma
directly yields optimal convergence rates for both the electric and magnetic fields.

In [33], Monk also considers the more difficult case where σ = 0 and ε > 0. Then,
the sesquilinear form is no longer coercive, and special duality techniques have to
be employed to prove the well-posedness and convergence in some asymptotic range.
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Then again, the solution is assumed to be regular, so that the final error estimate is
linear in the full H(curl)-norm.

Generally speaking, when the solution is regular, it makes sense to measure FE
errors in the full H(curl)-norm, as its two components converge at the same rate:
linearly. Also, in contrast with the Poisson problem, there is no need to use duality
techniques à la Aubin and Nitsche, since the result given by Céa’s lemma is already
optimal.

In the case of heterogeneous media with discontinuous permittivity and perme-
ability, both electromagnetic fields have low regularity, and it makes sense to derive
error estimates in the full H(curl)-norm as well [34, 28]. The resulting convergence
rate then corresponds to the lowest regularity of the two fields.

Here, since the magnetic field is always regular, we feel that it is important to
distinguish the convergence rate of the two components of the H(curl)-norm, that
is, the L2-norm of the electric field, and the L2-norm of the magnetic field. We first
establish the electric field error estimate in Corollary 9. The magnetic field error
estimate will be derived in Corollary 11 of the next subsection.

Since ηEh + ηHh � ηEh , error estimate (37) is optimal for the electric field L2 error.
Indeed, it shows that the FE solution converges as ηEh , just as the interpolant, in
terms of the electric field L2 error. We record this result in the next corollary; its
proof is a direct application of Theorems 7 and 8.

Corollary 9. If Th is a P-fitting mesh, it holds that

(38) |E−Eh|0 � hs (‖J‖div + ‖M‖curl)

for all 0 < s < τ(σ).
If T̃h is not P-fitting, then we only have

(39) |E−Eh|0 � ht (‖J‖div + ‖M‖curl)

for all 0 < t < τ̃ (σ).

2.3.3. Magnetic field error estimates. Corollary 9 provides an optimal error
estimate for the electric field. However, if we apply directly Theorem 6 to estimate
the magnetic field error in the L2-norm, we obtain

(40) |∇ × (E−Eh)|0 � hs (‖J‖div + ‖M‖curl)

for all 0 < s < τ(σ) (or τ̃(σ) for a nonfitting mesh). However, from estimate (34)
of Theorem 7, we know that the convergence rate of the interpolant is linear for the
magnetic field in the sense that

|∇ × (E−Πh,0E)|0 � h (‖J‖div + ‖M‖curl) .

As a result, it is unclear whether (40) is optimal. In the next theorem, we show
that (40) is actually suboptimal and provide an improved error estimate for the mag-
netic field.

Theorem 10. It holds that

(41) |∇ × (E−Eh)|0 �
(
ηHh + (ηEh + ηHh )2

)
(‖J‖div + ‖M‖curl) .

Proof. The proof relies on the Aubin–Nitsche duality trick, which needs to be
slightly modified for our purpose. We define φ ∈ H0(curl,Ω) as the unique solution
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of

(42) bE(v,φ) = (∇× v,∇× (E−Eh)) ∀v ∈ H0(curl,Ω).

It can be easily seen that φ = E(j,m) with j = 0 and m = ∇× (E−Eh).
Because 0 = j ∈ H(div,Ω), we have

(43) |φ−Πh,0φ|0 ≤ ηEh |m|0 = ηEh |∇ × (E−Eh)|0.

Since ∇× Eh is a discontinuous (piecewise constant) function, m /∈ H(curl,Ω),
and we cannot bound |∇×(φ−Πh,0φ)|0 directly. Hence, we introduce a decomposition
of φ as φ = E − Eh + ψ, with ψ ∈ H0(curl,Ω) (because E,Eh ∈ H0(curl,Ω)) the
solution of

bE(v,ψ) = bE(v,φ)− bE(v,E−Eh) = (v,−iωμ0σ(E−Eh)) ∀v ∈ H0(curl,Ω).

This equivalently means that ψ = E(j,m) with j = −iωμ0σ(E−Eh) and m = 0.
Then, we have 0 = m ∈ H(curl,Ω), and it follows that

|∇ × (φ−Πh,0φ)|0 ≤ |∇× ((E−Eh)−Πh,0(E−Eh))|0 + |∇ × (ψ −Πh,0ψ)|0
� |∇ × (E−Πh,0E)|0 + ηHh |σ(E−Eh)|0
� |∇ × (E−Πh,0E)|0 + ηHh |(E−Eh)|0.

By definition of φ and by Galerkin orthogonality, we have

|∇ × (E−Eh)|20 = bE(E−Eh,φ)

= bE(E−Eh,φ−Πh,0φ)

� |E−Eh|0|φ−Πh,0φ|0 + |∇ × (E−Eh)|0|∇ × (φ−Πh,0φ)|0
� ηEh |E−Eh|0|∇ × (E−Eh)|0 + |∇ × (E−Eh)|0|∇ × (φ−Πh,0φ)|0.

Simplifying by |∇ × (E−Eh)|0, we conclude that

|∇ × (E−Eh)|0 � ηEh |E−Eh|0 + |∇ × (φ−Πh,0φ)|0
� |∇ × (E−Πh,0E)|0 + (ηEh + ηHh )|E−Eh|0,

and (41) follows since, from Theorems 7 and 8, we have

|∇ × (E−Πh,0E)|0 � ηHh (‖J‖div + ‖M‖curl)

and

|E−Eh|0 � (ηEh + ηHh ) (‖J‖div + ‖M‖curl) .

In Corollary 11, we directly apply Theorem 10 to provide explicit convergence
rates in terms of mesh size, for both fitting and nonfitting meshes. We see that
fitting and nonfitting meshes deliver virtually the same convergence rates (up to an
arbitrarily small constant δ).

Corollary 11. Assume that τ(σ) ≤ 1/2. Then it holds that

(44) |∇ × (E−Eh)|0 � h2s (‖J‖div + ‖M‖curl)

for all 0 < s < τ(σ) for both fitting and nonfitting meshes.
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If τ(σ) > 1/2, then we have

(45) |∇ × (E−Eh)|0 � h (‖J‖div + ‖M‖curl)

for fitting meshes and

(46) |∇ × (E−Eh)|0 � h1−δ (‖J‖div + ‖M‖curl)

for nonfitting meshes.

Proof. The proof simply relies on applying the bounds of Theorem 7 to the factor
ηHh + (ηEh + ηHh )2 of (41).

2.4. The magnetic field formulation. We now consider the discretization
of the magnetic field formulation (5) using Nédélec’s edge elements. The discrete
magnetic field is sought as the element Hh ∈ Vh satisfying

(47) bH(Hh,vh) = (M,vh) + (σ−1J,∇× vh) ∀vh ∈ Vh

can be computed as Ẽh = σ−1(J−∇×Hh), and the error on the electric field is given
by

|E− Ẽh|0 = |σ−1(∇×H−∇×Hh)|0 � |∇ × (H−Hh)|0.

Thus, following the electric case, the quantity |∇ × (H−Hh)|0 will be referred to as
the “electric field” error, while we will denote |H−Hh|0 as the “magnetic field” error.

Our analysis will be analogous to that of the electric field formulation, and we
shall provide fewer details. In particular, the proofs of Theorems 12 and 13 as well as
Corollaries 14 and 16 are omitted, because they are analogous to their E-formulation
counterparts.

As for the electric field formulation, we require some regularity on the right-hand
sides. Following Theorem 4, we assume that σ−1J ∈ H0(curl,Ω) andM ∈ H0(div,Ω).
We remark that the regularity assumptions are different from those of the electric field
formulation. Though we do not investigate numerically this aspect in this work, it
might be useful to select between the E- and H-formulations depending on the type
of electromagnetic sources in presence.

2.4.1. Interpolation error estimates. For j,m ∈ L2(Ω), let H(j,m) be the
unique element H(j,m) ∈ H(curl,Ω) such that

bH(H(j,m),v) = (m,v) + (σ−1j,∇× v) ∀v ∈ H(curl,Ω).

We define

ηEh = sup
σ−1j∈H0(curl,Ω),m∈L2(Ω)

|∇ × (H(j,m)−ΠhH(j,m))|0
‖σ−1j‖curl + |m|0

and

ηHh = sup
j∈L2(Ω),m∈H0(div,Ω)

|H(j,m)−ΠhH(j,m)|0
|j|0 + ‖m‖div

,

which characterize the approximation properties of the interpolant. Note that the
conditions σ−1j ∈ H(curl,Ω) and m ∈ H(div,Ω) are included in the definitions of ηEh
and ηHh , respectively.
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Theorem 12. It holds that

(48) ηHh � h

for both P-fitting and non-P-fitting meshes.
If Th is a P-fitting mesh, we have

(49) ηEh � hs

for all 0 < s < τ(σ).
If T̃h is not a P-fitting mesh, then we only have

(50) ηEh � ht

for all 0 < t < τ̃ (σ).

2.4.2. Electric field error estimates. In the following theorem, we apply
Céa’s lemma to prove the convergence of the FE solution.

Theorem 13. There exists a unique Hh ∈ Vh satisfying (47). Furthermore, we
have

(51) ‖H−Hh‖curl �
(
ηHh + ηEh

) (
‖σ−1J‖curl + ‖M‖div

)
.

As in the electric field formulation, the above result is optimal in terms of the
electric field approximation. We record this result in Corollary 14. We recall that,
since E = σ−1(J−∇×H), Ẽh = σ−1(J−∇×Hh) is a natural approximation of the
electric field, and we have

|E− Ẽh|0 � |∇× (H−Hh)|0.

Corollary 14. If Th is a P-fitting mesh, it holds that

(52) |∇ × (H−Hh)|0 � hs
(
‖σ−1J‖curl + ‖M‖div

)

for all 0 < s < τ(σ).
If T̃h is not P-fitting, then we have

(53) |∇ × (H−Hh)|0 � ht
(
‖σ−1J‖curl + ‖M‖div

)

for all 0 < t < τ̃ (σ).

2.4.3. Magnetic field error estimates. As in the electric field formulation,
our key result is an improved convergence rate for the magnetic field L2 error.

Theorem 15. It holds that

(54) |H−Hh|0 �
(
ηHh +

(
ηEh + ηHh + h

) (
ηEh + ηHh

)) (
‖σ−1J‖curl + ‖M‖div

)
.

Proof. The proof is again based on a modified version of the Aubin–Nitsche du-
ality argument. We first introduce the Hodge–Helmholtz decomposition of the error
vector:

H−Hh = ∇p+ φ,
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with p ∈ H1(Ω), φ ∈ H(curl,Ω), ∇ · φ = 0, and φ · n = 0. Then, we have

ΠhH−Hh = Πh(H−Hh) = ∇rh(p) + Πhφ.

Hence it remains to bound |∇p|0 and |φ|0. To this end, we introduce ψ = H(j,m),
with j = 0 and m = φ so that, by Galerkin orthogonality,

|φ|20 = (H−Hh,φ) = bH(H−Hh,ψ) = bH(H−Hh,ψ −Πhψ).

Since 0 = j ∈ H0(curl,Ω), and because ∇ · φ = 0 and φ · n = 0, we have
m = φ ∈ H0(div,Ω) and ‖m‖div = |φ|0. As a result, we obtain

|bH(H−Hh,ψ−Πhψ)|�ηHh |H−Hh|0|ψ−Πhψ|0+ηEh |∇×(H−Hh)|0|∇×(ψ−Πhψ)|0,
� ηHh |H−Hh|0|φ|0 + ηEh |∇ × (H−Hh)|0|φ|0,

so that

|φ|0 � ηHh |H−Hh|0 + ηEh |∇ × (H−Hh)|0.

Using Theorem 13, we obtain

(55) |φ|0 � (ηHh + ηEh )
2
(
‖σ−1J‖curl + ‖M‖div

)
.

For the estimate of |∇p|0, as (φ,∇p) = 0, we can write

|∇p|20 = (H−Hh,∇p)
= (ΠhH−Hh,∇p) + (H−ΠhH,∇p)
= (∇rh(p) + Πhφ,∇p) + (H−ΠhH,∇p).
= (∇rh(p),∇p) + (Πhφ− φ,∇p) + (H−ΠhH,∇p).

Now, we observe that, if qh ∈ Sh, then ∇×∇qh = 0, and we have

(∇p,∇qh) = (H−Hh,∇qh) = bH(H−Hh,∇qh) = 0.

In particular, (∇rh(p),∇p) = 0, and we have

|∇p|20 = (Πhφ− φ,∇p) + (H−ΠhH,∇p),

so that

|∇p|0 ≤ |φ−Πhφ|0 + |H−ΠhH|0.

Since ∇ · φ = 0 and φ · n = 0, we have (see [22, Theorem I.3.9]) φ ∈ H1(Ω) and
|φ|1 � |∇ × φ|0. Then,

|φ−Πhφ|0 � h|φ|1 � h|∇ × φ|0 = h|∇ × (H−Hh)|0.

As a result, we obtain

(56) |∇p|0 � h|∇ × (H−Hh)|0 + |H−ΠhH|0 � h(ηEh + ηHh ) + ηHh .

Error estimate (54) then follows from (55) and (56).
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As in the electric field formulation, Corollary 16 provides optimal convergence
rates in the general case.

Corollary 16. Assume that τ(σ) ≤ 1/2. Then it holds that

(57) |H−Hh|0 � h2s
(
‖σ−1J‖curl + ‖M‖div

)

for all 0 < s < τ(σ) for both fitting and nonfitting meshes.
If τ(σ) > 1/2, then we have

(58) |H−Hh|0 � h
(
‖σ−1J‖curl + ‖M‖div

)

for fitting meshes and

(59) |H−Hh|0 � h1−δ
(
‖σ−1J‖curl + ‖M‖div

)

for nonfitting meshes.

3. Numerical experiments.

3.1. Settings. In this section, we describe the 2D numerical experiments we
have selected to illustrate our error estimates proved in the previous section. For the
sake of simplicity, we consider as computational domain the unit square Ω = (0, 1)2,
and denote by (x, z) the coordinate system.

The target applications for the proposed method are borehole logging simulations.
For this type of application, the domain is the whole space, but it is artificially
bounded for numerical computations. Since sources are localized, the electromagnetic
fields exhibit an exponential decay as a function of the distance from the source, and
truncating the domain only introduces a small modelization error. The choice of the
domain size is guided by the so-called skin-depth relation, which links the frequency,
the conductivity, and the decay rate of the electromagnetic fields. We refer the reader
to [44].

The value of the conductivity ranges from 10−3 Sm−1 to 5 Sm−1 in our numerical
experiments. Hence, based on the skin-depth relation, we select the frequency f = 2
Mhz (and ω = 2πf). In this way, the frequency, the domain size, and the conductivity
model are representative of borehole logging applications.

Fitting and nonfitting meshes are considered in the following numerical experi-
ments. When a nonfitting mesh is used, the “exact quadrature method” [11, 13] is
used to integrate the coefficients of the FE linear system exactly.

3.1.1. Meshes and finite element spaces. We use Cartesian grid based meshes
with square cells. Hence, given h = 1/n, the mesh Th is defined as

Th = {K = ((i− 1)h, ih)× ((j − 1)h, jh), 1 ≤ i, j ≤ n} .

Because meshes Th are made of squares, we need to slightly modify the definitions
of the Nédélec’s element spaces given in section 2. Hence, we introduce

Vh = {vh ∈ H(curl,Ω) | vh|K ∈ Q0 ×Q1 +Q1 ×Q0 ∀K ∈ Th} ,

where Q0 = span{1} and Q1 = span{1, x, z, xz}. We also define Vh,0 = Vh ∩
H0(curl,Ω).
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Γh

Γv

h

(a) Fitting mesh (n = 6)

Γh

Γv

h

(b) Nonfitting mesh (n = 5)

Fig. 3. Fitting and nonfitting meshes.

3.1.2. Error computations. In order to compute numerical errors, we will use
an FE solution computed on a fine mesh. In our convergence curves, the values of n
range from 512 to 2048. We select n = 4096 to compute the reference FE solution.

Also, an important part of our analysis relies on the comparison between fitting
and nonfitting meshes. In order to carry out such a comparison, we select a piecewise
constant conductivity σ that is discontinuous only at the interfaces Γh = (0, 1)×{0.5}
and Γv = {0.5} × (0, 1). Then, it is easily seen that if n is an even integer, both Γh

and Γv are covered by mesh edges, so that the mesh is fitting. On the other hand, if
n is an odd integer, the two interfaces lie in the interior of some mesh cells, leading
to a nonfitting mesh. Thus, when comparing fitting and nonfitting meshes, we will
compare meshes with an even number of subdivisions n with meshes having an odd
number of subdivisions. We refer the reader to Figure 3, where the difference between
fitting and nonfitting meshes is highlighted.

3.2. Validation experiments. We first present two validation experiments.
For both experiments, the conductivity parameter is given by

σ(x, z) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x < 0.5, z > 0.5,
σb if x > 0.5, z > 0.5,
σb if x < 0.5, z < 0.5,
1 if x > 0.5, z < 0.5,

where σb is a chosen constant, and we use the right-hand side J = (1, 0, 1).
Since we are in a 2D setting, singularities do not occur in the TE-polarization;

hence we focus on the TM-polarization. For this polarization, we have E = (Ex, 0, Ez)
and H = (0, Hy, 0). Furthermore an analytical expression of τ(σ) is available from
[17]. Then, we discretize the problem using formulation (32) for (Ex, Ez) and compute
an approximation of Hy by postprocessing (compare with (33))

Hy,h = Hh =
1

iωμ0
curl (Ex,h, Ez,h),

where (Ex,h, Ez,h) is the unique solution of (32).
For this choice of conductivity parameter, we have an analytical expression for the

regularity coefficient of the electric field. Based on Theorem 8.1 of [17], the expected
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regularity of the solution is E ∈ Hs(Ω) for 0 ≤ s < τ(σ), where

(60) τ(σ) =
4

π
arctan (

√
σb) .

Here, we measure the global L2 error norm, i.e.,

eΩ(φ) =
|φ− φh|0

|φ|0
, φ = E, Hy.

3.2.1. Experiment A. We first consider the case where τ(σ) > 1/2. Hence, we
select the value σb = 0.5, so that (60) yields τ(σ) � 0.78.

As seen in Figure 4, we observe a convergence rate in O(hτ(σ)) for the electric
field approximation when using fitting meshes.

We also observe in Figure 4 that when nonfitting meshes are used, the electric field
approximation converges only as O(h1/2). This is in accordance with our analysis.
Indeed, since τ(σ) > 1/2, we have τ̃(σ) = 1/2.

Finally, Figure 4 shows that the convergence for the magnetic field is in O(h) for
both fitting and nonfitting meshes, as expected.

10−310−2

10−2

10−1

h1/2

h0.78

h

e Ω
(E

)

Fitting
Nonfitting

(a) Electric field errors

10−310−2

10−3

10−2

h

h

e Ω
(H

y
)

Fitting
Nonfitting

(b) Magnetic field errors

Fig. 4. Experiment A.

3.2.2. Experiment B. We now consider the case τ(σ) < 1/2. We set σb = 0.1,
so that τ(σ) � 0.39.

As Figure 5 shows, nonfitting meshes exhibit the expected results exactly. Indeed,
the convergence rate for the electric field is τ̃ (σ) = τ(σ) � 0.39, and the magnetic
field converges as 2τ̃(σ).

For fitting meshes, as shown in Figure 5, both the electric and magnetic approx-
imations converge faster than expected, at rates 1/2 and 1, respectively.

These results are rather surprising since we observe that the electric field ap-
proximation converges faster than τ(σ), which is the convergence rate of the best
approximation. This is not in contradiction with our theoretical analysis, since we
only show upper bounds. However, these results question the optimality of the pre-
sented analysis.

The authors believe, however, that the proposed error estimates are optimal, and
that the observed superconvergence rate can be explained by a preasymptotic effect.
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Indeed, we can decompose E as

E = Es +Er,

where Es ∈ Hτ(σ)(Ω) and Er ∈ H1(Ω) correspond to singular and regular parts of
the electric field. Consequently, if ‖E‖s,Ω ≪ ‖Er‖1,Ω, it is reasonable to expect a
superconvergence phenomena as far as the mesh sizes h are relatively coarse.

This superconvergence result is specific to this particular right-hand side. We
show in subsection 3.3.3 a test with another right-hand side in which the predicted
behavior is observed for both fitting and nonfitting meshes.
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(a) Fitting meshes
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Fig. 5. Experiment B.

3.3. “Geophysical” experiments. We provide another set of numerical ex-
periments directed toward geophysical applications. The sources are Gaussian loads
representing electric transmitters. The L2 error is measured locally in a small area
representing a magnetic or electric receiver.

3.3.1. Experiment 1. We start with a test case using the TE-polarization. We
consider a conductivity model featuring two layers, separated by a planar interface.
In the top layer, the conductivity takes the value 1 Sm−1. In the bottom layer, we
consider three different tests with different values σb ∈ {0.9, 0.1, 0.001} Sm−1 of σ. In
that way, we are able to analyze the influence of the conductivity contrast.

The interface is located at depth z = 0.5m. Hence, the conductivity is defined as

σ(x, z) =

{
1 Sm−1 if z > 0.5,

σb Sm−1 if z < 0.5.

We consider the source J = (0, g, 0), where g is a Gaussian load centered at
(0.4, 0.4):

g(x, z) = exp

(
− (x− 0.4)2 + (z − 0.4)2

(10−2)2

)
.

The electric field has only one nonzero component (E = (0, Ey, 0)), and the
magnetic field takes the form H = (Hx, 0, Hz). Because the electric field has only one
nonzero component, the electric field formulation employs Lagrange H1-conforming
elements. Since in this work we are mostly interested in Nédélec’s elements, we will
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therefore focus on the magnetic field formulation. In other words, we approximate
(Hx, Hz) by using (47) and compute a discrete electric field approximation as Ey,h =
σ−1(g − curl (Hx,h, Hz,h)).

We measure the L2 error in a subdomain R = (0.6, 0.8)× (0.6, 0.8) located “far”
from the source center, in the bottom layer. Hence, we will measure the approximation
errors as

eR(φ) =
|φ− φh|0,R

|φ|0,R
, φ = Ey, Hx, Hz.

Physically, the quantity φ|R (φ = Ey, Hx, Hz) can be understood as the measure
of electromagnetic fields at a receiver location. Thus, the quantities eR(φ) are actually
a good indicator of the error on the quantity of interest in borehole applications.

10−310−2

10−3

10−2

10−1

h

e R
(E

y
)

10−310−2

10−3

10−2

h

e R
(H

x
)

Fitting meshes

Nonfitting meshes

10−310−2

10−3

10−2

h

e R
(H

z
)

(a) σb = 0.9

10−310−2

10−3

10−2

10−1

h

e R
(E

y
)

10−310−2

10−3

10−2

h

e R
(H

x
)

10−310−2

10−3

10−2

h

e R
(H

z
)

(b) σb = 0.1

10−310−2

10−3

10−2

10−1

h

e R
(E

y
)

10−310−2

10−3

10−2

h

e R
(H

x
)

10−310−2

10−3

10−2

h

e R
(H

z
)

(c) σb = 0.001

Fig. 6. Experiment 1.

Figure 6 shows the results of Experiment 1. The predicted convergence rates are
observed. Indeed, we have eR(Hx) � h, eR(Hy) � h, and eR(Ey) � h1/2.

The case of a “small” contrast is represented by σb = 0.9 in Figure 6(a). In
this case, we observe similar results for fitting and nonfitting meshes, although some
discrepancies are observed for the eR(Ey) case. Furthermore, we see that for nonfitting
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meshes, the convergence of the electric field is quasi-linear in some preasymptotic
range and decreases asymptotically for small h.

In Figures 6(b) and (c), higher contrasts are considered. In these cases, the
convergence rate of the electric field clearly decreases for nonfitting meshes, and we
observe the predicted convergence rate O(h1/2). For the magnetic field, the predicted
convergence rate is respected, as the convergence is linear, both for fitting and nonfit-
ting meshes. We see that the magnetic field error is greater by a constant factor for
nonfitting meshes. Nonetheless, this factor is rather small and increases reasonably
slowly with the conductivity contrast. Indeed, even for the highest contrast (1 to
σb = 10−3) the accuracy loss due to the use of nonfitting meshes is limited to a factor
of two.

3.3.2. Experiment 2. We now consider an experiment in the TM-polarization.
We keep the same settings as in Experiment 1, except that the source now reads

J = (0, 0, g),

with the same Gaussian g as before. The magnetic field has only one nonzero com-
ponent Hy, and we have E = (Ex, 0, Ez). We will therefore focus on the electric field
formulation (32).

Results are presented in Figure 7. The conclusions are similar to those obtained
for the case of TE-polarization presented in Experiment 1. First, we observe that the
convergence rates predicted by the theoretical analysis are strictly respected. The
magnetic field approximation convergence is linear for fitting and nonfitting meshes,
and the electric field convergence rate is at its worst 1/2.

Again, we see that for a small conductivity contrast, the electric field approxi-
mation with nonfitting meshes has quasi-linear convergence in a preasymptotic range
and deteriorates as h goes to zero. Also, concerning the magnetic field, the nonfitting
mesh error is higher than the fitting mesh error by a constant factor that grows with
the conductivity contrast. Nevertheless, this constant remains small, even for the
highest considered contrast.

An additional observation is that even for nonfitting meshes, the convergence of
eR(Ex) is linear. Indeed, the nonfitting mesh error is higher than the fitting mesh
error only by a constant factor. Such a constant increases with the conductivity
contrast. While this enhanced accuracy is not proved in our theoretical study, it is
not completely surprising, since Ex is the component of the electric field tangential
to the interface, and it is therefore continuous across the interface.

3.3.3. Experiment 3. In this experiment, we consider a conductivity model
with crossing interfaces, generating a singular solution; see subsection 3.2. It is defined
by

σ(x, z) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x < 0.5, z > 0.5,
0.001 if x > 0.5, z > 0.5,
0.1 if x < 0.5, z < 0.5,
5 if x > 0.5, z < 0.5.

As before, since we are in a 2D setting, singularities do not occur in the TE-
polarization; for this reason, we only consider the TM-polarization and discretize the
problem using formulation (32). We keep the same source used in Experiment 2.

As in subsection 3.2, the singularity takes place at the point where the two in-
terfaces cross, namely at point (0.5, 0.5). In order to take into account as much as
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Fig. 7. Experiment 2.

possible the effect of the singularity in our error measurements, we measure the rel-
ative L2 errors on the set R̃ = (0.5, 0.7) × (0.5, 0.7). This choice can be physically
interpreted as a receiver located close to the singular point.

Results are presented in Figure 8. We observe that the convergence rates predicted
by the error analysis are respected. The magnetic field error decreases as O(h2s) with
s = 1/3, while the electric field error only behaves as O(hs). These observations are
valid for both fitting and nonfitting meshes. In particular, this experiment supports
our claim that convergence rates are the same for fitting and nonfitting meshes in the
presence of a strong singularity.

The accuracy obtained with fitting and nonfitting meshes is equivalent for the
electric field. For the magnetic field, the accuracy loss due to the use of nonfitting
meshes is a constant factor. In this test case, fitting meshes are about twice as accurate
as nonfitting meshes for the approximation of the magnetic field.

Conclusion. In this work, we developed a convergence theory for the general
3D Maxwell’s system with constant permeability and permittivity and a piecewise
constant conductivity. The theory is illustrated with 2D numerical experiments. All
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Fig. 8. Experiment 3.

parameters are scalar valued. We have focused on proving error estimates with op-
timal convergence rates for first order Nédélec’s elements. The main novelty of our
analysis is that the convergence rates derived for the electric and magnetic fields are
different. If the electric field has regularity Hs, it is well known that the electric field
approximation converges as O(hs). Our key result is an improved error estimate for
the magnetic field, where we show that the approximation converges as O(hmin(1,2s)).
As detailed in section 2, this result holds for both the E- and H-formulations of
Maxwell’s equations.

We have observed in section 3 that, in the particular case of a layered medium,
our general result implies that the convergence rate for the magnetic field is always
linear, regardless of the use of fitting or nonfitting meshes.

We have illustrated the main features of our convergence analysis using 2D exam-
ples, both in TE- and TM-polarizations. The predicted convergence rates are observed
in all numerical experiments, which makes us confident that our results are optimal.
We have also carefully compared fitting and nonfitting meshes. As predicted by the
convergence analysis, the results obtained for the magnetic field are similar for both
types of meshes. Thus, we advocate the use of nonfitting meshes to approximate the
magnetic field without a significant loss in accuracy.

In layered media, we have additionally observed that when the conductivity con-
trast is small, the electric field convergence rate is linear in some preasymptotic range.
Also, we have seen that the convergence rate of the component of the electric field tan-
gential to the interface is linear. These two features are not included in our present
analysis, and they should be the object of future investigations focused on layered
media only.

Although we have considered the 3D Maxwell’s system for the proofs, the ideas
are rather general and should apply to other systems, such as 2.5D and 2D Maxwell’s
systems, with minor modifications. Also, the “spirit” of the proof showing that the
magnetic field approximation is more accurate might apply to other discretization
strategies, such as finite difference schemes and/or numerical methods including av-
eraging techniques.

Future work will be guided towards numerical experimentations on 2.5D and 3D
Maxwell’s equations in more realistic settings.
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