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Level of detall visualization of scalar data sets
on irregular surface meshes

Georges-Pierre Bonneau Alexandre Gerussi

LMC - CNRS

Abstract ing from the vertex removal process. Section 4 is dedicated to the
local decomposition/reconstruction at each vertex removal. Eventu-
In this article, we build a multi-resolution framework intended to ally section 5 presents numerical and visual results on a planar data
be used for the visualization of continuous piecewise linear func- set, and on a spherical data set with 1.3M faces.
tions debned over triangular planar or spherical meshes. In partic-
ular, the dataset can be viewed at different level of detail, that’s to i
say as a piecewise linear functiorttteed over any simptication of Previous work. _ _
the base mesh. In his multi-resolution form, the function requires  Previous work on level of detail representations are mostly ded-
strictly the same volume of data than the original input: It is then icated to surface simg#cations, i.e. they deal with geometric data
possible to go through consecutive levels by the use of so-called de- Sets, while we restrict our§ghves with scalar data sets ([6, 7, 5]). In
tail coebcients, with exact reconstruction if desired. We also show Otherwords, we are not tc 0 approximate a surface, we approx-
how to choose a decimation sequence that leads to a good comproimate a scalar functio xed surface.
mise between the resulting approximation error and the number of *
removed vertices. The theoretical tools used here are inspired fromSchroder and S
wavelet-based techniques and extended in the sense that they cafuild sequenc
handle non-nested approximation spaces. The reader might also re-on the sphegys
fer to [2], where a similar framework is discussed for piecewise con- Work of wa @
stant functions. triang .
Keywords and phrases:wavelets, non-regular triangulations, P#eNgn el of detail for TIN (Triangular Irregular Network) deal
compression, visualization. SC data sets (height values) on irregular planar triangula-
ee for example [4]). [1] deals with multivariate scalar data
on arbitrary surface meshes. Like our paper, they are mostly
1 INTRODUCTION ed on vertex removal. But the crucial difference is that, after
h vertex removal, we modify the values of the adjacent vertices,
tions while they leave these values unchanged. In section 5, we will give

Our aim is to build a sequence of level of detail regge
of continuous piecewise linear scalar data setsney % e some visual and numerical experiments that compare sub-sampling

]) have introduced spherical wavelets to
f leV§of detail approximations to scalar data sets
ince their approach relies strictly on the frame-
eovy, itis restricted to data seteded on regular
tructed by recursive 4-split of a base mesh.

ular planar or spherical triangulations. Our based results with our algorithm, for the same sequence of vertex removal.
on vertex removal operations, and combi WE€composi-

tion/reconstruction algorithm inspired fro let tphniques, to-

gether with a global greedy algorithm, in tOWgnstructthelev- 2 Global level algorithm

els of detail.
Following our previous work dedicat€qg to ewise constant data

sets ([2]), we use a local wavq e position, that maps a level, a greedy algorithm based on a simple cost function is used to

functional space onto a coarser @' pe fact that the coarser spacge cide the order in which the vertices are removed. Ifs a vertex
has no to be a subspace of theclggfie (which must be the case in with scalar value , and  are the vertices adjacent to, with

wavelet theory) enables to deal irregular triangulations. ;
. . value , we use the following cost for the removal of vertex
At the global level, the choice of the order of removal of the vertices 9

is made by a greedy algorithm that is guided by a simple error cri-

Our algorithm is based on vertex removal operations. At the global

terion. tof | distmax 1
In section 2, we briBy explain the global greedy algorithm. Sec- costotremova distmax @
tion 3 describes the functional spaces and the basis functions result-

LMC-CNRS, BP.53, F-38041 Grenoble Cedex 9, France. where is the geodesic distance betweenand , and
distmax .

We could have used the exact error induced by the removal of
each vertex, since our local decomposition is based oapproxi-
mation. But we found that the simple cost function (1) reduces the
computation time noticeably and still works well in practice.

In addition to the cost function (1), it is possible to forbid the re-
moval of some vertices in order to preserve important features in the
data set. We have used this technique to preserve coast-lines in the
earth data set (see section 5).



3 Functional spaces and basis functions

As stated in the introduction, we want to deal with piecewise lin-
ear functions. In fact in this paper we’ll show results for such func-
tions in two cases: a planar triangular mesh and a spherical one.
The spherical case can be treated almost as the planar one, ex-
cept for some details (for example the distances on the sphere are
the geodesic distances, the re-triangulation criteria is based on a
convex-hull property). We will now implicitly consider, in our il-
lustrations, planar meshes.

We start with a 2D-triangulation of vertices . The ) ) -
global greedy algorithm described in section 2 is used to compute a Figure 2: Example of a CPLF and its decompositionin the hat func-
sequence of simplibed triangulations. The do-  tion basis

main covered by will be denoted by

a detail codbcient , encoding the loss of information due to
projection, and allowing exact reconstruction during the syn-
thesis process.

By removing a vertex from the mesh, the triangulation is only
modibed locally, over the so-called polygon ofdirence (PI) of
, which is the polygon whose vertices are adjacent tdthe 1-
neighbours of ). This s illustrated irbgure 1. This decomposition/reconstruction process is inspired from
wavelet-based technique&te)ftents them, in the sense that it can
S

be applied even if the ¢ space is not included in théone
space . This extensin n introduced in a previous work

in a different con%t&, sesyion 2). The reader might refer to [2]
e

or [3] for a contey- dent presentation of this extension.

IS in and

er with the actual computations, we should have
e basis functionsin and . The hat function

egOngyhg to’ the vertex no longer existsin . This is the
on
dim dim

ofthem, butthey are "replaced” by hat functionted on the same
vertices and their new neighbourhoods in. All the other basis
function remain unchanged. By comparing the supports of the ba-
sis functions inbgure 3, you can see the consequences of a vertex
removal on the basis functions whose support overlaps the Pl of the
removed vertex.

planar triangulations.

The sequence is used t th®functional

spacesforming our multi-resolution anal

be the space of all functions that ar ntinuous over
and piecewise linear over € le of the mesh
(shortly: a CPLF, for continuo i ear function).
The deéenition of a function of yalent to the knowledge
of its values at every vertex of , consequently the dimension
of is . The basis of is given Ry the hat-functions: the hat-
functionofthevertex in takesvaluelat andthendeclines
linearily to zero on each triangle of the Pl of in  (seebgure 2
for an illustration).

Before vertex removal After vertex removal

4 Local decomposition/reconstruction
- Unchanged basis function

The problem of computing the decomposition/reconstructionis sim- Modified basis function

ilar at each level. Consequently, we shall now focus on the transition

between  and for abxed , or, to hide the index, between g re 3. Supports of hat basis functions, before and after vertex
and (f=Pne, c=coarse), where results from the removal removal

of vertex in :

Our decomposition/reconstruction process is based on We note . . and . the basis of

approximation between and . More precisely, given a and ,respectively. isthe hatfunction centered on vertex

function , we want to Compute two ’[hings: in . We have jUSt seen that, in fact, if we number 1 tbe 1-

. N . . neighboursof (in ) then
its -approximation in (which is the orthogonal pro-

jectionof in ),



To perform  -approximation between and , we will haveto 4). This means that is no longer the best -approximation of
compute the following matrices of scalar products betwsesr and but it is supposed to be very close to. We won't try to quantify
coarser basis functions: this difference here, but this assumption led to good results (

or 3 appeared to be large enough).

_ o I 1 ineighbourhood
and  are the Gram-schmidt matrices in and  respec-

tively. And for those who are familiar with the terminology of
wavelet theory, can be seen as the matrix of scalar products be-
tween theébne scaling functions (in ) and the dual coarse scaling
functions (in ).

2 ineighbourhood

4.2 Decomposition

The decomposition step takes as input a function Figure 4: the 1- and 2-neighbourhood of a vertex
in the bner space , and outputs an

approximation in and a detail coef- . . i
bcient . Note that there is only one detail coefent since Anot_her consequence of t trategy is that the g_lo_bal algor_lthm is
dim dim . This detail codbcient is conceptually ~ Nowin , because OONgnalysis/synthesis is made in con-
linked to the vertex , it can be stored in place of . stanttime, |ndep0n§yo e number of vertices in
?I?: rcs:acﬁgeeit;%giwetzts are computed from thiene codbcients 4.4 Com heScalar products

with the following formula: Let’s say rds about the computations of the matrices

a ) ir coePcients are scalar products between the
func a . Because whenever , these

e es have a lot of céefients in common. Moreover, a
Infactthe matrix ensuresthat is the best -approximation of ion only has non zero scalar product with its 1-neighbour func-
n- . swand the support of two such functions only overlap over two
gles (seégure 5).

through the equation:

where s aline-vector representing a dual Q in the

basisof  (see[2] or [3]).
This vector is computed as follows: Fir M that it has to
fulbll the orthogonal property hich means

in analogy with wavelet theory, that tfgduafwavelet is orthogonal
to the dual coarse scaling fun ves a one-dimensional

Detail coetcient
The detail codbcient is computed from the coeb%

space of solutions for the line is then determined Figure 5: intersection of the supports of two basis functions.
uniquely by norming it to in . The or-
thogonalization and normalization®nensure that the detail coef- |, fact, the only dibcult cases occur in the computation of scalar

bcient is a measure of the approximation error between the input

function  and the output function . products of mixed type when and , be-

cause it is then necessary to compute the intersections between the
Pne and coarse triangles forming the inside of the Pl ofn

4.3 Localization and respectively. Nevertheless, without sinking into too much
) i . detail, this problem is simpler than the general problenrding
One problem of importance is that the matrices  and the intersections between any two triangle sets, because the Pl is a

have to be computed at each vertex removal, and this is a too big star-polygon, centered on the removed vertex.
amount of work since these matrices, although sparse, can poten-

tially be very large. Nevertheless, since a vertex removal only Finally.
changes basis functions in a small neighbourhood, it is quite intu- !
itive that the best approximation of is not going to differ very
much from  outside of this neighbourhood.

the computation of the matrices only requires a reasonable
amount of work, and this is crucial because our framework is in-
tended to run on possibly very large datasets (see the next section
and the application on the 1.3M faces spherical data set).

Precisely, we parameter our decomposition/reconstruction process

with a integer that reduces the global problem to alocal 4.5 Reconstruction

one by doing the following: Instead of working with all basis func-

tions, we only consider the basis functions which are based on ver- The reconstruction processis relatively straightforward: the synthe-
ticeswhichare neighboursof in (seebgure sis matrix is nothing but the inverse of the analysis matrix, thus, the



Pne codbcients can be recovered from the coarse tasénts icosahedron). The data value at each vertex was sampled from the
and the detail co&fcient with the following formula: ETOPOS5 data set (which consists of 2160 x 4320 samples on a uni-
form grid).
Our algorithm was applied using the localization parameter
(see section 4.3), and with preservation of the coast-lines.
The upper part of color plate 1 compares the result our algorithm,
with the result obtained from sub-sampling the data set: (a) shows
4.6 lllustration the approximation resulting from our algorithm, and (c) shows the
sub-sampling result. (b) shows the corresponding spherical mesh.

We shall conclude section 4 with an illustration of our decomposi- 1o poiom part of color plate 1 shows different partial reconstruc-

tion algorithm. Figure 6 shows at the top left an input function (the tions computed from our algorithm: (g), (h), (i) show the spheri-

:ﬁmgvsd verkt]ex is tcircle_d), at ;rtﬁ top right tht(aj_output fulntt:;ion, tand cal meshes corresponding to (d) (100000 vertices), (e) (200000 ver-
e bottom shows two views of the corresponding wavelet function. tices) and () (300000 vertices).

This decomposition was computed using the localization parameter

relative L2 error

# of vertices

Figure 6: Approximating a CPLF: top left = input function, top right
= approximation, bottom = wavelet function (two views). The r _ _
moved vertex is circled. ré 7: Relative -error vs. # of vertices. ’0":sub-

pling,’+: -approximation

5 Results Q\

We start this section with some numerical omposi-
tion/reconstruction on a data set that was coryructed to

test the stability of the algorithms. We h C n a strongly ir-
regular planar triangulation, and have m n-smooth image

on that triangulation: the triangulatiogvas erated by Delaunay-
inserting random points in a re aiy, and the data value at
each vertex was sampled fro 5 data set from the Na-
tional Oceanographic and AtmoYg#feric Administratfoishowing

the elevation/bathymetry of the eXgth.

The data set has 25000 vertices. The coast-lines were preserved by
the global greedy algorithm, as explained in section 2: the vertices
to keep were detected by looking if a change of sign occured at the
1-neighbour vertices. The decomposition was computed using the
localization parameter (see section 4.3). We compare the
results of our decomposition algorithm with the results obtained by
simply sub-sampling the data set. Figure 7 shows the relative
error versus number of vertices for our decomposition, and for sub-
sampling. Figure 8 shows two partial reconstructions with 2500
vertices out of 25000, one based on our algorithm (bottom right),
and the other based on sub-sampling (bottom left), for the same se-
quence of removed vertices.

Color plate 1 illustrates our algorithm on a spherical data set con-
sisting of 1.3M faces. The original data set is>ded on a regular Figure 8: 2500 vertices out of 25000, top=mesh, bottom left=sub-
triangulation (4-to-1 split with 8 levels of subdivision starting on a  sampling, bottom right= -approximation

1Available via anonymousftp étp://ftp.ngdc.noaa.gov/Solid FEarth/Topography/tbase 5Smin/
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