
HAL Id: hal-01714204
https://inria.hal.science/hal-01714204

Submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using High Frequency Accelerometer and Mouse to
Compensate for End-to-end Latency in Indirect

Interaction
Axel Antoine, Sylvain Malacria, Géry Casiez

To cite this version:
Axel Antoine, Sylvain Malacria, Géry Casiez. Using High Frequency Accelerometer and Mouse
to Compensate for End-to-end Latency in Indirect Interaction. Proceedings of the ACM Confer-
ence on Human Factors in Computing Systems (CHI 2018), Apr 2018, Montréal, Canada. pp.1-11,
�10.1145/3173574.3174183�. �hal-01714204�

https://inria.hal.science/hal-01714204
https://hal.archives-ouvertes.fr


Using High Frequency Accelerometer and Mouse to
Compensate for End-to-end Latency in Indirect Interaction

Axel Antoine1, Sylvain Malacria2 and Géry Casiez1

1Université de Lille, France 2Inria, France
axel.antoine@univ-lille.fr, sylvain.malacria@inria.fr, gery.casiez@univ-lille.fr

ABSTRACT
End-to-end latency corresponds to the temporal difference be-
tween a user input and the corresponding output from a system.
It has been shown to degrade user performance in both direct
and indirect interaction. If it can be reduced to some extend,
latency can also be compensated through software compensa-
tion by trying to predict the future position of the cursor based
on previous positions, velocities and accelerations. In this
paper, we propose a hybrid hardware and software prediction
technique specifically designed for partially compensating end-
to-end latency in indirect pointing. We combine a computer
mouse with a high frequency accelerometer to predict the fu-
ture location of the pointer using Euler based equations. Our
prediction method results in more accurate prediction than pre-
viously introduced prediction algorithms for direct touch. A
controlled experiment also revealed that it can improve target
acquisition time in pointing tasks.

ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies

Author Keywords
computer mouse; accelerometer; end-to-end latency;
prediction; jitter; performance.

INTRODUCTION
Latency (or "lag") is defined as the temporal difference in a
process between an input and the corresponding output. End-
to-end latency is then defined as the total time required by a
process, from the physical action of a user on an input device
to the visual feedback on screen (i.e. sensing, transmission,
system, applications, graphical computations and display re-
fresh). This end-to-end latency can be split into hardware
latency (on input side: sensing, transmission and on output
side : display) and software latency (system, toolkits, frame-
works and applications). End-to-end latency is still affecting
most interactive systems [9, 27, 30], from desktop computers
(where latency is between 50 and 90 ms [9]) to touch-based
devices (typically, latency on touch-screens is between 60 and
200 ms [10, 30]). And while modern input controllers (e.g.

ACM ISBN .

DOI:

gaming controllers) have negligible input latency, they do not
completely overcome the end-to-end latency [9, 27, 33].

Research has shown that latency significantly impacts perfor-
mance in pointing and dragging tasks [14, 17, 27, 31, 32] and
that it can be perceived from as low as 5-10 ms on a touch
device [30]. So far, several methods have been explored to re-
duce or compensate for end-to-end latency. A first method is to
control the entire graphical rendering pipeline to improve com-
putation of each frame displayed, trying to include input visual
feedback as soon as possible, which is hard to achieve with
conventional GPU architecture and 3D engines [19]. Another
method is to focus on the hardware part by building home-
made input devices, handling systems and output devices. For
example, Ng et al. designed a very low latency touchscreen
of 1 ms [30], a delay also achieved in a homemade virtual
reality system by Friston et al. [19]. However, this approach
is expensive and can hardly be applied on current systems.
An alternative is to try to use software compensation by try-
ing to predict the future position using Euler based equations,
for example, to compensate hardware and software latencies.
Those techniques generally base their prediction on previous
positions, velocities and accelerations which are not hardware
captured but obtained by derivatives. Few papers present the
design of such predictors [13, 20, 25] for direct touch surfaces
and how to evaluate them [29].

In this paper, we focus on a hybrid hardware and software
compensation of end-to-end latency on desktop computers
when operated using a computer-mouse, and we contribute a
prediction technique specifically designed for indirect pointing.
Our technique is based on the prediction of pointer position
based on the velocity measured by the mouse and the accel-
eration from an accelerometer embedded in the mouse. Our
assumption is that the hardware acceleration measured by the
accelerometer is more precise and less noisy than a computed
one from the velocity, which is captured discretely by the
optical sensor of the mouse controller. We designed our appli-
cation to receive and merge raw informations from the mouse
and accelerometer. The hardware acceleration and velocity
measures together with the high frequency of inputs (both in-
put devices run at 1 kHz) allow us to know every millisecond
a full precise state of the hand motion (i.e. position, velocity
and acceleration). There, using Euler based equations, it is
possible to have a better estimation of the next position within
a certain delay while reducing estimation errors and delays
introduced by time derivative methods.

https://www.acm.org/publications/computing-classification-system/1998/h.5.2


We will first detail the related work on the end-to-end latency
measure and compensation and also discuss its negative effects
on performance. We then describe how we designed our pro-
totype and merged the information received from the mouse
and accelerometer. Our prediction technique to estimate the
current position of a mouse pointer is described before being
compared to existing techniques. Last we detail the results of
a controlled experiment to measure the performance of our
technique under different amounts of artificial latency and
different levels of latency compensation.

RELATED WORK

End-to-end latency explained
In an interactive system, both hardware (input sensing, com-
munication and display) and software (system, toolkit and
application) contribute to the end-to-end latency (Figure 1).

Sensing Trans-
mission System Toolkit Application GPU Display

Time

User 
input

Visual 
feedback

Hardware Software Hardware

t0 t0+lag

Figure 1: Pipeline of information processing between a user input and
the associated visual response displayed on screen.

Hardware input latency. On the input side, end-to-end latency
can be impacted by the sampling rate of the input device. For
example, computer mice have sampling rates ranging from
125 Hz to 1000 Hz for gaming mice, which may add 1 to 8 ms
to the end-to-end latency [7]. Data transmission between the
input device and the system also impacts latency. Pavlovych et
al. [32] compared different end-to-end latencies for different
connectivity and found 33.2 ± 2.8 ms using USB and 53.1
± 3.32 ms using PS/2 port. A wireless mouse controller
gave 102.9 ± 3.3 ms for the end-to-end latency of their system.
Input latency varies even more on touch based devices, varying
from 50 to 200ms depending on the hardware [10, 16, 30].

Software latency. End-to-end latency is also impacted by the
way inputs are handled and processed at the system, toolkit
and application level. Casiez et al. [9] compared end-to-end
latencies on different systems, toolkits and applications and
found a mean of 50.9 ± 7.6 ms for a Qt 5 application on
Ubuntu 14.04 and 74.9 ± 9.2 ms for the same application on
Windows 7. Regarding toolkits, they found 46.2 ± 5.3 ms
for a C++/GLUT application, 62.0 ± 5.5 ms for Java / Swing
and 65.4 ± 5.1 ms for C++ with Qt. These results show that
the choice of toolkit and system is important for a responsive
interface.

Hardware output latency. Finally, a significant portion of the
end-to-end latency of an interactive system comes from GPU
computations and display time [18, 27]. In addition, frame
buffering and display refresh rate also strongly impact end-
to-end latency. Typically, two frame buffers are generally
used to store computed images to display. While the monitor
displays one buffer, the GPU computes the next frame in
the other, which implies that display events are queued in 2

buffers, which potentially adds, at 60 Hz, up to 33.4 ms to the
delay [33].

Impact of the end-to-end latency on user experience
Perception of the latency
Deber et al. studied the minimal perceivable latency with
indirect touch devices and found a JND of 55 ms for dragging
and 96 ms for tapping tasks [15]. For direct interaction with
a touchscreen, Ng et al. [30] found that users could reliably
perceive end-to-end latency as low as 5-10 ms whereas Jota et
al. found that below 20 ms, no participant was able to discern
latency and below 40 ms, 85% of their participants were not
able to notice improvements of latency [22].

Impact on performance
MacKenzie and Ware studied the effect of latency on pointing
tasks on desktop computers [27]. They simulated several
latencies (8.33, 25, 75 and 225 ms) to see the effect on user
performance. They found that the impact of latency increases
with the index of difficulty of the tasks (up to 6.02 bits) and
identified that user performance drastically decreases from
75 ms of latency. Later, Pavlovych and Stuerzlinger [32]
conducted a similar experiment with a different apparatus and
target sizes, and found that performance decreased from 58 ms
of latency. They also claimed that the smaller the targets are,
the higher is the impact of latency on performance, which can
be a problem in modern systems where pixel densities become
larger and the number of objects displayed increases. Also,
Teather et al. [34] used 12-pixel wide targets to see a 15%
decrease of performance from 35 ms of latency. Pavlovych et
Gutwin found a drop of performance and increased number of
errors from as low as 50 ms [31]. Finally, Claypool et al. [14]
showed that latency also impacts the acquisition of moving
targets.

Reducing or compensating end-to-end latency
Two main approaches can be used in order to diminish the
impact of end-to-end latency.

Hardware reduction
The first approach consists in reducing the latency by using
high frequency input and output devices. Typically, Ng et
al. [30] developed their own touch-based device that offered
1 ms end-to-end latency. They used a homemade 24×16cm
touch surface capturing touch contacts at 1 kHz. Inputs are
then handled by a Xilinx FPGA to be displayed on a 1024×768
mono color video projector with a refresh of 32 kHz and input
latency of 40 µs. Friston and al. [18] also did the same kind
of work. They built their own architecture based on a FPGA
to avoid the current GPU architecture latency (20 ms). They
describe in their paper the design of such a workflow to build
a DVI display driver running a 2D user interface with 1ms of
end-to-end latency. This approach can drastically diminish
end-to-end latency, but requires dedicated, expensive state-of-
the art hardware and has not been tested with real UIs that
would display complex information.

Software compensation
The second approach consists in using methods in order to
“predict” what should be displayed in the near future. One of



the most common prediction techniques (used for predicting
navigation, vehicles control, trajectory estimation, etc.) con-
sists in using a Kalman filter [23] (also known as LQE for
Linear Quadratic Estimation) to estimate the next state of a
measurement following a model, i.e. a relationship between
measurements. The algorithm works in two steps: the predic-
tion step, where the Kalman filter estimates the next value of
the current state, and the correction step, when the Kalman fil-
ter receives new inputs and updates its estimates. This method
has been used to compensate latency in direct touch [6, 28].

Knibble et al. [25] used a Microsoft Kinect depth camera and a
video projector to display an image on moving targets like free
flight balls or human movements. They used a Kalman filter
combined with a ballistic model to compensate for the overall
latency of their system, and improve its accuracy of 34% for
free flight alignment and 40% for human body alignment.

Laviola proposed to use a double exponential smoothing al-
gorithm in order to predict user’s position and orientation in
a Virtual Reality environment [26]. He compared his algo-
rithm to various Kalman Filters solutions and showed that, in
addition to being easier to implement, it also runs faster and
performed equivalently.

Another approach proposed by Cattan et al. [13] to predict
inputs continuously on a touch surface consists in using a
constant speed linear predictor based on Taylor series (first
order) to find the future position of the finger based on the past
inputs, reducing latency from 25 to 75 ms but they have shown
it only worked when fully compensating 25 ms end-to-end
latency.

Qingkui et al. [8] proposed in a patent to use curve fitting to
predict user’s pointing. Their goal was to fit a curve to recent
touch points and predict the next location using extrapolation,
by fitting a polynomial to the last 50 to 60 input points, and
use the curve tangent and polynomial derivative to predict the
next touch point frame (16.7 ms at 60 Hz).

Kim et al. [24] proposed in a patent to use velocity and accel-
eration to compute a prediction. They defined a magnitude
of direction change (the angular difference between vectors
formed from the new point to previous point, and the pre-
vious point to the next previous point) as a heuristic. For a
magnitude lower than 15°, then velocity dominates, otherwise
acceleration dominates. We refer to Nancel et al. for a detailed
review of the above prediction techniques [29].

Note that all above techniques compute derivatives using sim-
ple time differentiation between the last two positions or veloc-
ities. Simple time differentiation has the advantage of being
easy to implement, fast to compute and using the most recent
data available and thus introducing less latency in the esti-
mation of derivatives. The drawback is that the derivatives
are generally noisy. Ushirobira et al. compared differenti-
ation algorithms (homogeneous and algebraic methods) to
estimate the derivatives of a computer-mouse with the goal
to use these derivatives to perform some latency compensa-
tion [35]. Their results suggest that the algebraic differentiator
provides smoother curves but when applied to latency com-
pensation it results in large overshootings. The results they

Figure 2: Our setup comprises a Logitech G9 Laser Mouse connected
via USB to the host computer with the MPU-9250 chip embedded in-
side. The MPU-9250 chip is connected to an Arduino Leonardo that is
connected to the host computer via USB.

obtained are based on off-line computations on data logged
from a computer mouse. Their technique was not implemented
in a real working prototype nor was it evaluated through con-
trolled experiments and they did not compare to simple time
differentiation. Without evidence of an advantage of algebraic
differentiator over simple differentiation we did not replace
the simple differentiation used in the techniques of the state of
the art with other techniques.

Finally, Henze et al. [20] trained a neural network with almost
3 million touch events from over 138 000 strokes in order to
extrapolate finger movement on a touch-based device. Predic-
tion using their neural network was more precise than linear
and polynomial extrapolation. However, they do not provide
the trained neural network, nor the touch events they trained
the neural network with, making it impossible to replicate their
solution.

Evaluating the accuracy of a prediction method is usually per-
formed by using the Root Mean Square error [26], or worst
Euclidean error distance [28]. Unfortunately, these metrics
rely only on the distance between the predicted position and
the real one and are not able to capture side effects introduced
by prediction algorithms. Therefore, Nancel et al. [29] eval-
uated multiple touchscreen predictors and established new
metrics. They conducted a controlled experiment and got
user feedback on visual artefacts they noticed on the predicted
positions of the finger in different tasks. They grouped user
feedback into different categories - lateness, over-anticipation,
wrong orientation, jitter, jumps, wrong distance, spring effect -
and established different metrics based on these artefacts cate-
gories to compute the appearance probability of each visual
artefact.

TURBOMOUSE
We propose TurboMouse, a hybrid hardware and software
prediction technique specifically designed for partially com-
pensating for end-to-end latency in indirect pointing. Our
technique relies on a low-cost high frequency accelerometer
embedded within a computer mouse. We hereafter describe
the hardware we used and how we merge the different sensor
data. We then detail our prediction technique.



Hardware
Our setup (illustrated in Figure 2) comprises an optical laser
computer mouse embedded with an accelerometer connected
to an Arduino board. Both the mouse and Arduino board are
connected to a host computer via USB.

Mouse controller
We used a conventional gaming USB Logitech G9 Laser
mouse [4], whose retail price was of $99 USD. Its resolu-
tion can be configured from 200 CPI to 3200 CPI, and can
send from 125 to 1000 HID reports per second. While all
these settings can be altered using a dedicated utility software
provided by the manufacturer, we decided to use the controller
in its default configuration, which runs at 1000 Hz with the
resolution of 2000 CPI.

Accelerometer
Movement acceleration measures are provided by an In-
venSense MPU-9250 chip [2], 9-axis motion tracking device
embedded within the mouse controller, which is connected
to an Arduino Leonardo board using I2C communication sys-
tem. We tried to position as accurately as possible the IMU
on top of the optical sensor. We also tried to align the axis
of the accelerometer with the ones of the optical sensor. The
MPU-9250 is able to run up to 4 kHz in a range of [-16g;
+16g] with an initial tolerance of ± 80 mg. It also contains a
gyroscope sensor, running up to 32 kHz and 2000 ◦/s and a
magnetometer capable of running at 100 Hz. In this context,
we only used the accelerometer component of the chip that we
configured to run at 4 kHz in a range of [-2g ; +2g]. However,
since the Leonardo is connected to host computer using USB
protocol, we are limited to 1 kHz for sending raw HID reports.
Therefore, we chose to read the register values at 1 kHz (i.e.
read one value of four). We tried to compute an average each
millisecond using the 4 values previously measured by the
accelerometer, but this extra computation impacted the output
rate of 1 kHz.

The accelerometer of the MPU-9250 has a Zero-G initial cali-
bration tolerance of ± 80 mg. To calibrate the accelerometer,
we first record the acceleration values from the 3 axes at rest.
From there, we compute a mean of each axis acceleration, and
we subtract the offset of each axis from the corresponding new
input. To reduce noise, we also added filtering directly on the
input acceleration and configured a 1e filter [12] empirically
tuned with 0.7 Hz mincutoff and 0.4 beta values for each axis.

Software
The mouse controller and Arduino board send their data to
a host computer via USB that runs a dedicated software to
handle these signals and predict the next position of the mouse
cursor. This software was written in C++ with the Qt Frame-
work.

Merging input data
Acceleration inputs are transmitted to the computer every 1ms
using HIDAPI [1] in a dedicated blocking-thread. Each event
received is timestamped and buffered by our software. The Ar-
duino also records and sends a timestamp to the host-computer.
In this way we were able to determine that the communication
between the Arduino and the host-computer is below 1 ms. As

a result we use the timestamps recorded by the host computer
for the following.

Mouse inputs are provided at 1 kHz by the Logitech G9 Laser
controller and captured by the libpointing library [11] which
allows us to get raw informations (dx [counts], dy [counts],
timestamp [ns], buttons) at very low level.

Inputs are merged based on their timestamps. For each mouse
input we associated the most recent acceleration values stored
in the buffer.

Supporting transfer functions
Cursor control is performed on desktop systems through in-
direct pointing via a mouse or a trackpad. As the physical
distance that must be travelled by a cursor can be important,
this interaction paradigm usually relies on a transfer function
in order to apply a control-display gain (G) that will impact
cursor displacement [11]. Basically, the velocity of the cursor
corresponds to a function of the velocity of the input device
in the real world. For example, a constant transfer function of
gain 2 will move the mouse cursor on screen by 4 cm if the
physical mouse displacement is equal to 2 cm. However, as
pointed out by Casiez et al. [11], most transfer functions nowa-
days are non-linear and dynamically adjust the gain depending
on the input velocity.

Taking account of a transfer function TF for the input acceler-
ation implies multiplying the inputs by this gain G as done for
mouse inputs. However the operating system transfer function
makes it very hard to precisely know in real time the gain
being applied on input. For that reason we bypass the system
transfer function and use the transfer functions provided by
libpointing [3] to easily get the gain applied at a given time
frame and exactly know the transfer function used. It also
eases later replication.

Prediction
Our linear prediction technique retrieves the current cursor
position pcurrent (in meters), the current cursor velocity v cap-
tured by the mouse (in m/s) and the current cursor acceleration
a captured by the accelerometer (m·s−2) at high frequency (1
kHz). First, it computes the gain factor G based on the current
transfer function T F and vmouse (eq. 1). Then, it corrects the
velocity v measured by the mouse optical sensor every dt with
hardware acceleration a to obtain a more accurate velocity
vcorrected (eq. 2). dt is computed as the timestamps difference
between the current event and the past event.

G =
T F(vmouse)

vmouse
(1)

vcorrected =vmouse ∗G+a∗G∗dt (2)

ppredicted =pcurrent +vcorrected ∗ comp+0.5∗a∗G∗ comp2

(3)

From there, the predicted position ppredicted of the mouse
can be computed within a future time interval (comp, for
latency compensation) using the current position pcurrent, the



corrected velocity vcorrected and the acceleration a (eq. 3).
We also smoothed the predicted positions with 1e filter [12]
empirically tuned with 12 Hz mincutoff and 0 beta values for
each axis (x and y).

EVALUATING PREDICTION QUALITY
We conducted a first experiment in order to compare the perfor-
mance of TurboMouse in terms of prediction accuracy to other
predictors from the literature. This experiment consisted in
performing various tasks in order to first collect input events
from the mouse sensor and the accelerometer, and then to
use these input events to compute metrics that are used as
benchmarks for prediction methods.

Data collection
Tasks and procedure
Participants were instructed to perform drawing and pointing
tasks as quickly and accurately as possible. The drawing task
consisted in dragging the mouse cursor over different shapes
displayed at the center of the screen (square, circle, triangle
and infinity symbol), without any suggested width on the shape
outline participants had to stay in. To complete a dragging
operation, participants had to position the mouse cursor within
a red circle located somewhere along the shape (Figure 3-
left), drag the mouse cursor all over the shape while holding
the mouse button, and release the mouse button when back
in the red circle. If a mouse press or mouse release event
occurred outside the red circle, the trial was not considered
and participants had to perform it again.

The pointing task was a 2D reciprocal pointing task with 13
targets positioned along a circle (Figure 3-right) following the
norm ISO 9241-9 (§B.6.2.2) [21]. For each trial, participants
had to select a target of a width W and located at a distance
D from the initial position of the cursor. To select the target,
participants had to position the mouse cursor over the target
and click on it. The experimental software moved to the next
trial only when the target was correctly selected.

Once correctly selected, the current target was hidden and the
next target was highlighted on the screen (with only one target
highlighted on screen at a time). For both tasks we collected
all input events from the mouse and the accelerometer. The
operating system transfer function was disabled in order to
be able to collect data with two different transfer functions.
No software compensation of latency was provided in this
experiment.

Design
The experiment used a 2× 2 within-subject design for the
main factors task (pointing or drawing) and transfer function
(sigmoid or constant gain of 4). We used the sigmoid function
that mimics the default macOS transfer function provided
by libpointing [11], that we configured with the following
parameters: (gmin=1 gmax=15 v1=0.05 m/s v2=0.6 m/s).

The experimental design then varied depending on the task.
Drawing tasks used a 4 × 2 × 2 design with factors shape
(square, circle, triangle and infinity), shape size (75mm,
150mm) and direction (clockwise, counter-clockwise). Shape
and direction were presented to participants in a random order.

Figure 3: In the drawing task (left) participants had to follow the shape
outline in dragging mode by pressing and releasing mouse button in the
red circle. The direction is indicated by the arrow. In the pointing task
(right) participants had to press and release the mouse button on the
green target. Opposite target to the current one becomes green until all
targets have been selected.

Pointing tasks used a 2×2×12 design with factors target dis-
tance (75mm, 150mm), target width (2mm, 7mm), repetition
(1-13, with the first repetition being systematically discarded
since used to control the initial cursor position). Combina-
tion of distance and width were presented to participants in a
random order.

All participants performed both tasks, each task being tested
with both transfer functions. In total, each participant per-
formed 2×4×2×2 = 36 dragging trials and 2×2×2×12 =
96 pointing trials for a total number of trials of 132 trials.

Apparatus and participants
This experiment was conducted on a Mid 2015 15.4” MacBook
Pro running macOS Sierra 10.12.6 and equipped with a 60
Hz Retina 2880×1800 display and integrated 1536MB Intel
Iris Pro 5200. The experimental software was implemented in
C++, using the Qt framework. Ten participants (mean age 31,
3 women) participated in the data collection.

Comparing prediction performances
Offline analysis methodology
By default, we consider the collected points as points with
latency. For a given collected point that occurred at t0, we
estimate its ground truth predicted value n ms in the future (that
we will call real position) by interpolating linearly between the
collected points (ti and ti+1) n ms later (Figure 4). Each value
of n represents in that case the amount of latency compensation
to be computed. We use a given prediction algorithm in order
to compute predicted points for different artificial latencies (8,
24, 40 and 56 ms). We then compare the performance of these
predictions using different pointing prediction metrics.

ti+2ti+1t0time
n ms compensation

Collected points
Real/Interpolated point
Predicted point

t0+comp

Figure 4: The ground truth compensated estimation of a given collected
point at t0 is estimated by interpolating linearly between the collected
points at ti and ti+1 with ti ≤ t0+comp ≤ ti+1



Metrics
In addition to the classic Root Mean Square Error (RMSE),
we compared the prediction performance using the metrics
introduced by Nancel et al. [29] for evaluating direct pointing
prediction. These metrics that were invented by combining
geometric properties and user feedback on the perception of
different prediction algorithms, are computed in the context of
direct pointing by comparing the predicted position to finger
position on screen.

We adapted the metrics from Nancel et al. [29] (see section
Metrics and models) to indirect pointing, as follows:

• Lateness: measures how much the predicted point is behind
the real one

• Over-anticipation: measures how much the predicted point
is in front of the real one, in the direction of movement

• Wrong orientation: measures how much the predicted point
is not going in the same direction as the pointer

• Jitter: measures the amount of noise of the predicted pointer
positions

• Jumps: measures how often the cursor jumps away from
the trajectory from time to time

Predictors
We computed these metrics on 5 state-of-the-art predictors:
Laviola using Double Exponential Smoothing (DES) [26],
Kalman [28], Linear 1st order (first) [13], Linear 2nd order
(second) [36], quadratic [8] and TurboMouse.

Except DES we used for all other predictors the implementa-
tions provided1 by Nancel et al. and we also used the code
they provide to compute the metrics [29]. We were not able
to compute values for the Spring effect metric as the provided
implementation systematically returned 0 for every predictor.

Results
To run our statistical analyses we aggregated all data to keep 4
factors: latency compensation (8, 24, 40 and 56 ms), predictor
(DES, Kalman, first, second, quadratic and TurboMouse), task
(drawing, pointing) and transfer function (TF) (sigmoid and
constant).

Note that for each metric mentioned hereafter, a higher score
corresponds to a higher chance to notice the corresponding
effect. A perfect prediction technique would show low scores
across all latencies and metrics.

We used SPSS to run the statistical analyses in this experiment
and the next one. Greenhouse-Geisser corrections to the de-
grees of freedom were applied when sphericity was violated.
Pairwise comparisons used Bonferroni correction.

RMSE
Our main dependent variable is the Root Mean Square Error
(RMSE) that is the most common metric used to evaluate the
performance of prediction or related techniques.

Repeated-measures ANOVA found a significant main effect
of compensation (F3,27 = 140.0, p < 0.0001, η2

p = 0.94), predictor
(F5,45 = 222.1, p< 0.0001, η2

p = 0.96), task (F1,9 = 48.5, p< 0.0001, η2
p =

1http://ns.inria.fr/mjolnir/predictionmetrics/

0.84) and significant compensation × predictor (F15,135 = 127.5,
p < 0.0001, η2

p = 0.93) interaction on RMSE. Pairwise compar-
isons show that the drawing task has lower RMSE compared to
pointing, certainly due to the lower speeds used while drawing.
TF had no significant effect (p=0.07). The significant compen-
sation × predictor interaction reveals that TurboMouse has
lower RMSE compared to first and second for compensation
above 24 ms, suggesting our use of hardware acceleration
provides better predictions than time derivative techniques,
especially when trying to compensate higher levels of latency
(Figure 5). Overall DES has the lowest RMSE across all
compensation while Kalman is the worst, certainly because
the predicted points are very close to lagging ones (as shown
hereafter this is highlighted by the Lateness metric). How-
ever RMSE only provides partial results as it does not reveal
side-effects associated to prediction techniques.

Other metrics
All other metrics show significant main effects and interac-
tions very similar to the ones obtained for RMSE (with similar
F and p-values) with the following exceptions: there is no
significant effect of task for WrongOrientation (p=0.06). In
addition we found significant main effects of TF and signifi-
cant TF × predictor interactions for 95th percentile (p<0.02),
OverAnticipation (p<0.04) and Jitter (p=0.03). For Jitter there
was no significant TF × predictor interaction.

Pairwise comparisons for task reveal that 95th percentile, Late-
ness, OverAnticipation, Jitter and Jumps are significantly
lower for drawing than pointing task. Pairwise comparisons
for TF and predictor reveal constant transfer function shows
significantly higher values compared to sigmoid: 45 vs. 40 for
95th percentile and 0.7 vs 0.6 for Jitter. For OverAnticipation
no significant difference was found for TurboMouse.

When analysing the interaction between compensation and
predictor (Figure 5), we can observe that TurboMouse has a
good ability to reduce Lateness compared to other predictors,
especially for higher levels of latency. Only DES is better but
exhibits much higher levels of Jitter and Jumps that are clearly
noticeable when using it.

OverAnticipation and WrongOrientation overall show higher
scores for TurboMouse but this is typically the case with pre-
dictors being more efficient to reduce Lateness. However the
higher values for OverAnticipation can mostly be explained by
one limitation of our predictor. Indeed, we realized by testing
our prototype that when the mouse suddenly stops moving
and, the cursor was already too far in the direction of the pre-
diction, then the cursor snapped back, resulting in an elastic
band effect. The effect is more noticeable as the user stops
more quickly. Of course, the more the compensation increases,
the more the effect is noticeable.

In summary, from the off-line simulations done in this first
experiment, we have learnt that the pointing task overall in-
creases the side-effects associated to prediction techniques.
We observed that participants were clearly slower in the draw-
ing task compared to the pointing task which can be easily
explained by the nature of the tasks. Slower speeds are less
likely to produce side-effects. We have also learnt that the

http://ns.inria.fr/mjolnir/predictionmetrics/


0.0

10.0

20.0

30.0

8 24 40 56

Sc
or

e
RMSE

0.0

25.0

50.0

75.0

100.0

8 24 40 56

95th distance

0.0

10.0

20.0

30.0

8 24 40 56

Lateness

0.0

5.0

10.0

15.0

20.0

8 24 40 56
Compensation (ms)

Over Anticipation

0.0

10.0

20.0

30.0

40.0

50.0

8 24 40 56

Wrong Orientation

0.0

0.5

1.0

1.5

2.0

8 24 40 56

Jitter

0.0

0.5

1.0

1.5

8 24 40 56

Predictor
TurboMouse
DES
First
Kalman
Quadratic
Second

Jumps

Figure 5: Scores for each metric, amount of latency and predictor. Error bars represent 95% CI for the mean.

transfer function has little impact on the side-effects. Only
95th percentile and Jitter are affected and when considering the
range of values over which each metric spans, the differences
between the two transfer functions appear to be very small.
Last when considering all metrics together, our algorithm ap-
pears to be a good trade-off between reduction of Lateness
and introduction of side effects. However these results remain
based on off-line simulations. The metrics were developed for
direct touch surfaces and this is the first time to our knowl-
edge they are used in a context of indirect interaction. What
would require further investigation is the relation between the
magnitude of an effect and its perception by the user.

IMPACT OF TURBOMOUSE ON PERFORMANCE
We conducted a second experiment to evaluate if our latency
compensation method improves user performance (i.e. de-
creases the movement time) in pointing tasks, in spite of po-
tential side-effects highlighted by previous simulations. We
chose the pointing task as it is the predominant task on desk-
top interfaces and that the previous experiment reveals higher
side-effects with it.

Method
Procedure and design
Participants were instructed to perform the same pointing task
as for the first study, as quickly and accurately as possible, with
different levels of artificial additional latency (0ms, 33.3ms,
66.6ms) and latency compensation (0ms, 16.7ms, 33.3ms,
50ms). The levels of artificial latency were chosen to cor-
respond to 0, 2 and 4 frames of delay on a 60 Hz display.
The levels of latency compensation correspond to 0, 1, 2 or 3
frames of compensation on a 60 Hz display. Latency compen-
sation was provided using the TurboMouse. We used the same
target distances (75mm, 150mm) and widths (2mm, 7mm) as
in the previous experiment. The experiment was composed
of 3 blocks of 9 repeated target selections for each ID, level
of artificial latency and compensation, with the first selection
of every block used as a method for controlling initial cursor
position (thus, the first selection of every block was discarded).
Clicking outside the target was considered as an error. Partici-
pants had to successfully select a target before moving to the
next one to prevent them from racing through the experiment.
Participants had the opportunity to take a break every time
compensation or artificial changed (that is, every 3 blocks).

The pause screen also displayed their current error rate and
they were encouraged to adjust their speed / accuracy trade-off
to respect a 4% error rate. Since the metrics did not reveal any
significant effect of transfer function on latency compensa-
tion, the only transfer function set during the experiment was
the sigmoid function mimicking the macOS default transfer
function used in previous experiment. The experiment used
a 3×4×3×2×2×8 within-subjects design for factors : ar-
tificial latency (0, 33.3 and 66.6 ms), latency compensation
(0, 16.7, 33.3 and 50 ms), block (1-3), target distance (75
mm or 150 mm), target width (2 mm or 7 mm) and repetition
repetition (1-9). Order of artificial was counterbalanced across
participants, compensation was presented in increasing order,
and target size and distance were presented in random order. In
total, each participants performed 3×4×3×2×2×8 = 1152
selections used for analysis. The experiment lasted on average
35 minutes.

Participants and apparatus
Twelve participants (mean age 26, SD 7.5, 3 women) were
recruited for this experiment, which was conducted using the
same apparatus as the previous experiment.

Mechanics for adding artificial latency
Artificial latency was added through artificial delaying of in-
put events. Input events received from the mouse and the
accelerometer were directly buffered when they arrived on
the host computer. As each event is associated with a times-
tamp when received by the host computer, our experimental
software delays the event handling by comparing its times-
tamp plus the amount of artificial latency wanted with the
current timestamp. After being delayed when the event is then
handled, the prediction is computed to compensate latency.

Measuring end-to-end latency of the study
We measured the end-to-end latency in our application using
the method described by Casiez et al. [10]. We performed 190
measures for each artificial latency and found 40.5 ms (SD
7.0 ms) for 0 ms artificial latency, 74.1 ms (SD 6.8 ms) for
33.3 ms artificial latency and 108.5 ms (SD 7.6 ms) for 66.6
ms artificial latency, showing our artificial latency mechanics
worked as expected. The default latency of our application
is particularly low given we use a 1000 Hz mouse and our
application had few objects to render in OpenGL.



Results

Error rate
Error rate is measured as the percentage of trials not success-
fully completed. Repeated-measures ANOVA revealed signifi-
cant effect of width on error rate (F1,11 = 9.2, p < 0.01, η2

p = 0.46;
2 mm: 6.6%, 7 mm: 3.5%). No other main effect or interaction was
found on error rate. On average the error rate is equal to 5.0%.

Movement time
Movement time is the main dependent measure and is defined
as the time taken to move from a target to the next one and
click on it. Targets marked as errors were removed from the
timing analysis.

Repeated-measures ANOVA did not reveal any significant
main effect of block but a significant block ×compensation
interaction (F6,66 = 2.8, p < 0.02, η2

p = 0.21) on movement time.
Pairwise comparisons show that for 0 ms of latency compensa-
tion, there is a significant decrease in movement time between
block 1 and block 3 (p = 0.03; block 1 = 1.54 s, block 3 = 1.48 s).
Considering the small learning effect, we chose to keep all the
blocks for subsequent analysis.

Repeated-measures ANOVA found a significant main effect of
artificial (F2,22 = 10.8, p < 0.001, η2

p = 0.49), compensation (F3,33 =

36.8, p < 0.001, η2
p = 0.77), distance (F1,11 = 312, p < 0.0001, η2

p =

0.97), width (F1,11 = 305.2, p < 0.0001, η2
p = 0.96) and significant

artificial ×compensation (F6,66 = 7.8, p < 0.001, η2
p = 0.41) on

movement time. This interaction reveals that the compensation
of latency does not affect movement time in the same way
depending on the amount of artificial latency (Figure 6).

For 0 ms artificial latency, pairwise comparisons show a sig-
nificant (p<0.001) increase of movement time between latency
compensation 50 ms and both 16.7 ms and 33.3 ms (0ms: 1.29s,
16.7ms: 1.22s, 33.3ms:1.26s, 50ms:1.37s). However no significant
difference was found between 0 ms compensation and the
other amounts of compensation. For 33.3ms artificial latency,
16.7ms and 33.3ms compensation significantly (p<0.003) im-
prove movement time compared to 0 ms compensation (0ms:
1.52s, 16.7ms: 1.38s, 33.3ms:1.36s, 50ms:1.43s). Last for 66.6 ms arti-
ficial latency, all compensations significantly (p<0.04) improve
movement time (0ms: 1.69s, 16.7ms: 1.51s, 33.3ms:1.42s, 50ms:1.52s).
To sum up, both 16.7 and 33.3 ms compensation significantly
improve performance compared to 0 ms artificial latency both
for 33.3 ms and 66.6 ms artificial latencies and no significant
difference was found for 0 ms artificial latency. 50 ms latency
compensation significantly improves performance compared
to 0 ms latency compensation only in the 66.6 ms artificial
latency condition. In the best case scenario (33.3ms latency
compensation with 66.6ms artificial latency), latency compen-
sation improves movement time by 16%.

With the values of artificial latencies and latency compensa-
tion we chose, it is interesting to compare 33.3 ms latency
compensation in the 33.3 ms artificial latency condition (1.36s)
with 0 ms latency compensation in the 0 ms artificial latency
condition (1.29s). No significant difference was found between
the two conditions. In the same way, we can compare 33.3
ms latency compensation in the 66.6 artificial latency condi-
tion(1.42s) with 0 latency compensation in the 33.3 ms artificial

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 33.3 66.6
Artificial latencies (ms)

M
ov

em
en

t t
im

e 
(s

)

Latency compensations (ms) 0 16.7 33.3 50

Figure 6: Movement time for the different amounts of artificial latency
and latency compensation. Error bars represent 95% confidence inter-
val for the means.

latency condition (1.52s). Again no significant difference was
found between the two conditions.

We also ran a Fitts analysis to standardise our results (Figure
7). The analysis showed all r2 values above 0.98 and con-
firmed our results. For 0 artificial latency, only the 16 ms
compensation regression line is below 0 compensation and for
all other artificial latency values, the regression lines for all
compensation values are below the one for 0 compensation
which confirms the interest of TurboMouse for systems with
high latency.

Qualitative feedback
Half the participants found that the transfer function used was
not fast enough and forced participants to do larger physical
movements than they were used to do doing. As a result par-
ticipants were more likely to use higher speeds with the mouse
which were more likely to increase the impact of side-effects.
From 33.3 ms of compensation, all participants said that the
cursor was "shaking" but still "controllable" and that it got
"worse" for 50 ms of compensation. With 33.3 and 50 ms
of compensation, 3 participants reported that they explicitly
restricted the velocity of their mouse inputs motions to avoid
this side-effect. Only 2 participants noticed that the "shaking"
side effect occurred mostly when they suddenly stopped mov-
ing, and then tried to smooth their physical movements. For

0.5

1.0

1.5

2.0

3.55 4.49 5.27 6.25

 

M
ov

em
en

t t
im

e 
(s

)

0 ms

   

   

   

   

3.55 4.49 5.27 6.25

 

 

33.3 ms

   

   

   

   

3.55 4.49 5.27 6.25

 

 

Latency compensations (ms) 0 16.7 33.3 50

66.6 ms

Figure 7: Fitts linear regressions for each amount of artificial latency
and latency compensation.



16.7 ms of compensation, no one reported any side effect, but
on the contrary, found the cursor more reactive and smoother.
Finally, with 33.3 and 50 ms of compensation, 5 participants
reported to find it easier to have a higher amount of end-to-end
latency that they qualified "smooth" but "slower" rather than
having less delay but more side effects.

DISCUSSION

Prediction quality of TurboMouse
We performed an offline analysis with several metrics to com-
pare the prediction quality of TurboMouse compared to other
prediction methods. Overall, TurboMouse provided a good
prediction performance with better metrics score than most
predictors from the literature, and a good Root Mean Square
Error score. Note that Laviola’s predictor based on Double Ex-
ponantial Smoothing (DES) was arguably the “best” predictor
in term of RMSE, but is significantly worse than TurboMouse
with the Jitter and Jumps metrics. While these metrics are not
critical in direct interaction where user’s finger might hide the
shaky behaviour of the predictor, they are critical in indirect
interaction since the mouse cursor is not hidden in any way.
Moreover, high Jitter and Jumps are the side effects that are
the most likely to be noticed by the user. When considering all
metrics together, our prediction algorithm appears as a good
trade-off between latency reduction and introduction of side-
effects. Another interesting result is that TurboMouse was not
affected by the Transfer Function factor, suggesting that it can
be both applied to constant gain functions and more complex
sigmoid ones.

Impact of TurboMouse on user performance
Our second experiment assessed the effect of TurboMouse
on user performance in pointing tasks. Its results showed
that with 33.3 ms of artificial latency (for an approximate
overall latency of 74.1 ms which corresponds to the average
end-to-end latency found on current desktop computers [9]),
moderate compensations of 16.7 ms and 33.3 ms of latency
significantly improved pointing time. The benefits are even
better with 66.6 ms of artificial latency (108.5 ms end-to-end)
where all compensations improve performance. However, they
did not reveal any evidence that latency compensation im-
proves user performance without any artificial latency added
but this is consistent with results from previous work showing
decrease of performance from 50 ms [31, 32]. While Turbo-
Mouse showed only benefits when artificial latency was added,
we believe these results are still interesting since the latency
measure performed in the literature [9] and in our application
were executed with applications requesting limited graphic
resources, and latency is likely to increase with more graphi-
cally demanding applications. Another interesting result was
that no significant difference was found between “equivalent”
latency conditions (typically, no compensation with 0 ms of
artificial latency and 33 ms of compensation with 33 ms of
artificial latency).

As a summary, the results of our studies show that a com-
pensation as little as 16.7 ms provides significant benefits in
term of pointing time, without producing any noticeable side-
effect. While the gain in performance (up to 16%) might seem
small for everyday use, it still might be a significant benefit

for specific application areas such as competitive gaming in
first-person shooter games where milliseconds matter.

Limitations of TurboMouse
TurboMouse currently relies on a separate mouse controller
and accelerometer, thus requiring a buffering step in order to
associate the input events with each others. Integrating the
accelerometer directly on the mouse PCB requires few modifi-
cations for a manufacturer as an accelerometer has a small foot-
print of the order of 1×1 mm and can be easily connected to
the existing micro-controller using I2C. The micro-controller
would synchronize and read the sensors to directly send HID
events to the computer with (countX, countY, AccelerationX,
AccelerationY, buttons). The integration of the accelerometer
on the mouse PCB would also help to get perfect alignment
with the optical sensor and it would allow to do some filter-
ing directly on the micro-controller (like averaging the last 4
values with an accelerometer running at 4 kHz).

Another limitation of TurboMouse is that it requires a USB
mouse controller since wireless communication protocols do
not support robust and stable 1000Hz data transfer yet. That
being said, it can be noted that application areas that might
benefit the most from latency reduction (typically, competitive
gaming) already tend to minimize latency thus using mostly
USB high resolution mouse controllers [5]

Finally, another limitation remaining is the over-anticipation
of the technique when the mouse controller abruptly stops,
resulting in a noticeable elastic effect. Tuning the prediction
algorithm with a specific function to cope with it when a
significant deceleration occurs would help reducing this effect
when trying to compensate higher amounts of latency.

TurboMouse in current systems
TurboMouse could be integrated in a transparent way into an
operating system and work system wide by installing a dedi-
cated mouse driver. The driver would first acquire acceleration
data from the mouse using raw HID on an additional endpoint
attached to the existing USB connection. Then, it would apply
our prediction equations on data and bypass existing system
transfer function to control the mouse pointer.

CONCLUSION
We introduced TurboMouse, a hybrid hardware and software
latency compensation technique specifically designed for indi-
rect interaction. TurboMouse combines the velocity measured
by the mouse and the acceleration reported by an accelerom-
eter embedded in the mouse to predict cursor’s position us-
ing Euler based equations. Our first experiment showed that
TurboMouse appears as a good trade-off between latency re-
duction and introduction of disturbing side-effects that might
be noticed by the user. Our second experiment showed that
TurboMouse increases user performance in pointing task, es-
pecially in an environment with relatively high latency. Future
work will be focused on attempting to further minimize the
side-effects of TurboMouse for higher levels of latency com-
pensation.



ACKNOWLEDGMENTS
This work was supported by ANR (TurboTouch, ANR-14-
CE24-0009).

REFERENCES
1. HIDAPI. Retrieved January 8th, 2018 from
https://github.com/signal11/hidapi

2. Invensense MPU-9250 datasheet. Retrieved January 8th,
2018 from https://www.invensense.com/wp-content/
uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf

3. Libpointing. Retrieved January 8th, 2018 from
https://github.com/INRIA/libpointing

4. Logitech G9 Laser Technical specifications. Retrieved
January 8th, 2018 from http://support.logitech.com/en_
us/product/g9-laser-mouse/specs

5. Professional video gamers configurations. Retrieved
January 8th, 2018 from https://prosettings.net

6. 2011. Multi-touch trajectory tracking method.
https://www.google.com/patents/CN102096530A?cl=en CN
Patent App. CN 201,110,030,430.

7. 2013. Measuring Input Latency. Retrieved January 8th,
2018 from http://renderingpipeline.com/2013/09/
measuring-input-latency

8. 2014. Curve fitting based touch trajectory smoothing
method and system.
https://www.google.ca/patents/CN103902086A?cl=en CN
Patent App. CN 201,210,585,264.

9. Géry Casiez, Stéphane Conversy, Matthieu Falce,
Stéphane Huot, and Nicolas Roussel. 2015. Looking
Through the Eye of the Mouse: A Simple Method for
Measuring End-to-end Latency Using an Optical Mouse.
In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST ’15). ACM,
New York, NY, USA, 629–636. DOI:
http://dx.doi.org/10.1145/2807442.2807454

10. Géry Casiez, Thomas Pietrzak, Damien Marchal,
Sébastien Poulmane, Mathieu Falce, and Nicolas Roussel.
2017. Characterizing Latency in Touch and
Button-Equipped Interactive Systems. In Proceedings of
UIST’17, the 30th ACM Symposium on User Interface
Software and Technology (UIST ’17). ACM, New York,
NY, USA, 9. DOI:
http://dx.doi.org/10.1145/3126594.3126606

11. Géry Casiez and Nicolas Roussel. 2011. No More
Bricolage! Methods and Tools to Characterize, Replicate
and Compare Pointing Transfer Functions. In
Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (UIST ’11). ACM,
New York, NY, USA, 603–614. DOI:
http://dx.doi.org/10.1145/2047196.2047276

12. Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012.
1e Filter: A Simple Speed-based Low-pass Filter for
Noisy Input in Interactive Systems. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA,

2527–2530. DOI:
http://dx.doi.org/10.1145/2207676.2208639

13. Elie Cattan, Amélie Rochet-Capellan, Pascal Perrier, and
François Bérard. 2015. Reducing Latency with a
Continuous Prediction: Effects on Users’ Performance in
Direct-Touch Target Acquisitions. In Proceedings of the
2015 International Conference on Interactive Tabletops &
Surfaces (ITS ’15). ACM, New York, NY, USA, 205–214.
DOI:http://dx.doi.org/10.1145/2817721.2817736

14. Mark Claypool, Ragnhild Eg, and Kjetil Raaen. 2016.
The Effects of Delay on Game Actions: Moving Target
Selection with a Mouse. In Proceedings of the 2016
Annual Symposium on Computer-Human Interaction in
Play Companion Extended Abstracts (CHI PLAY
Companion ’16). ACM, New York, NY, USA, 117–123.
DOI:http://dx.doi.org/10.1145/2968120.2987743

15. Jonathan Deber, Ricardo Jota, Clifton Forlines, and
Daniel Wigdor. 2015. How Much Faster is Fast Enough?
User Perception of Latency & Latency Improvements in
Direct and Indirect Touch. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 1827–1836. DOI:
http://dx.doi.org/10.1145/2702123.2702300

16. Daniel Eran Dilger. 2013. Agawi TouchMark contrasts
iPad’s fast screen response to laggy Android tablets.
Apple Insider. Retrieved January 8th, 2018 from
http://tinyurl.com/punyo98

17. S. Friston, P. Karlström, and A. Steed. 2016. The Effects
of Low Latency on Pointing and Steering Tasks. IEEE
Transactions on Visualization and Computer Graphics 22,
5 (May 2016), 1605–1615. DOI:
http://dx.doi.org/10.1109/TVCG.2015.2446467

18. S. Friston, A. Steed, S. Tilbury, and G. Gaydadjiev. 2015.
Ultra low latency dataflow renderer. In 2015 25th
International Conference on Field Programmable Logic
and Applications (FPL). 1–4. DOI:
http://dx.doi.org/10.1109/FPL.2015.7293974

19. Sebastian Friston, Anthony Steed, Simon Tilbury, and
Georgi Gaydadjiev. 2016. Construction and Evaluation of
an Ultra Low Latency Frameless Renderer for VR. IEEE
Transactions on Visualization and Computer Graphics 22,
4 (April 2016), 1377–1386. DOI:
http://dx.doi.org/10.1109/TVCG.2016.2518079

20. Niels Henze, Markus Funk, and Alireza Sahami Shirazi.
2016. Software-reduced Touchscreen Latency. In
Proceedings of the 18th International Conference on
Human-Computer Interaction with Mobile Devices and
Services (MobileHCI ’16). ACM, New York, NY, USA,
434–441. DOI:
http://dx.doi.org/10.1145/2935334.2935381

21. ISO 9241-9 2000. Ergonomic requirements for office
work with visual display terminals (VDTs) – Part 9:
Requirements for non-keyboard input devices (1 ed.).
Technical Report. International Organization for
Standardization, Geneva, CH.

https://github.com/signal11/hidapi
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://github.com/INRIA/libpointing
http://support.logitech.com/en_us/product/g9-laser-mouse/specs
http://support.logitech.com/en_us/product/g9-laser-mouse/specs
https://prosettings.net
https://www.google.com/patents/CN102096530A?cl=en
http://renderingpipeline.com/2013/09/measuring-input-latency
http://renderingpipeline.com/2013/09/measuring-input-latency
https://www.google.ca/patents/CN103902086A?cl=en
http://dx.doi.org/10.1145/2807442.2807454
http://dx.doi.org/10.1145/3126594.3126606
http://dx.doi.org/10.1145/2047196.2047276
http://dx.doi.org/10.1145/2207676.2208639
http://dx.doi.org/10.1145/2817721.2817736
http://dx.doi.org/10.1145/2968120.2987743
http://dx.doi.org/10.1145/2702123.2702300
http://tinyurl.com/punyo98
http://dx.doi.org/10.1109/TVCG.2015.2446467
http://dx.doi.org/10.1109/FPL.2015.7293974
http://dx.doi.org/10.1109/TVCG.2016.2518079
http://dx.doi.org/10.1145/2935334.2935381


22. Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor.
2013. How Fast is Fast Enough? A Study of the Effects
of Latency in Direct-touch Pointing Tasks. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 2291–2300. DOI:
http://dx.doi.org/10.1145/2470654.2481317

23. Rudolph Emil Kalman. 1960. A New Approach to Linear
Filtering and Prediction Problems. Transactions of the
ASME–Journal of Basic Engineering 82, Series D (1960),
35–45.

24. B. Kim and Y. Lim. 2014. Mobile terminal and touch
coordinate predicting method thereof.
https://www.google.com/patents/WO2014129753A1?cl=en

WO Patent App. PCT/KR2014/000,661.

25. Jarrod Knibbe, Hrvoje Benko, and Andrew D. Wilson.
2015. Juggling the Effects of Latency: Software
Approaches to Minimizing Latency in Dynamic
Projector-Camera Systems. In Adjunct Proceedings of the
28th Annual ACM Symposium on User Interface Software
& Technology (UIST ’15 Adjunct). ACM, New York, NY,
USA, 93–94. DOI:
http://dx.doi.org/10.1145/2815585.2815735

26. Joseph J. LaViola. 2003. Double Exponential Smoothing:
An Alternative to Kalman Filter-based Predictive
Tracking. In Proceedings of the Workshop on Virtual
Environments 2003 (EGVE ’03). ACM, New York, NY,
USA, 199–206. DOI:
http://dx.doi.org/10.1145/769953.769976

27. I. Scott MacKenzie and Colin Ware. 1993. Lag As a
Determinant of Human Performance in Interactive
Systems. In Proceedings of the INTERACT ’93 and CHI

’93 Conference on Human Factors in Computing Systems
(CHI ’93). ACM, New York, NY, USA, 488–493. DOI:
http://dx.doi.org/10.1145/169059.169431

28. F. Moussavi. 2014. Methods and apparatus for
incremental prediction of input device motion.
https://www.google.ca/patents/US8766915 US Patent
8,766,915.

29. Mathieu Nancel, Daniel Vogel, Bruno De Araujo,
Ricardo Jota, and Géry Casiez. 2016. Next-Point
Prediction Metrics for Perceived Spatial Errors. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,

New York, NY, USA, 271–285. DOI:
http://dx.doi.org/10.1145/2984511.2984590

30. Albert Ng, Julian Lepinski, Daniel Wigdor, Steven
Sanders, and Paul Dietz. 2012. Designing for
Low-latency Direct-touch Input. In Proceedings of the
25th Annual ACM Symposium on User Interface Software
and Technology (UIST ’12). ACM, New York, NY, USA,
453–464. DOI:
http://dx.doi.org/10.1145/2380116.2380174

31. Andriy Pavlovych and Carl Gutwin. 2012. Assessing
Target Acquisition and Tracking Performance for
Complex Moving Targets in the Presence of Latency and
Jitter. In Proceedings of Graphics Interface 2012 (GI ’12).
Canadian Information Processing Society, Toronto, Ont.,
Canada, Canada, 109–116.
http://dl.acm.org/citation.cfm?id=2305276.2305295

32. Andriy Pavlovych and Wolfgang Stuerzlinger. 2009. The
Tradeoff Between Spatial Jitter and Latency in Pointing
Tasks. In Proceedings of the 1st ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS ’09). ACM, New York, NY, USA,
187–196. DOI:
http://dx.doi.org/10.1145/1570433.1570469

33. Kjetil Raaen and Andreas Petlund. 2015. How Much
Delay is There Really in Current Games?. In Proceedings
of the 6th ACM Multimedia Systems Conference (MMSys

’15). ACM, New York, NY, USA, 89–92. DOI:
http://dx.doi.org/10.1145/2713168.2713188

34. R. J. Teather, A. Pavlovych, W. Stuerzlinger, and I. S.
MacKenzie. 2009. Effects of tracking technology, latency,
and spatial jitter on object movement. In 2009 IEEE
Symposium on 3D User Interfaces. 43–50. DOI:
http://dx.doi.org/10.1109/3DUI.2009.4811204

35. Rosane Ushirobira, Denis Efimov, Géry Casiez, Nicolas
Roussel, and Wilfrid Perruquetti. 2016. A forecasting
algorithm for latency compensation in indirect
human-computer interactions. In Proceedings of ECC’16,
the 15th annual European Control Conference (ECC ’16).
IEEE, 1081–1086. DOI:
http://dx.doi.org/10.1109/ECC.2016.7810433

36. W. Zhao, D.A. Stevens, A. Uzelac, H. Benko, and J.L.
Miller. 2012. Prediction-based touch contact tracking.
https://www.google.com/patents/US20120206380 US Patent
App. 13/152,991.

http://dx.doi.org/10.1145/2470654.2481317
https://www.google.com/patents/WO2014129753A1?cl=en
http://dx.doi.org/10.1145/2815585.2815735
http://dx.doi.org/10.1145/769953.769976
http://dx.doi.org/10.1145/169059.169431
https://www.google.ca/patents/US8766915
http://dx.doi.org/10.1145/2984511.2984590
http://dx.doi.org/10.1145/2380116.2380174
http://dl.acm.org/citation.cfm?id=2305276.2305295
http://dx.doi.org/10.1145/1570433.1570469
http://dx.doi.org/10.1145/2713168.2713188
http://dx.doi.org/10.1109/3DUI.2009.4811204
http://dx.doi.org/10.1109/ECC.2016.7810433
https://www.google.com/patents/US20120206380

	Introduction
	Related Work
	End-to-end latency explained
	Impact of the end-to-end latency on user experience
	Perception of the latency
	Impact on performance

	Reducing or compensating end-to-end latency
	Hardware reduction
	Software compensation


	TurboMouse
	Hardware
	Mouse controller
	Accelerometer

	Software
	Merging input data
	Supporting transfer functions
	Prediction


	Evaluating prediction quality
	Data collection
	Apparatus and participants
	Comparing prediction performances
	Results
	RMSE
	Other metrics


	Impact of TurboMouse on Performance
	Method
	Mechanics for adding artificial latency
	Measuring end-to-end latency of the study
	Results
	Error rate
	Movement time
	Qualitative feedback


	Discussion
	Prediction quality of TurboMouse
	Impact of TurboMouse on user performance
	Limitations of TurboMouse
	TurboMouse in current systems

	Conclusion
	Acknowledgments
	References 

