A. Agarwal and B. Triggs, Recovering 3D human pose from monocular images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.1, pp.44-58, 2006.
DOI : 10.1109/TPAMI.2006.21

URL : https://hal.archives-ouvertes.fr/inria-00548619

I. Akhter and M. Black, Pose-conditioned joint angle limits for 3D human pose reconstruction, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298751

M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, 2D Human Pose Estimation: New Benchmark and State of the Art Analysis, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.471

A. Bissacco, M. Yang, and S. Soatto, Detecting humans via their pose, NIPS, 2006.
DOI : 10.21236/ADA478673

URL : http://www.dtic.mil/dtic/tr/fulltext/u2/a478673.pdf

L. Bo and C. Sminchisescu, Twin Gaussian Processes for Structured Prediction, International Journal of Computer Vision, vol.48, issue.3, pp.28-52, 2010.
DOI : 10.1007/s11263-008-0204-y

L. Bourdev and J. Malik, Poselets: Body part detectors trained using 3D human pose annotations, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459303

C. Chen and D. Ramanan, 3D Human Pose Estimation = 2D Pose Estimation + Matching, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
DOI : 10.1109/CVPR.2017.610

URL : http://arxiv.org/pdf/1612.06524

W. Chen, H. Wang, Y. Li, H. Su, Z. Wang et al., Synthesizing Training Images for Boosting Human 3D Pose Estimation, 2016 Fourth International Conference on 3D Vision (3DV), 2016.
DOI : 10.1109/3DV.2016.58

X. Chen and A. L. Yuille, Articulated pose estimation by a graphical model with image dependent pairwise relations, NIPS, 2014.

C. R. De-souza, A. Gaidon, Y. Cabon, and A. M. Lopez, Procedural Generation of Videos to Train Deep Action Recognition Networks, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
DOI : 10.1109/CVPR.2017.278

A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas et al., FlowNet: Learning Optical Flow with Convolutional Networks, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/ICCV.2015.316

URL : http://arxiv.org/pdf/1504.06852

Y. Du, Y. Wong, Y. Liu, F. Han, Y. Gui et al., Marker-Less 3D Human Motion Capture with Monocular Image Sequence and Height-Maps, ECCV, 2016.
DOI : 10.1007/s11263-009-0273-6

A. Elhayek, E. Aguiar, A. Jain, J. Tompson, L. Pishchulin et al., Efficient convnetbased marker-less motion capture in general scenes with a low number of cameras, CVPR, 2015.

M. Enzweiler and D. M. Gavrila, A mixed generativediscriminative framework for pedestrian classification, CVPR, 2008.

X. Fan, K. Zheng, Y. Zhou, and S. Wang, Pose Locality Constrained Representation for 3D Human Pose Reconstruction, ECCV, 2014.
DOI : 10.1007/978-3-319-10590-1_12

I. J. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, NIPS, 2014.

H. Hattori, V. N. Boddeti, K. M. Kitani, and T. Kanade, Learning scene-specific pedestrian detectors without real data, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7299006

A. Hornung, E. Dekkers, and L. Kobbelt, Character animation from 2D pictures and 3D motion data, ACM Transactions on Graphics, vol.26, issue.1, 2007.
DOI : 10.1145/1189762.1189763

S. Huang and D. Ramanan, Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
DOI : 10.1109/CVPR.2017.496

C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.7, pp.1325-1339, 2014.
DOI : 10.1109/TPAMI.2013.248

M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, Reading Text in the Wild with Convolutional Neural Networks, International Journal of Computer Vision, vol.20, issue.9, pp.1-20, 2016.
DOI : 10.1109/TIP.2011.2126586

S. Johnson and M. Everingham, Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation, Procedings of the British Machine Vision Conference 2010, 2010.
DOI : 10.5244/C.24.12

S. Johnson and M. Everingham, Learning effective human pose estimation from inaccurate annotation, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995318

URL : http://www.comp.leeds.ac.uk/mat4saj/publications/johnson11cvpr.pdf

H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe et al., Panoptic Studio: A Massively Multiview System for Social Motion Capture, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/ICCV.2015.381

I. Kostrikov and J. Gall, Depth Sweep Regression Forests for Estimating 3D Human Pose from Images, Proceedings of the British Machine Vision Conference 2014, 2014.
DOI : 10.5244/C.28.80

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM, vol.60, issue.6, 2012.
DOI : 10.1162/neco.2009.10-08-881

URL : http://dl.acm.org/ft_gateway.cfm?id=3065386&type=pdf

S. Li, W. Zhang, and A. B. Chan, Maximum-margin structured learning with deep networks for 3D human pose estimation, ICCV, 2015.

S. Li, W. Zhang, and A. B. Chan, Maximum-margin structured learning with deep networks for 3D human pose estimation, p.2016

M. Loper, N. Mahmood, J. Romero, G. Pons-moll, and M. J. Black, SMPL, Proc. SIGGRAPH Asia), pp.1-24816, 2015.
DOI : 10.1145/344779.344862

D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko et al., Monocular 3D human pose estimation in the wild using improved CNN supervision, 3D Vision (3DV), 2017.

F. Moreno-noguer, 3D Human Pose Estimation from a Single Image via Distance Matrix Regression, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
DOI : 10.1109/CVPR.2017.170

URL : http://arxiv.org/pdf/1611.09010

G. Mori and J. Malik, Recovering 3D human body configurations using shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.7, pp.1052-1062, 2006.
DOI : 10.1109/TPAMI.2006.149

URL : http://www.cs.berkeley.edu/~malik/papers/mori-malik-pami06.pdf

R. Okada and S. Soatto, Relevant Feature Selection for Human Pose Estimation and Localization in Cluttered Images, ECCV, 2008.
DOI : 10.1023/A:1012450327387

D. Park and D. Ramanan, Articulated pose estimation with tiny synthetic videos, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015.
DOI : 10.1109/CVPRW.2015.7301337

URL : http://www.ics.uci.edu/%7Edramanan/papers/tiny_videos.pdf

G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, Coarseto-fine volumetric prediction for single-image 3D human pose, CVPR, 2017.

X. Peng, B. Sun, K. Ali, and K. Saenko, Learning Deep Object Detectors from 3D Models, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/ICCV.2015.151

L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka et al., DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.533

L. Pishchulin, A. Jain, M. Andriluka, T. Thormählen, and B. Schiele, Articulated people detection and pose estimation: Reshaping the future, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248052

V. Ramakrishna, T. Kanade, and Y. Sheikh, Reconstructing 3D Human Pose from 2D Image Landmarks, ECCV, 2012.
DOI : 10.1007/978-3-642-33765-9_41

URL : http://www.cs.cmu.edu/%7Evramakri/cameraAndPoseCameraReady.pdf

G. Rogez, J. Rihan, C. Orrite, and P. Torr, Fast Human Pose Detection Using Randomized Hierarchical Cascades of Rejectors, International Journal of Computer Vision, vol.63, issue.2, pp.25-52, 2012.
DOI : 10.1109/AFGR.2002.1004147

G. Rogez and C. Schmid, MoCap-guided data augmentation for 3D pose estimation in the wild, NIPS, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01389486

G. Rogez, J. Supancic, and D. Ramanan, First-person pose recognition using egocentric workspaces, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7299061

G. Rogez, P. Weinzaepfel, and C. Schmid, LCR-Net: Localization-Classification-Regression for Human Pose, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
DOI : 10.1109/CVPR.2017.134

URL : https://hal.archives-ouvertes.fr/hal-01505085

J. Romero, H. Kjellstrom, and D. Kragic, Hands in action: real-time 3D reconstruction of hands in interaction with objects, 2010 IEEE International Conference on Robotics and Automation, 2010.
DOI : 10.1109/ROBOT.2010.5509753

M. Sanzari, V. Ntouskos, and F. Pirri, Bayesian Image Based 3D Pose Estimation, ECCV, 2016.
DOI : 10.1198/1061860043001

G. Shakhnarovich, P. A. Viola, and T. Darrell, Fast pose estimation with parameter-sensitive hashing, Proceedings Ninth IEEE International Conference on Computer Vision, 2003.
DOI : 10.1109/ICCV.2003.1238424

URL : http://luthuli.cs.uiuc.edu/~daf/courses/AppCV/Papers/01238424.pdf

J. Shotton, A. W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio et al., Real-time human pose recognition in parts from single depth images, CVPR, 2011.

L. Sigal, A. O. Balan, and M. J. Black, HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human??Motion, International Journal of Computer Vision, vol.74, issue.3, pp.4-27, 2010.
DOI : 10.1109/TPAMI.1980.6447699

L. Sigal and M. J. Black, Predicting 3D People from 2D Pictures, AMDO, 2006.
DOI : 10.1007/11789239_19

URL : http://www.cs.brown.edu/people/black/Papers/amdo2006sigal.pdf

E. Simo-serra, A. Quattoni, C. Torras, and F. Moreno-noguer, A Joint Model for 2D and 3D Pose Estimation from a Single Image, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.
DOI : 10.1109/CVPR.2013.466

E. Simo-serra, A. Ramisa, G. Alenyà, C. Torras, and F. Moreno-noguer, Single image 3D human pose estimation from noisy observations, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6247988

URL : http://www.iri.upc.edu/people/fmoreno/Publications/CVPR12b/cvpr12b.pdf

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition. CoRR, abs, 1409.

H. Su, C. R. Qi, Y. Li, and L. J. Guibas, Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
DOI : 10.1109/ICCV.2015.308

J. Camillo and . Taylor, Reconstruction of articulated objects from point correspondences in a single uncalibrated image, CVPR, 2000.

B. Tekin, I. Katircioglu, M. Salzmann, V. Lepetit, and P. Fua, Structured Prediction of 3D Human Pose with Deep Neural Networks, Procedings of the British Machine Vision Conference 2016, 2016.
DOI : 10.5244/C.30.130

B. Tekin, A. Rozantsev, V. Lepetit, and P. Fua, Direct Prediction of 3D Body Poses from Motion Compensated Sequences, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.113

D. Tome, C. Russell, and L. Agapito, Lifting from the Deep: Convolutional 3D Pose Estimation from a Single Image, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
DOI : 10.1109/CVPR.2017.603

J. J. Tompson, A. Jain, Y. Lecun, and C. Bregler, Joint training of a convolutional network and a graphical model for human pose estimation, NIPS, 2014.

A. Toshev and C. Szegedy, DeepPose: Human Pose Estimation via Deep Neural Networks, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.214

URL : http://arxiv.org/pdf/1312.4659

G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black et al., Learning from Synthetic Humans, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
DOI : 10.1109/CVPR.2017.492

URL : https://hal.archives-ouvertes.fr/hal-01505711

C. Wang, Y. Wang, Z. Lin, A. L. Yuille, and W. Gao, Robust Estimation of 3D Human Poses from a Single Image, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.303

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang et al., 3D shapenets: A deep representation for volumetric shapes, CVPR, 2015.

J. Xu, S. Ramos, D. Vázquez, and A. M. López, Incremental Domain Adaptation of Deformable Part-based Models, Proceedings of the British Machine Vision Conference 2014, pp.2367-2380, 2014.
DOI : 10.5244/C.28.120

W. Yang, W. Ouyang, H. Li, and X. Wang, End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.335

H. Yasin, U. Iqbal, B. Krüger, A. Weber, and J. Gall, A Dual-Source Approach for 3D Pose Estimation from a Single Image, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.535

F. Zhou and F. De-la-torre, Spatio-temporal Matching for Human Detection in Video, ECCV, 2014.
DOI : 10.1007/978-3-319-10599-4_5

X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei, Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised Approach, 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
DOI : 10.1109/ICCV.2017.51

X. Zhou, X. Sun, W. Zhang, S. Liang, and Y. Wei, Deep kinematic pose regression, ECCV Workshop on Geometry Meets Deep Learning, 2016.

X. Zhou, M. Zhu, S. Leonardos, K. Derpanis, and K. Daniilidis, Sparseness Meets Deepness: 3D Human Pose Estimation from Monocular Video, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.537

URL : http://arxiv.org/pdf/1511.09439

S. Zuffi and M. J. Black, The stitched puppet: A graphical model of 3D human shape and pose, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298976