. Adam-bourdarios, The Higgs boson machine learning challenge, HEPML@ NIPS, pp.19-55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01208587

. Ben-david, A theory of learning from different domains, Machine Learning, vol.60, issue.1-2, pp.151-175, 2010.
DOI : 10.1007/s10994-009-5152-4

H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-likelihood function, Journal of Statistical Planning and Inference, vol.90, issue.2, pp.227-244, 2000.
DOI : 10.1016/S0378-3758(00)00115-4

. Cowan, Asymptotic formulae for likelihood-based tests of new physics, The European Physical Journal C, vol.10, issue.3, pp.1554-1573, 2011.
DOI : 10.1016/0010-4655(75)90039-9

. Baldi, Search with Deep Learning, Physical Review Letters, vol.114, issue.11, p.111801, 2015.
DOI : 10.1016/j.artint.2014.02.004

. Estrade, Adversarial learning to eliminate systematic errors: a case study in hep, Deep Learning for Physical Sciences @ NIPS, 2017.

. Ganin, Domain-Adversarial Training of Neural Networks, 2015.
DOI : 10.1007/978-3-319-58347-1_10

URL : https://hal.archives-ouvertes.fr/hal-01624607

G. Louppe, M. Kagan, and K. Cranmer, Learning to Pivot with Adversarial Networks, physics, 2016.

. Hardt, Equality of opportunity in supervised learning, NIPS, pp.3315-3323, 2016.

. Simard, Tangent Prop -A Formalism for Specifying Selected Invariances in an Adaptive Network, NIPS, pp.895-903, 1991.

. Lecun, The MNIST database of handwritten digits

Y. Bengio and Y. Lecun, Scaling learning algorithms towards AI, Large-Scale Kernel Machines, 2007.

G. Melis, Dissecting the Winning Solution of the HiggsML Challenge, HEPML@ NIPS, pp.57-67, 2014.