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Optimal Multiphase Investment Strategies for
Influencing Opinions in a Social Network

Swapnil Dhamal, Walid Ben-Ameur, Tijani Chahed, and Eitan Altman

Abstract—We study the problem of two competing camps
aiming to maximize the adoption of their respective opinions,
by optimally investing in nodes of a social network in multiple
phases. The final opinion of a node in a phase acts as its biased
opinion in the following phase. Using an extension of Friedkin-
Johnsen model, we formulate the camps’ utility functions, which
we show to involve what can be interpreted as multiphase Katz
centrality. We hence present optimal investment strategies of the
camps, and the loss incurred if myopic strategy is employed.
Simulations affirm that nodes attributing higher weightage to
bias necessitate higher investment in initial phase. The extended
version of this paper analyzes a setting where a camp’s influence
on a node depends on the node’s bias; we show existence and
polynomial time computability of Nash equilibrium.

Index Terms—Social networks, opinion dynamics, multiple
phases, Katz centrality, zero-sum games, Nash equilibrium

I. INTRODUCTION

We consider two competing camps with positive and neg-
ative opinion values (referred to as good and bad camps
respectively), aiming to maximize the adoption of their respec-
tive opinions in a social network. With the opinion adoption
quantified as the sum of opinion values of all nodes [1], [2],
the good camp aims to maximize this sum while the bad camp
aims to minimize it. Since nodes update their opinions based
on their neighbors’ opinions [3], [4], a camp would want to
influence the opinions of influential nodes by investing on
them. Thus given a budget constraint, the strategy of a camp
comprises of: how much to invest and on which nodes, in
presence of a competing camp which also invests strategically.

A. Motivation

In Friedkin-Johnsen model of opinion dynamics [5], [6],
every node holds a bias in opinion. This bias plays a critical
role in determining a node’s final opinion, and consequently
the opinions of its neighbors, and hence that of its neighbors’
neighbors, and so on. If nodes give significant weightage to
their biases, the camps would want to influence these biases.
This could be achieved by campaigning in multiple phases,
wherein a node’s opinion at the end of a phase acts as its biased
opinion in the next phase. With the possibility of multiphase
campaigning, a camp could not only decide which nodes to
invest on, but also how much to invest in each phase (hence,
how to split its budget across phases).
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TABLE I
NOTATION

v
(0)
i initial biased opinion of node i prior to the dynamics
v
(q)
i opinion value of node i at the conclusion of phase q

w0
ii weightage attributed by node i to its bias in a phase

wij weightage attributed by node i to the opinion of node j

w
(q)
ig weightage attributed by node i to good camp in phase q

w
(q)
ib weightage attributed by node i to bad camp in phase q

x
(q)
i investment made by good camp on node i in phase q

y
(q)
i investment made by bad camp on node i in phase q

kg budget of the good camp
kb budget of the bad camp

B. Related Work

Problems related to maximizing opinion adoption in social
networks have been extensively studied in the literature [7],
[3], [8]. A primary task in such problems is to determine
influential nodes, which has been an important research area
in the multiagent systems community [9], [10], [11], [12]. The
competitive setting has resulted in several game theoretic stud-
ies [13], [14], [15]. Specific to analytically tractable models
such as DeGroot and Friedkin-Johnsen, there have been studies
to determine optimal investments on influential nodes [16],
[17], [2]. Our work extends these studies to multiple phases
by determining the influential nodes in different phases, and
how much they should be invested on in a given phase.

There have been a few studies on adaptive selection of influ-
ential nodes in multiple phases [18], [19], [20], [21], [22], [23],
[24]. A survey of such adaptive methods is presented in [25].
An empirical study on optimal budget splitting between two
phases is presented in [26], which is extended to multiple
phases in [27]. While the reasoning behind using multiple
phases in these studies is to adaptively select nodes based
on previous observations, we use them for influencing nodes’
biases; this necessitates a very different treatment.

II. OUR MODEL

We represent social network as a weighted directed graph,
with set of nodes N . Our model can be viewed as a multiphase
extension of [28]. Table I presents the notation. In our setting,
the bias of node i in phase q is v

(q−1)
i , which is the opinion

value of node i at the conclusion of phase q−1. Since the influ-
ence of good camp on node i in phase q would be an increasing
function of its investment x(q)

i and weightage w
(q)
ig , we assume

the influence to be +w
(q)
ig x

(q)
i so as to maintain linearity of

Friedkin-Johnsen model. Similarly, −w(q)
ib y

(q)
i is the influence
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of bad camp (negative opinion) on node i. Considering budget
constraints, the camps should invest in the p phases such that∑p

q=1

∑
i∈N x

(q)
i ≤ kg and

∑p
q=1

∑
i∈N y

(q)
i ≤ kb.

Let w be the matrix consisting of weights wij . Let v(0),
v(q), w0, wg, wb, x(q), y(q) be the vectors consisting of
elements v(0)i , v(q)i , w0

ii, wig , wib, x(q)
i , y(q)i , respectively. Vec-

tors x(q),y(q),v(q−1) are static throughout a phase q, while
v(q) gets updated in the dynamics. Let ◦ denote Hadamard
product: (a ◦ b)i = aibi. Hence, generalizing the Friedkin-
Johnsen update rule to multiphase setting and accounting for
camps’ investments, the update rule in phase q is:

∀i ∈ N : v
(q)
i ← w0

iiv
(q−1)
i +

∑
j∈N

wijv
(q)
j + wigx

(q)
i − wiby

(q)
i

⇐⇒ v(q) ← w0◦v(q−1) +wv(q) +wg◦x(q) −wb◦y(q)

With
∑

j∈N |wij | < 1, dynamics in phase q converges to [29]:

v(q) = (I−w)−1(w0 ◦ v(q−1) +wg ◦ x(q) −wb ◦ y(q)) (1)

III. PROBLEM FORMULATION

We first derive an expression for
∑

i∈N v
(p)
i , the sum

of opinion values of the nodes at the end of terminal
phase p. Let (I − w)−1 = ∆. Let r

(1)
i =

∑
j∈N ∆ji

and r
(t)
i =

∑
j∈N r

(t−1)
j w0

jj∆ji. That is, r(1) = ∆T1 and
r(t) = ∆T (r(t−1) ◦w0). It can be shown that, premultiplying
Equation (1) by 1T for q = p, and solving the recursion, we
get:

∑
i∈N

v
(p)
i =

∑
i∈N

r
(p)
i w0

iiv
(0)
i +

p∑
q=1

∑
i∈N

r
(p−q+1)
i (wigx

(q)
i − wiby

(q)
i )

(2)

A. Multiphase Katz Centrality

r
(1)
i =

(
(I − wT )−11

)
i

resembles Katz centrality of
node i [30], capturing its influencing power over other nodes
in a single phase setting (corresponds to terminal phase in
multiphase setting). However, the effectiveness of node i with
t phases to go (r(t)j ), depends on its influencing power over
those nodes j (∆ji), which would give good weightage to their
bias in the next phase (w0

jj), and also have good effectiveness
in the next phase with t − 1 phases to go (r(t−1)j ). This is
captured by r

(t)
i =

∑
j∈N r

(t−1)
j w0

jj∆ji. Since r
(t)
i quantifies

i’s influence looking t phases ahead, it can be interpreted as
the t-phase Katz centrality.

B. The Problem

Here (x(q))pq=1 and (y(q))pq=1 are the respective strategies
of the good and bad camps. Given an investment strategy pro-
file
(
(x(q))pq=1, (y

(q))pq=1

)
, let ug

((
(x(q))pq=1, (y

(q))pq=1

))
be

the utility of good camp and ub

((
(x(q))pq=1, (y

(q))pq=1

))
be

the utility of bad camp. The good camp aims to maximize (2),
while the bad camp simultaneously aims to minimize it. Hence
the problem is:

Find Nash equilibrium, given that

ug

((
(x(q))pq=1, (y

(q))pq=1

))
=
∑
i∈N

v
(p)
i

ub

((
(x(q))pq=1, (y

(q))pq=1

))
= −

∑
i∈N

v
(p)
i

subject to
p∑

q=1

∑
i∈N

x
(q)
i ≤ kg ,

p∑
q=1

∑
i∈N

y
(q)
i ≤ kb

∀q∈{1, . . . , p} ∀i∈N :x
(q)
i , y

(q)
i ≥ 0

C. Optimal Investment Strategies

Since the optimization terms with respect to different vari-
ables are decoupled in Equation (2), the optimal strategies
of camps are mutually independent. For the good camp,
we order the terms {wigr

(p−q+1)
i }i∈N,q=1,...,p in descending

order. If the investment allowed per node is unbounded, its
optimal strategy is to invest kg on node i∗ in phase q∗, where
(i∗, q∗) = arg max(i,p) wigr

(p−q+1)
i (no investment if this

value is non-positive). If the investment per node is bounded
by U , the (i, p) pairs are chosen one-by-one according to the
aforementioned descending ordering, and invested on with U
each, until budget kg is exhausted. The optimal strategy of the
bad camp is analogous.

IV. SIMULATION RESULTS

For 2 phases on NetHEPT dataset (15,233 nodes) [8], [31],
[32], Figure 1(a) presents optimal budget allotted for phase 1
as a function of w0

jj (assuming equal w0
jj ,∀j ∈ N ) with

kg = kb =100 (U = 1 and v
(0)
i = 0,∀i ∈ N ). Detailed

simulation setup is provided in [29]. For low w0
jj , the optimal

strategy of camps is to invest almost entirely in phase 2,
since the effect of phase 1 would diminish considerably in
phase 2. The value r

(2)
i =

∑
j∈N r

(1)
j w0

jj∆ji would be
significant only if i influences nodes j with significant values
of w0

jj . So investing in phase 1 would be advantageous only
if nodes have significant w0

jj . The slight non-monotonicity
of plots is explained in [29]. General observations indicate
that a high range of w0

jj makes it advantageous for camps
to invest in phase 1, so as to effectively influence the biases
in phase 2. The reasoning generalizes to more than 2 phases.

(a) Optimal budget splits (b) Myopic vs farsighted

Fig. 1. Results illustrating the effects of w0
jj (NetHEPT)
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Figure 1(b) illustrates the loss incurred by bad camp when
it is myopic (perceiving its utility as −

∑
i∈N v

(1)
i instead of

−
∑

i∈N v
(2)
i ), while the good camp is farsighted (considering

no bound on investment per node). A myopic bad camp would
invest its entire budget in phase 1, and with the same reasoning
as above, it would incur more loss for lower values of w0

jj (ref.
[29] for details).

V. IN EXTENDED VERSION OF THIS PAPER

The extended version of this paper [29] analyzes a setting
where a node attributes higher weightage to the camp more
aligned with its bias. The camps’ strategies are no longer
mutually independent; we show existence and polynomial time
computability of Nash equilibrium.
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