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This project started early 2017 and this paper was sub- 1 Introduction
mitted for publication in November 2017.
Image alignment, also namexn-rigid registration is the
task of nding a correspondence eld between two given
images,i.e. a deformation which, when applied to the rst
image, warps it to the second one. Such warpings can prove
useful in many situations: to transfer information between
several images (for instance, from a template image with
labeled parts), to compare the appearance of similar parts
(as pixel intensity comparison makes sense only after align-
ment), or to estimate spatial changes (to monitor the evo-
lution of a tumor given a sequence of scans of the same
patient over time, for instance). Image alignment has thus
been a predominant topic in elds such as medical imaging
or remote sensing [30, 19].

Abstract

We tackle here the problem of multimodal image non-
rigid registration, which is of prime importance in remote
sensing and medical imaging. The dif culties encountered
by classical registration approaches include feature design
and slow optimization by gradient descent. By analyzing
these methods, we note the signi cance of the notion of
scale. We design easy-to-train, fully-convolutional neu-
ral networks able to learn scale-speci c features. Once
chained appropriately, they perform global registration in
linear time, getting rid of gradient descent schemes by pre-
dicting directly the deformation.

We show their performance in terms of qua“ty and SDEEd 1.1 Remote SenS|ng & |mage allgnment
through various tasks of remote sensing multimodal image
alignment. In particular, we are able to register correctly In remote sensing, images of the Earth can be acquired
cadastral maps of buildings as well as road polylines onto through different types of sensors, in the visible spec-
RGB images, and outperform current keypoint matching trum (RGB) or not (hyperspectral images), from satellites
methods. or planes, with various spatial precision (from cm to km
range). The analysis of these images allows the monitoring
of ecosystems (plants [11], animals [32], soils...) and their
evolution (ice melting, drought monitoring, natural disas-
ters and associated help planning), urban growth, as well
as the automatic creation of maps [20] or more generally
digitizing the Earth.

However, the geographic localization of pixels in remote
sensing images is limited by a number of factors, such as
the positioning precision and the effect of the relief on non-
S vertical points of view. The deformation of these images

% ety EF > BN Vaemeniy @ is signi cant: for instance, in OpenStreetMap [10], objects
Figure 1.Multimodal matching. We align aerial images with ~ may be shifted by 8 meters (which is far above the required
cadastral images. Left: original misregistered images, right: after precision of maps for autonomous driving), which means an
our realignment. error displacement of more than 20 pixels for a 30 cm/pixel

resolution.




These deformations prevent a proper exploitation of suchtion is then how to design proper sampling criteria, descrip-
data. For instance, let us consider the task of nding build- tors, and matching algorithm. In the multi-modal case, one
ings and roads in a remote sensing image. While groundwould also have to design or learn the correspondence be-
truth is actually available in considerable amounts, such astween the descriptors of the two modalities. Note that high-
in OpenStreetMap (OSM) based on cadastral information, precision registration requires a dense sampling, as well as
which gives coordinates (latitude and longitude) of each consequently ner descriptors, which naturally leads to the
building corner, this hand-made ground truth is often in- second approach.
accurate, because of human mistakes. Thus it is not pos-

sible to learn from it, as remote sensing images are NOtggiimating a deformation eld by gradient descent
properly aligned to it and objects might even not overlap. The second approach, particularly popular in medical imag-
This is a severe issue for the remote sensing eld in the erajng consists in estimating a dense deformation eld from
of big data and machine learning. Many works have been ;¢ image to the other one [1, 9, 25, 15, 13]. One of its
focusing on this problem [2], from the use of relief knowl- advantages over the rst approach is to be able to model
edge to dedicated hand-designed alignment algorithms. A”'objects, to make use of shape statistics, etc. The warping

other approach worth mentioning is to train coarsely on js modeled as a smooth vector eld mapping one image
the datasets available and ne-tune on small better-hand-gomaijn onto the other one. Given two imagesandl ,, a

aligngd. datgsets [ ].. We will here tackle the problem of criterionC(l1 ;| ) is de ned, to express the similarity
non-rigid alignment directly. between the warped imade  and the target,, and is
optimized with respect to by gradient descent. Selecting
1.2 Classical approaches for non-rigid regis- @ suitable similarity criteriorC is crucial, as well as de-
tration signing carefully the gradient descent, as we will detail in
section 2.
Tasks Image registration deals with images either of the
same modality (same sensor), or not. When of the sameq
modality, the task is typically to align different but similar
objects €.g, faces [4] or organs of different people [13]), The dif culty to design or pick particular local descriptors
or to align the same object but taken at different times or matching criteria among many possibilities is the trait of
(as in the tumor monitoring example). On the other side, computer vision problems where the introduction of neu-
multi-modal registration deals with aligning images usually ral networks can prove useful. The question is how. Ma-
of the same object but taken with different sensors, which chine learning techniques have already been explored to
capture different physical properties, at possibly different learn similarity measures between different imaging modal-
resolutions. For instance in medical imaging, MR and CT ities [38], for instance using kernel methods to register MR
scans capture the density of water and of matter respecand CT brain scans [16], but without tackling the question
tively, while in remote sensing RGB and hyperspectral of scale. We will aim at designing a system able to learn
data capture information from different light frequencies scale-speci ¢ and modality-speci ¢ features, and able to
(infrared, etc.). In our case of study, we will focus on the perform multimodal image registration densely and swiftly,
alignment of RGB remote sensing images with cadastral without the use of any iterative process such as gradient de-
maps, which are vector-format images with polygonal scent which hampers classical approaches. Our contribu-
representations of all buildings and roads, hand-made bytions are thus:.
local authorities, map makers or OpenStreetMap users, as

.3 The new paradigm: neural networks

in Figures 1 and 2. a swift system to register images densely
learning features to register images of different modal-
Whether mono-modal or multi-modal, image registra- ities
tion faces two challenges: rst, to describe locally image learning scale-speci c features and managing scales
data, and then, to match points with similar description, in a designing a (relatively small) neural network to do this
spatially coherent manner. Historically, two main classical in an end-to-end fashion

approaches have emerged. aligning remote sensing images with cadastral maps

(buildings and roads)

Matching key-points The rst one consists in sampling providing a long-awaited tool to create large-scale
a few key-points from each image.¢ with Harris corner benchmarks in remote sensing.

detection), in describing them locally (with SIFT, SURF,
HOG descriptors...) [29, 7], in matching these points [26] We rst analyze the problems related to scale when aligning
and then interpolating to the rest of the image. The ques-images, in order to design a suitable neural network archi-



tecture. We show results on benchmarks and present addief the intensity arounc; andx, within a neighborhood
tional experiments to show the exibility of the approach.  of pre-de ned size [13]. Another famous example is the
mutual information between the histograms of the intensity

. . within a certain window with pre-de ned size.
2 Analysis of the gradient descent

framework 2.3 Adapting the scale
In order to analyze issues that arise when aligning images,|n all these cases, the neighborhood size is particularly im-
let us rst consider the case of mono-modal registration, portant: if too small, the gradient descent will get stuck in
for simplicity. Keeping the notations from section 1.2, we g poor local minimum, while if too large, the image details
pursue the quest for a reasonable crite@(h, ;1 2) to might be lost, preventing ne registration. What is actually
optimize by gradient descent to estimate the deformation needed is this neighborhood size to be of the same order
of magnitude as the displacement to be found. As this dis-
2.1 A basic example placement is unknown, the neighborhood size needs to be
wide enough during the rst gradient steps (possibly cover-
Too local quantities such as ghe pixellic intensity difference ing the full image), and has to decrease with time, for the
C(l 12)= ki I2k{ > would create many local  yegjstration to be able to get ner and nally reach pixellic
minima and get the gradient descent stuck very fast. In-precision. Controlling the speed of this decrease is a dif-
deed, if as a toy example one considerandl, tobe two ¢yt matter, leading to slow optimization. Moreover, the
white images with a unique black dait different locations performance of the descriptors may depend on the scale,

x1 andx respectively, the derivative @(11 ;1 2) with  ang different descriptors might need to be chosen for the
respectto will never involve quantities based on these two ¢oarse initial registration than for the nest nal one. In
points at the same time, which prevents them from being in- plus of the dif cult task of designing [39, 36] or learning
uenced by each other: [16] relevant descriptors s for each scale, this raises an-
. other issue, that is that the criteri@g to optimize
@Gy ;12),
T(X) =2 11 (x) la(X) (rxl) (xy 5
Cs(l1 ;1 2)=KLs(l1 ) Ls(l2)ki2 (2

is O at all pointsx 6 x;, and atx; the deformation (ini- ) ] )
tialized to the identity) evolves to make it disappear from Now depends on the current neighborhood sia, which -
the costC by shrinking the image around. Thus the deriva- 1S itself time-dependent, and thus the optimized criterion
tive of the similarity cosC with respect to the deformation ~ Cs(ty Might increase when the descriptay;) evolves: the

does not convey any information pushixg towardsx, optimization process is then not a gradient descent anymore.
but on the contrary will make the descent gradient stuck in ~ One might think of scale-invariant descriptors such as
this (very poor) local minimum. SIFT, however the issue is not just to adapt the scale to a

Instead of the intensitly(x), one might want to consider ~ particular location within an image, but to adapt it to the
other local, higher-level featuré(l )(x) such as edge de- amplitude of the deformation that remains to be done to be
tectors, in order to grasp more meaningful information, and matched to thetherimage.
thus minimize a criterion for instance of the form:

Clly ;12)=kL(ls ) L(I2)K%: 1) 2.4 Multi-resolution viewpoint

Another point of view on this scale-increasing process is to
2.2 Neighborhood size consider that the descriptors and optimization process re-
main the same at all scales, but that tesolutionof the
image is increasing. The algorithm is then a loop over suc-
cessive resolutions [13, 4], starting from a low-resolution
version of the image, waiting for convergence of the gradi-

o . ent descent, then upsampling the deformation eld found to
matched overlap signi cantly. For instance, the computa- . . . . . .
a higher resolution version of the image, and iterating un-

tion of the Canny edge detector is performed over a trun- . - o T
. ; o til the original resolution is reached. The limitation is then
cated Gaussian neighborhood, whose size is pre-de ned by,

o . that the same descriptor has to be used for each resolution,
the standard deviation parameterAnother example is the ; .
: . _ and, as previously, that the convergence of a gradient de-
local-cross correlation, which compares the local variations

scent has to be reached at each scale, leading to slow opti-
Lin the continuous setting, consider a smooth compact-support bump. Mization. A different approach consists in dealing with all

The solution consists in considering local descriptors in-
volving larger spatial neighborhoods, wide enough so that
the image domains involved in the computationd ¢F;

)(x1) and L(l;)(x2) for two pointsx; and x, to be




scales simultaneously by considering a multi-scale parame-knowledge no neural network-based work for dense non-

terisation of the deformation [28]. However, the same local rigid alignment yet. In [24], the Siamese network idea is

minimum problem would be encountered if implemented used, but for matching only very few points. It is also

naively; heuristics then need to be used to estimate at whichworth noting that, much earlier, in [16], a similarity crite-

scale the optimization has currently to be performed locally. rion between different modalities was learned, with a kernel
method, but for rigid registration only.

2.5 Keeping deformations smooth

Deformations are usually modeled as diffeomorphisms [1, 3.2 Amore direct approach

, 15, 13],i.e. smooth one-to-one vector elds, in order to As seen in the previous sections, aligning images thanks
avoid deleting image parts. The smoothness is controlledio a gradient descent over the deformatiomas the fol-
by an additional criterion to optimize, quantifying the reg- |owing drawbacks: it is slow because of the need to ensure
ularity of the deformation , such as its Sobolev norm (pe- convergence at each scale, it is actually not a real gradient
nalizing fast variations). As in any machine learning tech- descent if descriptors are scale-dependent, and it induces a
nique, this regularity term sets a prior over the space of pos-long backpropagation chain when learning the descriptors.
sible functions (here, deformations), preventing over tting To get rid of this iterative process, we propose to predict di-
(here, spatial noise). But once again, the smoothness levefectly its nal result at convergence. That is, given images
required should depend on the sca&e prioritizing global |, andl ,, to predict directly the optimal deformationso
translations and rotations at rst, while aIIowing very local thatl 1 andl > are a|igned_ Also, instead of proceeding in
moves when converging. This can be handled by suitabletwo steps: rst learning the featurésrequired to de ne the

metrics on instantaneous deformations [5, 31]; yet in prac-criterionC in (1), then nding the deformation minimiz-
tice these metrics tend to slow down convergence by over-ing C, we propose to directly learn the deformation as in
smoothing gradients C at nest scales. a standard machine learning setup, that is, from examples.

Given atraining dataset of input palPs= (11;1,) together

. with the expected associated outpyt, we aim at learnin
3 Introducing neural networks the functiorﬁ’p 71 P ?

P.

3.1 Learning iterative processes ) , )
3.3 Machine learning setting
As neural networks have proved useful to replace hand-

designed features for various tasks in the literature recently, Training set We rst consider the task of aligning geolo-
and convolutional ones (CNN) in particular in computer vi- calized aerial RGB images with binary maps from Open-
sion, one could think, for mono-modal image alignment, of StreetMap indicating building locations. As explained in
training a CNN in the Siamese network setup [3, 6], in or- section 1.1, the matching is usually imperfect. Creating
der to learn a relevant distance between image patches. Théhe deformation ground truth by manually performing the
multi-modal version of this would consist in training two Warpings would be too time-consuming. Instead, we ex-
CNN (one per modality) with same output size, in comput- tract image pairs which visually look already well aligned,
ing the Euclidean norm of the difference of their outputs as @s in Figure 2. This way we obtain a dataset composed of
a dissimilarity measure, and in using that quantity within a 5000x5000 image pairs (aerial RGB image, binary vector-
standard non-rigid alighment algorithm, such as a gradientformat building map) at resolutiof:3m/pixel, for which
descent over (1). For training, this would however require the deformation to be found is the identity.

to be able to differentiate the result of this iterative align- ~ We generate an arti cial training set by applying random
ment process with respect to the features. This is not real-deformations to the cadastral vectorial maps, moving ac-
istic, given the varying, usually large number of steps re- cordingly the corners of the polygons it contains, and then
quired for typical alignment tasks. A similar approach was generating the new binary maps by rasterization. We thus
nonetheless successfully used in [17], for the simpler taskobtain a training set of pairs of non-registered images, with
of correcting blurry segmentation maps, sharpening themknown deformations. As typical deformations in reality are
and relying on image edges. For this, a partial differen- smooth, we model our family of random deformations as: a
tial equation (PDE) was mimicked with a recurrent network, global translatiorv, taken uniformly within a certain range
and the number of steps applying this PDE was pre-de ned[ T; +r]%, plus a mixture of Gaussian functions with ran-
to a small value (5), suf cient for that particular problem. dom shiftsv;, centersc; and covariance matrice:

In the same spirit, for image denoising, in [21, 34] the prox-
imal operator used during an iterative optimization process

X
: - (X) = vg + Vi e (x xi)Si(x xi) (3)
is modeled by a neural network and learned. There is to our

i=1



two featuresj.e. emits two real values per pixel, which are
interpreted a@(x). In our experiments, such a network
does not succeed in learning deformations: it constantly
outputsb(x) = (0;0) 8x, which is the best constant value
for our loss,i.e. the best answer one can make when not
understanding the link between the indug;1,) and the
output for a quadratic loss: the average expected answer
E(.:1,: on2o [ ], whichis(0;0) in our case.

We also tried changing representation by predicting bin
probabilitiesp  x(x) 2 [a;a+1] ; p y(X) 2 [b; b+ 1]
for each integer r 6 a;b < r, by outputting 2 vectors of
2r real values per pixel, but this lead to the same result.

Figure 2. Multimodal pair of already satisfyingly aligned im-
ages, from the database. Left: aerial RGB image, right: binary
vector-format cadastral image (buildings are shown in white).

with uniformly randomv;: Si: x; within suitable pre- 3:5 Dealing with a single scale
de ned ranges $; being symmetric positive de nite). This
way, we can drastically augment the dataset by applying
arbitrarily many random deformations to the initially well-
aligned images.

The task in section 3.4 is indeed too hard: the network needs
to develop local descriptors at all scales to capture all in-
formation, and is asked to perform a ne matching with
(2r)?' 1700possibilities for each pixet.

This task can be drastically simpli ed though, by requir-
ing the network to perform the alignmeat one scales
only. By this, we mean:

Optimization criterion  The loss considered is simply the
Euclidean norm of the prediction error:

2
X b 2 Task at scales: Solve the alignment problem for the im-
C(w) :(I .E 20 4 w)(11:12) (%) er(X) 25 age pair(l 1; 1), with a precision required of 25 pixels,
tha et x2 ( 12) under the assumption that the amplitude of the registra-
. . Y
i.e. the expectation, over the ground truth daté&sef triplet tion to be found is not larger tha#®™ pixels.

examples (RGB image,, cadastral imagé,, associated oy instance, at scate= 0, the task is to search for a pix-

deformation ¢;), of the sum, over all pixelg in the im- elwise precise registration (L pixel) on a dataset prepared
age domain( 1), of the norm of the difference between ¢ previously but with amplitude = 251 = 2. As a rst
the ground truth deformatione(x) and the one predicted  5pproximate test, we train the same network as described
P11 (X) for the pair of imageg11;12) given model  earlier, withr = 2, i.e. each of the 2 coordinates o{x)
parametersy (i.e. the neural network weights). take value if 2;2], and we consider a predictid¥(x) to

In order to make sure that predictions are smooth, We e correct if in the same unit-sized bin aéx). Without
also consider for each pixel a penalty over the norm of the y,ning the architecture or the optimization method, we ob-

(spatial) Laplacian of the deformatidh tain, from the rst training run, abou®0% of accuracy, to
2 be compared to 6% for a random guess.
+ 4By, (X) , 4) Thus, itis feasible, and easy, to extract information when

specifying the scale. Intuitively, the search space is much
which penalizes all but afne warpings. In practice smaller; in the light of section 2.2, the descriptor recep-
in the discrete setting this sum is the deviation of tive eld required for such a 1 pixel task is just of ra-
b(x) from the average over the 4 neighboring pixels: dius 1. And indeed, in the classical framework for mono-
+ b(x) %P . b(xo) 2: modal registration, a feature as simple as the image intensity

XT X 2 would de ne a suf ciently good criterion (1), as the associ-

ated gradient step involves the comparison to the next pixel
3.4 A rsttry (throughr «11). Note that such a simple intensity-based
criterion would not be expected to perform moeeg nd
deformations of amplitude > 2 pixels in the general case
| (textures).

We rst produce a training set typical of real deformations
by picking a realistic range = 20 pixels of deforma-
tion amplitudes. We consider a fully-convolutional neural
network, consisting of two convolutional networks (one for

each input imagé;), whose nal outputs are concatenated Designing a suitable neural network architecture We

and sent to more convolutional layers. The last layer hasnow propose better architectures to solve that alignment



task at scales = 0. We need a fully-convolutional archi-

tecture since the output is a 2-channel image of the same

size as the input, and we need to go across several scales

in order to understand which kind of object part each pixel

belongs to, in each modality. High-level features require

a wide receptive eld, and are usually obtained after sev-

eral pooling layers, in a pyramidally shaped network. The

output needs however to be of the same resolution as the

input, which leads to autoencoder-like shapes. In order to

keep all low-level information until the end, and not to lose

precision, we link same-resolution layers together, thus ob-

taining a U-net-like network [33] (developed for medical

image segmentation). As the 2 input images are not regis-gig e 3 Network architecture. The two input images; and! 2
tered, and to get modality-speci c features, we build 2 sep- are fed to layers 1a and 1b respectively. The output is a 2 dimen-

arate convolutional pyramids, one for each modality (in a sjional vector map (layer 26 with 2 channels). See Appendix for all
similar fashion as networks for stereo matching [40]), but details.

concatenate their activities once per scale to feed the U-net.
The architecture is summarized in Figure 3. The network
is trained successfully to solve tee= 0 task as explained
previously.

the classical multi-resolution approaches with gradient de-
scents at each scale.

Note also some similarity with recent work on optical
ow [14], consisting in an arrangement of 3 different
3.6 A chain of scale-speci ¢ neural networks  scale-related blocks, though monomodal, not principled

. . from le analysis and with le- i ¢ training.
We now solve the general alignment task very simply: om a scale analysis and without scale-speci ¢ training

Solution for task at scales: Downsample theimagesby  We will also check the following variations:
a factor 2°; solve the alignment task at scabdfor these

reduced images, and upsample the result with the same ~ ast: replace all scale-speci c blocks with the same
factor. s = 2-speci ¢ block, to see how well features general-

ize across scales; the output quality decreases slightly
but remains honorable.

Full alignment algorithm: Given animage paifl ;1) _
of widthw, iteratively solve the alignment task at scale “accuraté: apply the network on symmetrised and ro-
froms =log,w untils=0. tated versions of the input images, and average the re-

sult over these 8 tests. This ensures rotation invariance
One can choose to use the same network for all scales,  and improves the result.
or different ones if we expect speci c features at each scale,
as in remote sensing or medical imaging. .
The full processing chain is shown in Figure 4. Note 4 Experlments
a certain global similarity with ResNet [12], in that we
have a chain of consecutive scale-speci ¢ blocks, each of We perform four experiments on different datasets. The
which re ning the previously-estimated deformation, notby st experiment uses thelnria aerial image labeling
adding to it but by diffeomorphism compositions 1 = dataset [18], which is a collection of aerial orthorecti-

s ld+ f(l1 ;12 ) . Another difference with ed color (RGB) imagery with a spatial resolution of 30
ResNet is that we train each scale-speci ¢ block indepen- cm/pixel covering 810 krhover 9 cities in USA and Aus-
dently, which is much easier than training the whole chain tria. We aim at aligning a map of buildings downloaded
at once. from OSM with the images from the Inria dataset. The net-

Note that the overall complexity of an alignment is very Work described in Section 3.6 is trained using image patches
low, linear in the image size. Indeed, for a given image with from six different cities, for which accurate bU|Id|ng cadas-
n pixels, a similar convolutional architecture is applied to tral data are available We then evaluated the network by

all reduced versions by facto?8, of size2 S 2 Snpixels,  Using images of the area of Kitsap County not presented
leading to a total cost af(1+ %4. %4. 6%+ K < %nK during training. Fig. 5 shows an example close-up of align-

whereK is the constant per-pixel convolutional cost. This ment result.
is to be compared with the classical gradient qescent ba§ed 2The cadastral data are extracted from OSM and contain a small mis-
approaches of unknown convergence duration, and withalignment of an order of several pixels.




Figure 4.Full architecture as a chain of scale-speci ¢ neural networksThe two full-resolution input images are always available on the

top horizontal row. The full-resolution deformation is iteratively re ned, scale per scale, on the bottom horizontal line. Each scale-speci c
block downsample the images to the right size, apply the previously-estimated deformation, and re nes it, in a way somehow similar to
ResNet. Each block is trained independently.

In the second experiment the network trained in the
rst experiment is used to align the OSM building map
with satellite images with a pansharpened resolution of 50
cm/pixel, acquired by the Piades sensor over the Forez ru-
ral area in France.

To measure performance of the network, we use the per-
centage of correct key point metric [27]. We manually iden-
ti ed matching key points on two couples of multimodal
images (one Kitsap image from experiment 1 and one Forez
image from experiment 2) with more than 600 keypoints for _ ) ) L
each image. We then measure the distance between the pd:_lgure 5.Example of image alignment.Left : original image and

" L . . . OpenStreetMap (OSM) map. Right : Alignment result.

sitions of keypoints after alignment by using different algo-
rithms and the manually indicated ones. If this distance is
smaller than a certain threshold, the keypoint is identi ed as

matched. In athird experiment, we align roads with the images
Fig. 6 compares the performance of our network with the used in the rst experiment. The task differs from previous
following methods: DeepFlow of Weinzaepfet al. [35], experiments in that only the center line of the road is known,

two variations of geometric matching method of Rocco et and in the form of a polyline. Moreover, local edges are
al. [27], and a multimodal registration method of Ye et not useful features for alignment anymore, as the center of
al. [37]. Our approach clearly outperforms other ones by roads is homogeneous. We train on OSM data, by dilating
a large margin. We note that averaging over rotations androad polylines to reach a 4 pixel width and rasterizing them.
symmetries (in green,dtcuraté) does help on the Forez We then test the performance of the trained network on the
dataset, and that learning scale-speci ¢ features performsKitsap image. The results are shown in Figure 8.

slightly better than scale-independent features but not al- The fourth experiment checks the performance of our
ways (blue vs. red,fast). Examples of alignment results approach on a higher-resolution dataset. We consider the
are shown in Figure 7. Our approach is also much faster, aitti dataset [8], which contains high precision aerial im-
shown by the computational times below fds@00 5000 ages (9 cm/pixel), as well as perfectly aligned multi classes
image, even though we compute a dense registration whilelabeling [20]. We create a training set with arti cial random

other approaches only match keypoints: deformations, in the same spirit as before, and a test set with
Method Ours [27] | [35] [37] randomly deformed images as well, but following different
Time 80s 238s| 784s 9550 s distributions, in order to check also the robustness of our
CPU Opteron 2Ghz Intel 2.7Ghz | Int. 3.5Ghz training approach. Image pairs to be registered consist of a
GPU GTX 1080 Ti | Q.M2000M | GT 960 M RGB image and a 3-channel binary image indicating build-




Figure 6. Key points

matching.  Scores of
different methods on
the Kitsap and Forez
datasets. The curves
indicate the percentage of
keypoints whose distance

to the ground truth is
less than the threshold in Figure 8.Example of road alignment. Left: original alignment

abscissa. Higher is better. between image and roads (Kitsap); right: results after realignment.

ings, roads and sidewalk presence respectively. An example
of result is shown in Figure 9. We also analyse the distribu-
tion of misalignments before and after registration, shown
as histograms in Figure 10. We note that the vast majority of
pixels are successfully very closely matched to their ground
truth location.

Figure 9.Example of alignment on the Kitti Dataset. Left: be-
fore alignment; right: after alignment.

scale-speci c details to the depth map. The promising result
('rst run, no parameter tuning) is shown in the Appendix.

(a) Ground truth (b) Ours (c) Rocco [27] (d) Weinzaepfel [35]
Figure 7 Multimodal keypoint matching comparison for differ-
ent methods and two datasets. Top: Forez dataset; bottom: Kitsap.
Blue: predicted, green: ground truth. Full resolution in Appendix.

We also perform an extra experiment to show that our
multi-scale approach could generalize to other applications.Figure 10.Misalignment histograms on the fourth experiment
We consider the problem of stereovision, where the input (Kitti _dataset). I__e_ft: original misalignmentdi_stripution in the test
is a pair of RGB images taken from slightly different view set; right: remaining error after our automatic alignment.
points, and the expected output is the depth mepa single
channel image instead of a deformation eld. We consider
the dataset from [22, 23] and de ne the loss function as the
depth error (squared), plus the regularizer (4). We keep theOptimization details The network is trained with an
same architecture but link the scale-speci ¢ networks with Adam optimizer, on mini-batches of 16 patches of 128
additions instead of compositions, so that each block addsl128 pixels images, with a learning rate starting from 0.001



and decayed by 4% every 1000 iterations. Weights are ini-
tialized following Xavier Glorot's method. We trained for
60 000 iterations. More technical details are available in the
Appendix.

Additional details speci c to sparse modalities such as
cadastral maps, though not essential. During training, we
sort out fully or mostly blank images(g cadastre with-
out any building). Also, in order to train more where
there is more information to extrad.(}, corners and edges
vs. wide homogeneous spaces), we multiply the pixel loss
by a factor> 1 on building edges when training.

When rectangular building are glued together in a row
with shared walls, the location of their edges and corners is
not visible anymore on the rasterized version of the OSM
cadastre. By adding a channel to the cadastre map, remind-
ing the OSM corner locations, we observe a better align-
ment of such rows.

5 Conclusion

Based on an analysis of classical methods, we designed a

(4]

(5]

(6]

(7]

(8]

9]

chain of scale-speci ¢ neural networks for non-rigid image [10]

registration. By predicting directly the nal registration at
each scale, we avoid slow iterative processes such as gra-

dient descent schemes. The computational complexity is[11]

linear in the image size, and far lower than even keypoint
matching approaches. We demonstrated its performance on
various remote sensing tasks and resolutions. The trained
network as well as the training code will be made available
online. This way, we hope to contribute to the creation of [
large datasets in remote sensing, where precision so far was
an issue requiring hand-made ground truth.

An interesting point to study further is the specialization
of the networks for each scale, to check on which type of
image dataset it is strong or not (medical imaging vs. land-
scape pictures.g).
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Appendix

A.1 Neural network architecture details

See Figures 11 and 12 for further details about the architec-
ture and meta-parameters.

A.2 Alignment framework

The whole processing framework for the alignment of
OpenStreetMap cadastral information with aerial images is

A. Sotiras, C. Davatzikos, and N. Paragios. Deformable med- summarized in the chart shown in Figure 13.

G. Sundaramoorthi, A. Yezzi, and A. Mennucci. Coarse- A3 Example of deformation

to- ne segmentation and tracking using sobolev active con-
tours. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30(5):851-864, 2008. 4

Y. Verdie and F. Lafarge. Ef cient Monte Carlo sampler for
detecting parametric objects in large scenesPrc. of the
European Conference on Computer Vision (ECGifenze,
Italy, 2012. 1

10

As explained in the article, to augment the dataset size for
training, we generate random deformations, as a mixture
of Gaussian functions with random shifts. An example of

such a deformation (ampli ed 4 times for better visualisa-

tion purposes), and the result of its application to the origi-
nal image, are shown in Figure 15.



Figure 11. Network architecture. The two input images$; andl, are fed to layers 1a and 1b respectively. The output is a 2 dimensional
vector map (layer 26 with 2 channels). This architecture allows to merge information from both sources at all scales, to extract high-level
information, and to remember ne details from the input resolution to output a precise full-resolution deformation. Details on Figure 12.

Start layer| End Layer| Name Kernel size| Number of Iters | padding| stride

1 2 convolution-1 5 16 2
2 3 convolution-2 5 32 2
3 4 pooling-1 2 2
4 5 convolution-3 3 32 1
5 6 convolution-4 3 32 1
6 7 pooling-2 2 2
7 8 convolution-5 3 64 1
8 9 convolution-6 3 64 1
3 10 concatenation-1
6 13 concatenation-2
9 16 concatenation-3
10 11 convolution-7 3 32 1
11 12 convolution-8 3 32 1
13 14 convolution-9 3 64 1
14 15 convolution-10 3 64 1
16 17 convolution-11 3 64 1
18 19 convolution-12 3 64 1
18 18’ deconvolution-1 3 64

15-18' 19 concatenation-4
19 20 convolution-11 3 64 1
20 21 convolution-12 3 64 1
21 21' deconvolution-2 3 32

12-21' 22 concatenation-5
22 23 convolution-13 3 64 1
23 24 convolution-14 3 64 1
24 25 convolution-15 3 32 1
25 26 convolution-16 3 2 1

Figure 12. Details for each layer of the (scale-speci c) neural network displayed on Figure 3. “Kernel size 3” for a convolutional layer
means 3 3" convolution.
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Figure 13.Global framework for OpenStreetMap data correction.
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A.4 Training details when the dataset is not sparse or binary.
A.4.1 Tricks for better training

To reduce the training time and possible memory issues,
patch of images256 256 pixels) were given to the net-
work for the training instead of the whole image, reducing
the amount of computations needed per mini-batch. This
is also important in terms of memory usage of the network
as original images contaiB000 5000 pixels. Further-
more, neural network computations and data generation (a
random transformation is generated for each image at each
training step in order to augment the training set size) are
parallelized in order to improve the training speed of the
algorithm.

Another issue encountered was to reach the local min-
imum corresponding to outputting always a null defor-
mation, thus preventing the neural network parameters to
evolve towards a better optimum. To solve this issue we
used several methods to facilitate the training of the net-

work and reduce its probability to reach this local minima. Figure 14 Building boundaries used to re-weight the loss func-

. tion. Top left: cadastral image; top right: building boundary mask
The rst technique used was to force the network to over- used; bottom left: the original map of the loss function; bottom

tavery small sample of the dataset (400 iterations on 4 \jynt masked map of the loss function on boundaries. The loss
images with random transformations). This proved to be v be multiplied with a constant factor in these areas.
particularly ef cient at avoiding the null local minimum.

The second technique is speci c to the dataset used,
the data from the cadastral images is particularly sparse. Lastly, we observed minor aligning issues when dealing
The rst step is then to check, before selecting any train- with rows of houses with common walls, due to local trans-
ing example, that data needed for alignment is present onlation invariance of the images, which adds locally a degree
the cadastral image,e. the cadastral image does contain of freedom for alignment along the row axis. We decided to
buildings, e.g This was done simply by calculating the give supplementary information corresponding to the loca-
ratio between labeled and unlabeled pixels (cadastral/non+ion of all corners extracted from the OpenStreetMap vecto-
cadastral) on each candidate image patch, and by setting @al image (as each corner of each house is indicated), hop-
range of accepted values.§, the minor class of an im-  ing to help to guide the alignment along such translation-
age should represent at least 5% of the labels of this im-invariant line in the cadastre. This step is however not crit-
age). Patches not respecting this rule were not selectedcal as the results improvement is small and speci c to cer-
when forming mini-batches. Thus mini-batches contained tain building geometries (row of identical houses with com-
only relevant examples. mon walls).

Another issue linked to the sparsity of the cadastre arises
when the networ_k is training on parjts of a patch Wher_e A.4.2 Training information
not enough data is present to determine the transformation
neededd.g, only one class within an area, as in a garden for Number of iterations : 60 000
example), even to a human eye: the estimation of the offsetBatch size : 16
was not possible due to the lack of information. To solve Time to train : 16 hours
this problem, we increase the weight of the loss function on Number of images : 108 original images (with a random
the boundaries of buildings (parts where the transformationtransformation generated at each iteration for each image)
can be well estimated). For this, we rst detect building Original image size 5000 5000
boundaries based on the cadastre, as shown in 14, and addatch size 256 256
an multiplying factor to the loss at such locations (which is Total number of layers : 26
equivalent to sampling more often there). This insures thatMemory used with tensor ow : 9.7 GB
the deformation is ndable and that the training is useful. GPU : GeForce GTX 1080
This last trick is speci ¢ to our dataset, which is binary la- Processor : Dual-Xeon E5-2630
belled, but we show in experiments that this is not neededRAM : 64 GB
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Figure 15.Example of deformation. Left: an imagel ; middle: a deformation , i.e. aR? vector eld; right: the associated deformed
imagel

A.5 Keypoint matching A.6 Stereovision

The keypoint matching experiment shown in the gure 7 of !N the paper we suggest to try the same framework on a dif-

the main paper is shown full resolution here in Figure 16, ferent task, the one of stereovision. The result, shown in
Figure 18 without any tuning, is very promising and con-

Supplementary matching examples are shown in Fig- rms the generalization ability of our approach.

ure 17.

(a) Ground truth (b) Ours (c) Rocco (af ne+thin-plate-spline) [2017] (d) Weinzaepfel and al. [2013]
Figure 16 Multimodal keypoint matching comparison for different methods and two datasets. Top: Forez dataset; bottom: Kitsap. Blue:
predicted, green: ground truth (centers of the green circles), red: original location of the corner (from the OpenStreetMap cadastral image,
which is mis-geolocalized with respect to the RGB image).
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Figure 17 Additional multimodal keypoint matching examples. Same setup as in Figure 16.
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Figure 18.Stereovision test.Top: right image; middle: ground truth depth map for right image; down: predicted depth map.
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