
HAL Id: hal-01716408
https://inria.hal.science/hal-01716408

Submitted on 23 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Evaluating the Authenticity of Smartphone Evidence
Heloise Pieterse, Martin Olivier, Renier Van Heerden

To cite this version:
Heloise Pieterse, Martin Olivier, Renier Van Heerden. Evaluating the Authenticity of Smartphone Ev-
idence. 13th IFIP International Conference on Digital Forensics (DigitalForensics), Jan 2017, Orlando,
FL, United States. pp.41-61, �10.1007/978-3-319-67208-3_3�. �hal-01716408�

https://inria.hal.science/hal-01716408
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Chapter 3

EVALUATING THE AUTHENTICITY
OF SMARTPHONE EVIDENCE

Heloise Pieterse, Martin Olivier and Renier van Heerden

Abstract The widespread use and rich functionality of smartphones have made
them valuable sources of digital evidence. Malicious individuals are
becoming aware of the importance of digital evidence found on smart-
phones and may be interested in deploying anti-forensic techniques to
alter evidence and thwart investigations. It is, therefore, important to
establish the authenticity of smartphone evidence.

This chapter focuses on digital evidence found on smartphones that
has been created by smartphone applications and the techniques that
can be used to establish the authenticity of the evidence. In order to
establish the authenticity of the evidence, a better understanding of the
normal or expected behavior of smartphone applications is required.
This chapter introduces a new reference architecture for smartphone
applications that models the components and the expected behavior of
applications. Seven theories of normality are derived from the refer-
ence architecture that enable digital forensic professionals to evaluate
the authenticity of smartphone evidence. An experiment conducted to
examine the validity of the theories of normality indicates that the theo-
ries can assist forensic professionals in identifying authentic smartphone
evidence.

Keywords: Smartphone forensics, evidence, authenticity, reference architecture

1. Introduction
The 21st century has witnessed the emergence and continuous evolu-

tion of smartphones. Smartphones are compact devices that combine
traditional mobile phone features with personal computer functional-
ity [22]. The popularity of smartphones is the result of ever increas-
ing functionality provided by the hardware, operating systems such as
Google Android and Apple iOS, and their associated applications [28].



42 ADVANCES IN DIGITAL FORENSICS XIII

The ubiquitous use of smartphones in daily activities has rendered these
devices rich sources of digital evidence. This digital evidence is im-
portant when smartphones are linked to criminal, civil, accident and
corporate investigations.

Digital evidence stored on smartphones, referred to as smartphone
evidence, includes information of probative value that is generated by
an application or transferred to the smartphone by the user. Malicious
individuals are becoming increasingly aware of the importance of smart-
phone evidence and may attempt to manipulate, fabricate or alter the
evidence [15]. In particular, they would attempt to apply anti-forensic
techniques and tools to compromise the evidence [11]. Anti-forensics can
be described as “attempts to compromise the availability or usefulness
of evidence to the forensic process” [16]. It is, therefore important for
digital forensic professionals to mitigate anti-forensic actions and to es-
tablish the authenticity of smartphone evidence. Authenticity refers to
the preservation of evidence from the time it was first generated and the
ability to prove that the integrity of the evidence has been maintained
over the entire period of time [5, 6, 24]. Authentic smartphone evidence
is, thus, evidence that originates as a result of the normal behavior of a
smartphone application or user.

Smartphone evidence primarily resides in three components: (i) sub-
scriber identity module (SIM) card; (ii) internal storage; and (iii) port-
able storage such as a micro SD card [1, 7]. While all these compo-
nents contain valuable evidence, this work focuses on application-related
smartphone evidence that is stored directly on a smartphone. Estab-
lishing the authenticity of smartphone evidence requires a better un-
derstanding of the applications that create the evidence. Developing a
better understanding of smartphone applications can be achieved by de-
signing a reference architecture that captures the common architectural
elements and their expected behavior [8].

This chapter introduces a new reference architecture for smartphone
applications that models the components as well as the normal or ex-
pected behavior of smartphone applications. The reference architecture
is designed to enable digital forensic professionals to easily comprehend
smartphone applications and to understand how the associated evidence
originates. The architecture is used to derive theories of normality for
smartphone applications. The theories of normality capture the nor-
mal or expected behavior of smartphone applications and assist digital
forensic professionals in identifying authentic smartphone evidence and
helping eliminate unreliable evidence from being considered in arriving
at the final conclusions.



Pieterse, Olivier & van Heerden 43

2. Related Research
Evidence on a smartphone can provide a digital forensic professional

with valuable insights about the interactions that took place involving
the smartphone. Smartphone evidence is, however, vulnerable to change
and can be altered, manipulated or fabricated either maliciously or by
accident without leaving obvious signs [5, 15]. A digital forensic profes-
sional must, therefore, establish the authenticity of smartphone evidence
before arriving at the final conclusions.

Many software applications have safeguards, such as audit logs and
integrity checks, to ensure that the data is valid and has not been tam-
pered with [30]. Such safeguards could assist forensic professionals in
establishing the authenticity of smartphone evidence. However, smart-
phone applications generally do not have audit logs or similar safeguards.
Meanwhile, commercial tools, such as the Cellebrite Universal Forensic
Device (UFED) and FTK Mobile Phone Examiner, provide limited sup-
port in establishing authenticity [31]. Therefore, new techniques and
tools are required to determine the authenticity of smartphone evidence.

Pieterse et al. [26] have introduced an authenticity framework for An-
droid timestamps that enables digital forensic professionals to establish
the authenticity of timestamps found on Android smartphones. The
framework determines the authenticity of timestamps found in SQLite
databases using two methods. The first method explores the Android
filesystem (EXT4) for artifacts that indicate potential manipulations of
the SQLite databases. The second method identifies inconsistencies in
the SQLite databases. The presence of specific filesystem changes and
inconsistencies in the associated SQLite databases are indicators that
the authenticity of the stored timestamps may have been compromised.

Verma et al. [31] have proposed a technique for identifying malicious
tampering of dates and timestamps in Android smartphones. The tech-
nique gathers kernel-generated timestamps of events and stores them
in a secure location outside the Android smartphone. During a digital
forensic investigation, the preserved timestamps can be used to establish
the authenticity of the dates and times extracted from the smartphone
under examination.

Govindaraj et al. [13] have designed iSecureRing, a system for securing
iOS applications and preserving dates and timestamps. The system
incorporates two modules. One module wraps an iOS application in an
additional layer of protection while the other module preserves authentic
dates and timestamps of events relating to the application.

All the solutions described above can assist digital forensic profes-
sionals in evaluations of smartphone evidence, especially with regard to



44 ADVANCES IN DIGITAL FORENSICS XIII

authenticity. However, the solutions are either platform-specific or re-
quire software to be installed on a smartphone prior to an investigation.
Clearly, there is a need for additional solutions that can enable digi-
tal forensic professionals to determine the authenticity of smartphone
evidence.

A promising solution is to consider the structure and behavior of
smartphone applications that create the evidence in question. This can
be achieved by modeling smartphone applications using a reference archi-
tecture that captures the common architectural elements of applications
as well as their behavior [8]. Reference architectures have been specified
for several domains, including web browsers [14] and web servers [17]. In
the case of smartphone applications, a reference architecture only exists
for Android applications [27]. At this time, no generic reference archi-
tecture exists for smartphone applications across different platforms.

3. Reference Architecture
A large quantity of smartphone evidence is the result of executing ap-

plications. This evidence enables a digital forensic professional to make
informed conclusions about application usage. Should the tampering of
smartphone evidence not be detected, the digital forensic professional
could come up with inaccurate or false conclusions. Therefore, it is
important to establish the authenticity of smartphone evidence before
attempting to make any conclusions. Identifying authentic smartphone
evidence requires the digital forensic professional to have a good under-
standing of the normal or expected behavior of smartphone applications.
Using a reference architecture to model smartphone applications enables
the forensic professional to comprehend the structure and behavior of
applications and understand how the associated evidence originated.

Designing a reference architecture for smartphone applications re-
quires the evaluation of architectural designs of applications created for
various smartphone operating systems. From the architectural designs,
common architectural components are identified to create the reference
architecture. Finally, the interactions within and between the compo-
nents are modeled to complete the design of the reference architecture.

3.1 Architectural Designs of Applications
The most common mobile platforms are Google’s Android (83% mar-

ket share) and Apple’s iOS (15% market share) [18, 28]. Their pop-
ularity is directly related to their functionality, advanced capabilities
and numerous third-party applications. Applications designed for these
platforms adhere to specific architectural designs to ensure visual attrac-



Pieterse, Olivier & van Heerden 45

tiveness and enhanced performance. Examination of the documentation
of Android and iOS smartphone applications provides insights into their
architectural designs. The combined 98% market share of Android and
iOS smartphones has motivated the emphasis on Android and iOS ap-
plications in this research.

Android Applications. The visual design and user interface of An-
droid applications are determined by specific themes, styles and struc-
tured layouts. A style is a collection of properties that specifies the look
and feel of a single view; the properties typically include height, width,
padding and color of the view. A theme is a style that is applied to the
entire application, enabling all the views to have a similar presentation.
Layouts define the visual structure and determine how the views are
organized.

Developers use the Extensible Markup Language (XML) to define the
theme, styles and layouts for the user interface of an Android applica-
tion [12]. The user interface facilitates interactions between a user and an
application. The interactions are captured by an activity, which contains
a window holding the user interface. Activities interact with the user
as well as with background processes such as broadcast receivers and
services. Broadcast receivers respond to system-wide announcements
while services perform longer running operations. Activities, broadcast
receivers and services realize the logic of an Android application.

Android applications may require access to persistent data. This ac-
cess is provided by functions and procedures, captured in storage-specific
application programming interfaces (APIs). Android applications have
several data storage options: shared preferences, internal storage, exter-
nal storage and SQLite databases [3]. One or more of the options may
be used by an Android application to store data.

Pieterse et al. [27] have proposed a reference architecture for Android
applications. The reference architecture has two core components: (i)
application activity; and (ii) SQLite database. The application activity
component captures the user interface design and logic of the applica-
tion while the SQLite database component describes the data retention
policy [27]. The current reference architecture only models Android
applications that use SQLite databases to retain data. Therefore, the
architecture is not a complete solution and smartphone applications on
other platforms must be investigated to design a reference architecture
for smartphone applications in general.

iOS Applications. Developers of iOS applications tend to follow the
model-view-controller (MVC) architectural design pattern [21]. The pat-



46 ADVANCES IN DIGITAL FORENSICS XIII

Controller

View Model

User Action Update

NotifyUpdate

Figure 1. Model-view-controller architecture [19].

tern assigns objects in an iOS application to one of three roles: (i) model;
(ii) view; or (iii) controller. As illustrated in Figure 1 [19], the pattern
also defines the communications between the objects.

The model object encapsulates the domain data specific to an iOS
application [19] and interacts with the physical storage. A view object,
which is visible to a user, renders the graphical user interface [19]. View
objects are populated with standard user interface elements provided by
the UIKit; they often include labels, buttons, tables and text fields [21].
View objects display data from an application model to a user and enable
the user to interact with persistent data.

Four common approaches for data persistence are available for iOS
applications: (i) user defaults; (ii) property lists; (iii) SQLite databases;
and (iv) core data (relational object-oriented model) [20]. The controller
object acts as a mediator between the view and model objects [19]. It
receives actions from the user and acts accordingly [21]. The controller
is also responsible for altering the model object and updating the view
object with the changes. The business logic of an iOS application is,
thus, realized by the controller object.

Although iOS applications have a different architectural design than
Android applications, it is possible to identify certain similar character-
istics. These similar characteristics enable the specification of a reference
architecture for modeling Android and iOS smartphone applications.

3.2 Reference Architecture Components
Close examination of the architectural designs of Android and iOS

applications reveals four similar architectural elements: (i) user inter-
face; (ii) application logic; (iii) data management; and (iv) data storage.
Table 1 describes the architectural elements.

The first component is the user interface, which captures the graphical
design and presents an interface for user-application interactions. The



Pieterse, Olivier & van Heerden 47

Table 1. Architectural similarities of Android and iOS applications.

Android iOS

Visual Themes, styles and View objects containing visual
Components layouts created using XML elements created using UIKit

Core Functions Activities, broadcast Controller objects
and Logic receivers and services

Data Management of stored data Management of stored data
Management using content providers using model objects

Data Shared preferences and User defaults and
Storage SQLite databases SQLite databases

interactions allow for the effective operation of the application by per-
mitting the user to perform a limited selection of actions, including the
submission of data. This implies that there are common actions, which
lead to expected results. The user interface conveys the implemented
operations and the received results in a simplistic manner to the user.

The second component is the application logic, which captures the
core functions and workflow of the application. The application logic
implements the functions responsible for validating, processing and exe-
cuting the actions and data received from the user interface component.
During processing, the data included along with an action can be con-
sumed by the process. Certain actions also cause the data or portions
of the data to be kept in their original form and produced as part of the
result. After the data is processed, the application logic executes the re-
ceived action and produces results that are passed to the user interface.
Some applications may require all or parts of the data received during
an action to be maintained in persistent storage.

The data management component receives data from the application
logic component and transforms the data into a suitable format for stor-
age or presentation in the user interface.

The final data storage component stores persistent data and makes
the stored data available to applications.

Figure 2 presents the four components of the reference architecture for
smartphone applications. The figure shows the architectural ordering of
the components and the basic interactions between the components. The
current design only provides a high-level overview of the components.
In order to obtain a better understanding of the normal or expected
behavior of smartphone applications, the reference architecture must
capture detailed information about the interactions within and between
the architectural components.



48 ADVANCES IN DIGITAL FORENSICS XIII

User Interface

Application Logic
Manager

Data Storage

Update

Action

StoreRetrieve

Notify

Request

Mobile Operating
System

Internal Storage

Figure 2. Reference architecture components for smartphone applications.

3.3 Modeling Application Behavior
Modeling smartphones at a fine level of granularity requires a detailed

exploration of the behavior of smartphone applications. The internal
behavior of smartphone applications is the result of interactions that
occur within and between the architectural components. Modeling these
interactions provides additional insights into the normal or expected
behavior of smartphone applications.

Figure 3 presents a state diagram that models the internal behavior
of smartphone applications. The state diagram abstracts the behavior
of smartphone applications in terms of four stages:

User Interface Stage: The user interface stage has three states:
(i) Idle; (ii) Ready; and (iii) Update. The successful installation
of a smartphone application places it the Idle state. An inactive
application remains in the Idle state waiting for a user to launch
the application or for an external event to occur. An application
opened by a user or external event causes it to transition from the
Idle state to the Ready state.

An application in the Ready state can accept an action from a
user, the same application (internal action) or another application
(external action). An application transitions from the Ready state



Pieterse, Olivier & van Heerden 49

Ready

Update

Process

Execute

Retrieve

Transform

Store

action(data)

action

success

datacomplete

result(data)

action(data) data

result

User Interface Stage Application Logic Stage Manager Stage Data Storage Stage

Idle

event

close

request(data)

request

fetch

data

Figure 3. Internal behavior of smartphone applications.

to the Process state upon receiving an action that includes data.
An action involving no data causes the application to transition
directly to the Execute state.

After an action completes, an application transitions to the Update
state. In the Update state, the user interface is updated based
on the completed action; this can involve updating the data or
elements displayed by the interface. After this is completed, the
application returns to the Ready state. Note that an application
transitions to the Idle state only when it is closed by a user.

Application Logic Stage: The application logic stage has two
states: (i) Process; and (ii) Execute. An application transitions
to the Process state upon receiving an action that includes data.
The Process state is responsible for separating the action from
the data and processing the data accordingly. The processing may
involve data validation or the application of security measures such
as encryption and encoding. Data processing may involve multiple
iterations and the application transitions to the Execute state only
after the processing has completed.

An application in the Execute state executes a received action.
If the action involves no data, the application transitions to the
Update state after completing the action. An action involving
data can cause several outcomes. First, the action may completely
consume the data and cause a transition to the Update state. If
the data or portion of the data have to be retained in storage, the
application transitions to the Transform state. Whether or not
an action involves data, it can require data that is maintained in
data storage. In order to retrieve the data, the application moves



50 ADVANCES IN DIGITAL FORENSICS XIII

to the Retrieve state. After the data is received, the application
transitions to the Update state.

Manager Stage: The manager stage has a single state called
Transform. An application moves to the Transform state from the
Execute or Retrieve states after receiving data. In the Transform
state, the received data is converted into the desired form. The
application then transitions to the Store state in order to store the
data. To complete an action that requires transformed data to be
retrieved from storage, the application transitions to the Update
state.

Data Storage Stage: The data storage state has two states:
(i) Retrieve; and (ii) Store. An application moves to the Store
state after it accepts transformed data from the Transform state;
it then proceeds to store the data in a database or file. After
the data is stored, the application transitions to the Update state.
The Retrieve state fetches data from storage and the application
transitions to the Transform state to transform the data into an
acceptable form.

3.4 Exploring an Android Application
The proposed reference architecture provides an abstraction of smart-

phone applications, enabling a digital forensic professional to easily com-
prehend the applications and their associated evidence. From this ab-
straction, the following general characteristics regarding smartphone ap-
plications can be identified:

Only a smartphone application can access and/or update the stored
data.

Data stored by a smartphone application is only accessible via an
executed action.

Data displayed by the user interface directly corresponds to the
stored data.

Changes to data stored by a smartphone application can only occur
after an action is received.

An action can only be provided by a human user, the current
smartphone application (internal action) or some other smart-
phone application (internal action).

A smartphone application only accepts a fixed set of actions.



Pieterse, Olivier & van Heerden 51

Messaging
Interface

SMS Manager

Content Provider

mmssms.db

Update

Store

Request

Android OS

Internal Storage

Message

Figure 4. Modeling Android’s default messaging application.

An action in the fixed set leads to an expected result.

To illustrate the value and generality of the reference architecture,
Android’s default messaging application is modeled according to the
reference architecture. Android smartphones are equipped with basic
messaging functionality. A user can employ the default messaging ap-
plication that is pre-installed on a smartphone to send and receive text
or multimedia messages [9].

Figure 4 shows how the reference architecture is used to identify and
model the core components of the application. The messaging inter-
face enables users to view, delete, send and receive text or multimedia
messages. The SMS manager, which contains the workflow logic of the
messaging application, is implemented by SmsManger, an Android class
that manages the messaging operations [2]. The SmsManger class uses
public methods to implement the requested actions. The management
functions transform data into a suitable format for storage, which in-
cludes the creation of timestamps and the extraction of additional infor-
mation such as the service center number. After it is transformed, the
data is retained in the mmssms.db SQLite database.

The behavior of the messaging application is illustrated by sending a
new text message. The interactions involved in sending a text message
involve three phases. In the first phase, human user opens the messaging



52 ADVANCES IN DIGITAL FORENSICS XIII

application on the Android smartphone. Upon receiving the open event,
the application transitions from the Idle state to the Ready state and re-
ceives an internal action to retrieve all the stored messages. The received
action causes the application to transition to the Execute state. In the
Execute state, the action is evaluated, which requests the retrieval of
the stored messages from the SQLite database (mmssms.db) and causes
the transition to the Retrieve state. In the Retrieve state, the stored
messages are fetched and the application transitions to the Transform
state to correctly format the messages for visual presentation. Next, the
application transitions to the Update state to update the user interface
in order to display the messages. Finally, the application returns to the
Ready state where it waits for a new action.

In the second phase, the user provides a new action by selecting the
option to create a new text message. The application transitions to the
Execute state and, because the action does not request the retrieval or
storage of data, the action completes. Next, the application transitions
to the Update state and updates the user interface accordingly, enabling
the user to enter one or more recipients and write the new text message.
Finally, the application returns to the Ready state.

During the third and final phase, the user enters the recipient(s) and
the text message. Pressing the send button generates an action that
includes the data entered by the user, causing the application to move
to the Process state. In the Process state, the data is validated (i.e.,
length of the phone number and text message) before the application
transitions to the Execute state. In the Execute state, the text message
is sent, but the message must be recorded in the mmssms.db database.
Therefore, the application proceeds to the Transform state where the
data is formatted correctly, after which the application transitions to
the Store state. The application then transitions to the Update state
to update the user interface and show that the text message was sent.
Finally, the application returns to the Ready state.

Modeling Android’s default messaging application according to the
reference architecture enables a digital forensic professional to identify
valuable information about the application. Specifically, the architec-
ture serves as a valuable template for a forensic professional to gain a
good understanding of the normal or expected behavior of the messag-
ing application. Although modeling the messaging application can offer
insights about the origin of evidence related to the smartphone applica-
tion, as discussed in the next section, additional criteria are required to
efficiently identify authentic smartphone evidence.



Pieterse, Olivier & van Heerden 53

4. Theories of Normality
Despite its utility, the information provided by modeling a smartphone

application is insufficient to establish the authenticity of the related ev-
idence. Seven theories of normality are specified to assist digital foren-
sic professionals in evaluating the authenticity of smartphone evidence.
The theories capture the normal or expected behavior of smartphone
applications and can assist forensic professionals in identifying authen-
tic smartphone evidence. The following seven theories of normality stem
from the research conducted when designing the reference architecture:

Data Correspondence: Many smartphone applications include
actions that retrieve or store data in persistent storage such as a
database. This data is made accessible to a user via the user in-
terface of the application. Unauthorized changes made to stored
data may not be immediately reflected in the user interface be-
cause of cached data. Authentic smartphone evidence requires
the stored data to correspond to the data presented by the user
interface. Should the application allow for bi-directional commu-
nications (i.e., text messaging or telephone calls), the stored data
must also correspond to the data stored on the other smartphone
involved in the communications (if the other smartphone is avail-
able for examination).

Data Storage Consistency: Smartphone applications have sev-
eral options for storing persistent data, one of the most popular is
an SQLite database [4, 10]. Authentic smartphone evidence should
have consistent database records. A consistent record in a SQLite
database is one that is listed correctly when ordered according to
the auto-incremented primary key and a field containing a date or
timestamp.

File System Consistency: Files containing stored data have
specific permissions and owners that allow/restrict modifications
to the data. When a file is created for the first time, the respon-
sible application is given ownership of the file and is assigned the
necessary read/write permissions. Authentic smartphone evidence
requires file permissions and ownership to remain unaltered.

Smartphone Reboot: Tampering with smartphone evidence may
require a system reboot for the changes to be reflected on the
smartphone and on the user interface of the smartphone appli-
cation [27]. A system reboot is generally performed after a file
containing stored data has been modified. A timestamp associ-



54 ADVANCES IN DIGITAL FORENSICS XIII

ated with a system reboot that follows soon after the modification
of the file is a possible indicator of evidence tampering.

Presence of Anti-Forensic Tools: Anti-forensic tools for smart-
phones can be used to destroy, hide, manipulate or prevent the
creation of evidence [29]. Smartphone applications, such as File
Shredder (Android) or iShredder (iOS), can be used to destroy
data; data can be hidden using StegDroid or MobiStego (both An-
droid) applications. Eliminating the presence of anti-forensic ap-
plications on a smartphone limits the possibility of evidence tam-
pering.

Smartphone Rooting/Jailbreaking: Data stored by a smart-
phone application is inaccessible to users. Access to the application
and the data can be obtained by rooting (Android) or jailbreaking
(iOS) the smartphone [23, 25]. Although rooting or jailbreaking is
not a direct indication of data tampering, a rooted or jailbroken
smartphone lacks the additional protection measures against data
tampering that are required to ensure evidence authenticity.

Application Usage: The internal behavior of a smartphone ap-
plication, illustrated in the state diagram, shows that only actions
can create or alter stored data. Users (humans, the smartphone
application itself or another smartphone application) are the only
entities capable of providing actions; therefore, their presence must
be confirmed. Verifying that a user created or altered the data in-
creases its authenticity.

The seven theories of normality indicate whether or not the evidence
produced by a smartphone application is the result of normal or expected
behavior of the application. A digital forensic professional can, therefore,
use the theories of normality to evaluate the authenticity of smartphone
evidence.

An experiment was conducted to confirm the validity of the seven
theories of normality. The experiment involved the tampering of text
messages produced by Android’s default messaging application. The
manipulation of the text messages involved the following steps

Step 1: Root the test Android smartphone (Samsung Galaxy S5
Mini running Android version 4.4.4).

Step 2: Copy the mmssms.db and mmssms.db-wal SQLite data-
base files that contain all the text messages to the /sdcard/ loca-
tion on the Android smartphone and then to a computer.



Pieterse, Olivier & van Heerden 55

Figure 5. Confirmation of SuperSu application use in usage-history.xml.

Step 3: Use SQLite Expert Personal to alter the text messages.

Step 4: Remove the mmssms.db and mmssms.db-wal SQLite data-
base files from the Android smartphone using the rm command.

Step 5: Copy the altered mmssms.db SQLite database file to the
Android smartphone and move the file to the /data/data/com.
android.provider.telephony/databases/ location.

Step 6: Change the permissions of the mmssms.db SQlite database
file using the command chmod 666 mmssms.db.

Step 7: Reboot the Android smartphone.

Step 8: Unroot the Android smartphone.

In the experiment, the seven theories of normality were used to eval-
uate the text messages and determine whether or not the messages orig-
inated as a result of the normal behavior of the messaging application.
First, the installed applications on the Samsung Galaxy S5 Mini were
viewed. No anti-forensic applications were installed on the smartphone.
Traditional root applications, such as SuperSU and Superuser, were also
not present on the smartphone. However, their absence is not a def-
inite indicator that the smartphone was not rooted; this is because a
root application could have been uninstalled or root could have been re-
moved. Examination of the /data/system/usage/usage-history.xml
file, which contains log entries showing when the user last used an appli-
cation, revealed that the SuperSu application was previously installed
on the smartphone.

Figure 5 presents a snippet of the usage-history.xml file. Conver-
sion of the timestamp revealed that the SuperSu application was last
used on 26/07/2016 15:53:44 GMT+2:00. The log entry offers a posi-
tive indication that the smartphone was rooted.

The usage-history.xml file in Figure 6 also shows that the de-
fault messaging application (identified by the com.android.mms package
name) was last used on 23/07/2016 14:09:44 GMT+2:00 (Figure 6).

Figure 7 shows the timestamps of the SQLite database files associated
with the default messaging application. The timestamps contradict the
log entry in the usage-history.xml file. In fact, the timestamps of the



56 ADVANCES IN DIGITAL FORENSICS XIII

Figure 6. Confirmation of SMS application use in usage-history.xml.

Figure 7. Original timestamps in the mmssms.db SQLite database.

SQLite database files (mmssms.db and mmssms.db-wal) indicate that the
application was last used on 26/07/2016 16:01:00 GMT+2:00.

Figure 8. Changed timestamps in the mmssms.db SQLite database.

Closer inspection of the SQLite database files in Figure 8 indicate
changes to the file permissions and ownership. To confirm the consis-
tency of the SQLite database records, the database records were viewed
and the records were found to be listed correctly. It was also discovered
that the records stored in the SQLite database corresponded to the text
messages displayed on the user interface.

Finally, the log files associated with a system reboot were examined.
Figure 9 indicates that a system reboot occurred shortly after the SQLite
database was modified.

The specific findings – inconsistent usage of the default messaging ap-
plication, filesystem inconsistencies, subsequent rebooting and the root-
ing of the smartphone – lead to the conclusion that the text messages



Pieterse, Olivier & van Heerden 57

Figure 9. Confirmation of reboot on 26/07/2016 16:01:39 GMT+2:00.

stored on the Android smartphone may have been tampered with and
that the authenticity of the text messages cannot be established.

5. Discussion
The proposed reference architecture for smartphone applications al-

lows for the abstraction of a diverse collection of Android and iOS appli-
cations. To support the diversity, the reference architecture captures the
essential components of applications and identifies the behaviors of the
architectural components. The simplistic design clearly and concisely
describes the role of each component, enabling the easy comprehension
of modeled smartphone applications. The design is also flexible, provid-
ing digital forensic professionals with the ability to model smartphone
applications at different levels of complexity. Using the reference archi-
tecture, forensic professionals can swiftly obtain a better understand-
ing of the normal or expected behavior of smartphone applications as
well as the smartphone evidence related to the applications. The refer-
ence architecture is limited to Android and iOS applications, but it is
readily extended to model applications that run on other operating sys-
tems. However, although the reference architecture offers insights into
the internal behavior of applications, it is not sufficient to establish the
authenticity of the related smartphone evidence.

The seven theories of normality derived from the reference architec-
ture capture the normal or expected behavior of smartphone applica-
tions. Digital forensic professionals can use the theories of normality to
evaluate smartphone evidence. Based on an evaluation, a forensic pro-
fessional can decide whether to consider or disregard the smartphone ev-
idence. The experiment conducted as part of this research demonstrates
that the theories of normality provide a forensic professional with the
support needed to determine whether or not evidence originated as a
result of the normal behavior of a smartphone application. While the
theories of normality cannot directly pinpoint the tampering of smart-



58 ADVANCES IN DIGITAL FORENSICS XIII

phone evidence, they can assist in eliminating unreliable evidence. Using
the theories of normality in smartphone investigations is expected to save
digital forensic professionals valuable time and help them reach correct
and accurate conclusions.

6. Conclusions
The popularity and rich functionality of smartphones have required

digital forensic professionals to examine large quantities of smartphone
evidence. However, the integrity of smartphone evidence can be compro-
mised by anti-forensic tools, malware and malicious users. It is, there-
fore, necessary to establish whether or not smartphone evidence is the
result of the normal or expected behavior of smartphone applications.
The reference architecture described in this chapter models the com-
ponents of smartphone applications and their expected behavior. The
reference architecture helps derive seven theories of normality that as-
sist digital forensic professionals in evaluating the authenticity of smart-
phone evidence. An experiment involving the manipulation of evidence
produced by Android’s default messaging application validates the use
of the normality theories. Indeed, the experiment demonstrates that the
normality theories provide significant investigatory assistance to digital
forensic professionals while enabling them to identify unreliable evidence
so that it can be eliminated when arriving at the final conclusions.

Future research will engage the theories of normality to create a smart-
phone evidence classification model that will enhance the ability to es-
tablish the authenticity of evidence. The classification model will also
be evaluated against authentic and manipulated smartphone evidence.

References

[1] M. Al-Hadadi and A. AlShidhani, Smartphone forensics analysis: A
case study, International Journal of Computer and Electrical Engi-
neering, vol. 5(6), pp. 576–580, 2013.

[2] Android Developers, SmsManager (developer.android.com/
reference/android/telephony/SmsManager.html), 2015.

[3] Android Developers, Storage Options (developer.android.com/
guide/topics/data/data-storage.html), 2016.

[4] M. Bader and I. Baggili, iPhone 3GS forensics: Logical analysis us-
ing Apple iTunes Backup Utility, Small Scale Digital Device Foren-
sics Journal, vol. 4(1), 2010.



Pieterse, Olivier & van Heerden 59

[5] E. Casey, Digital Evidence and Computer Crime: Forensic Sci-
ence, Computers and the Internet, Academic Press, Waltham, Mas-
sachusetts, 2011.

[6] F. Cohen, Digital Forensic Evidence Examination, Fred Cohen &
Associates, Livermore, California, 2009.

[7] K. Curran, A. Robinson, S. Peacocke and S. Cassidy, Mobile phone
forensic analysis, in Crime Prevention Technologies and Applica-
tions for Advancing Criminal Investigations, C. Li and A. Ho
(Eds.), IGI Global, Hershey, Pennsylvania, pp. 250–262, 2012.

[8] W. Eixelsberger, M. Ogris, H. Gall and B. Bellay, Software architec-
ture recovery of a program family, Proceedings of the Twentieth In-
ternational Conference on Software Engineering, pp. 508–511, 1998.

[9] W. Enck, M. Ongtang and P. McDaniel, On lightweight mobile
phone application certification, Proceedings of the Sixteenth ACM
Conference on Computer and Communications Security, pp. 235–
245, 2009.

[10] F. Freiling, M. Spreitzenbarth and S. Schmitt, Forensic analysis of
smartphones: The Android Data Extractor Lite (ADEL), Proceed-
ings of the ADFSL Conference on Digital Forensics, Security and
Law, pp. 151–160, 2011.

[11] S. Garfinkel, Anti-forensics: Techniques, detection and countermea-
sures, Proceedings of the Second International Conference on i-
Warfare and Security, pp. 77–84, 2007.

[12] M. Goadrich and M. Rogers, Smart smartphone development: iOS
versus Android, Proceedings of the Forty-Second ACM Technical
Symposium on Computer Science Education, pp. 607–612, 2011.

[13] J. Govindaraj, R. Verma, R. Mata and G. Gupta, iSecureRing:
Forensic-ready secure iOS apps for jailbroken iPhones, poster paper
presented at the IEEE Symposium on Security and Privacy, 2014.

[14] A. Grosskurth and M. Godfrey, A reference architecture for web
browsers, Proceedings of the Twenty-First IEEE International Con-
ference on Software Maintenance, pp. 661–664, 2005.

[15] M. Hannon, An increasingly important requirement: Authentication
of digital evidence, Journal of the Missouri Bar, vol. 70(6), pp. 314–
323, 2014.

[16] R. Harris, Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem, Digital Investiga-
tion, vol. 3(S), pp. S44–S49, 2006.



60 ADVANCES IN DIGITAL FORENSICS XIII

[17] A. Hassan and R. Holt, A reference architecture for web servers,
Proceedings of the Seventh Working Conference on Reverse Engi-
neering, pp. 150–159, 2000.

[18] International Data Corporation Research, Smartphone Growth Ex-
pected to Drop to Single Digits in 2016, Led by China’s Transition
from Developing to Mature Market, According to IDC, Press Re-
lease, Framingham, Massachusetts, March 3, 2016.

[19] T. Iulia-Maria and H. Ciocarlie, Best practices in iPhone program-
ming: Model-view-controller architecture – Carousel component de-
velopment, Proceedings of the International Conference on Com-
puter as a Tool, 2011.

[20] B. Jacobs, iOS from Scratch with Swift: Data Persistence and Sand-
boxing on iOS, Envato Tuts+ (code.tutsplus.com/tutorials/
ios-from-scratch-with-swift-data-persistence-and-sandb
oxing-on-ios--cms-25505), December 25, 2015.

[21] M. Joorabchi and A. Mesbah, Reverse engineering iOS mobile ap-
plications, Proceedings of the Nineteenth Working Conference on
Reverse Engineering, pp. 177–186, 2012.

[22] A. Kubi, S. Saleem and O. Popov, Evaluation of some tools for ex-
tracting e-evidence from mobile devices, Proceedings of the Fifth
International Conference on the Application of Information and
Communication Technologies, 2011.

[23] J. Lessard and G. Kessler, Android forensics: Simplifying cell phone
examinations, Small Scale Digital Device Forensics Journal, vol.
4(1), 2010.

[24] M. Losavio, Non-technical manipulation of digital data, in Advances
in Digital Forensics, M. Pollitt and S. Shenoi (Eds.), Springer,
Boston, Massachusetts, pp. 51–63, 2005.

[25] C. Miller, Mobile attacks and defense, IEEE Security and Privacy,
vol. 9(4), pp. 68–70, 2011.

[26] H. Pieterse, M. Olivier and R. van Heerden, Playing hide-and-seek:
Detecting the manipulation of Android timestamps, Proceedings of
the Information Security for South Africa Conference, 2015.

[27] H. Pieterse, M. Olivier and R. van Heerden, Reference architecture
for Android applications to support the detection of manipulated
evidence, SAIEE Africa Research Journal, vol. 107(2), pp. 92–103,
2016.

[28] A. Prasad, Android to rule smartphone market with 85% share in
2020 says IDC report, International Business Times, March 5, 2016.



Pieterse, Olivier & van Heerden 61

[29] I. Sporea, B. Aziz and Z. McIntyre, On the availability of anti-
forensic tools for smartphones, International Journal of Security,
vol. 6(4), pp. 58–64, 2012.

[30] L. Thomson, Mobile devices: New challenges for admissibility of
electronic evidence, Scitech Lawyer, vol. 9(3), 2013.

[31] R. Verma, J. Govindaraj and G. Gupta, Preserving dates and time-
stamps for incident handling in Android smartphones, in Advances
in Digital Forensics X, G. Peterson and S. Shenoi (Eds.), Springer,
Heidelberg, Germany, pp. 209–225, 2014.




