M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, International Journal of Computer Vision, vol.61, issue.2, pp.139-157, 2004.
DOI : 10.1023/B:VISI.0000043755.93987.aa

J. Bromley, I. Guyon, Y. Lecun, E. Säckinger, and R. Shah, Signature verification using a " siamese " time delay neural network, Advances in Neural Information Processing Systems, pp.737-744, 1994.

G. Charpiat, R. Keriven, and O. Faugeras, Image statistics based on diffeomorphic matching, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.852-857, 2005.
DOI : 10.1109/ICCV.2005.118

URL : http://www.enpc.fr/certis/research/../Papers/05iccv_b.pdf

G. Charpiat, P. Maurel, J. Pons, R. Keriven, and O. Faugeras, Generalized Gradients: Priors on Minimization Flows, International Journal of Computer Vision, vol.80, issue.3, 2007.
DOI : 10.1007/s11263-006-9966-2

URL : https://hal.archives-ouvertes.fr/hal-01117529

S. Chopra, R. Hadsell, and Y. Lecun, Learning a Similarity Metric Discriminatively, with Application to Face Verification, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.539-546, 2005.
DOI : 10.1109/CVPR.2005.202

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.886-893, 2002.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets robotics: The KITTI dataset, The International Journal of Robotics Research, vol.32, issue.11, pp.1231-1237, 2013.
DOI : 10.1109/ICRA.2012.6225282

J. Glaunes, A. Trouvé, and L. Younes, Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., p.4, 2004.
DOI : 10.1109/CVPR.2004.1315234

M. Haklay and P. Weber, OpenStreetMap: User-Generated Street Maps, IEEE Pervasive Computing, vol.7, issue.4, pp.12-18, 2001.
DOI : 10.1109/MPRV.2008.80

M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova et al., Highresolution global maps of 21st-century forest cover change, Science, issue.6160 1, pp.342850-853, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. CoRR, abs/1512, p.3385, 2015.
DOI : 10.1109/cvpr.2016.90

URL : http://arxiv.org/pdf/1512.03385

G. Hermosillo, C. Chefd, O. Hotel, and . Faugeras, Variational methods for multimodal image matching, International Journal of Computer Vision, vol.50, issue.3, pp.329-343, 2002.
DOI : 10.1023/A:1020830525823

URL : https://hal.archives-ouvertes.fr/tel-00457459

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy et al., Flownet 2.0: Evolution of optical flow estimation with deep networks. arXiv preprint, 2016.

D. G. Kendall, A Survey of the Statistical Theory of Shape, Statistical Science, vol.4, issue.2, pp.87-99, 1989.
DOI : 10.1214/ss/1177012582

D. Lee, M. Hofmann, F. Steinke, Y. Altun, N. D. Cahill et al., Learning similarity measure for multimodal 3d image registration, Computer Vision and Pattern Recognition CVPR 2009. IEEE Conference on, pp.186-193, 2004.

E. Maggiori, G. Charpiat, Y. Tarabalka, and P. Alliez, Recurrent neural networks to enhance satellite image classification maps. CoRR, abs, 1608.
DOI : 10.1109/tgrs.2017.2697453

URL : http://arxiv.org/pdf/1608.03440

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
DOI : 10.1109/IGARSS.2017.8127684

URL : https://hal.archives-ouvertes.fr/hal-01468452

J. B. Maintz, P. A. Van-den-elsen, and M. A. Viergever, Evaluation of ridge seeking operators for multimodality medical image matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.4, pp.353-365, 1996.
DOI : 10.1109/34.491617

G. Máttyus, S. Wang, S. Fidler, and R. Urtasun, HD Maps: Fine-Grained Road Segmentation by Parsing Ground and Aerial Images, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3611-3619, 2016.
DOI : 10.1109/CVPR.2016.393

T. Meinhardt, M. Möller, C. Hazirbas, and D. Cremers, Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems, 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
DOI : 10.1109/ICCV.2017.198

M. Menze and A. Geiger, Object scene flow for autonomous vehicles, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298925

URL : http://www.cvlibs.net/publications/Menze2015CVPR.pdf

M. Menze, C. Heipke, and A. Geiger, JOINT 3D ESTIMATION OF VEHICLES AND SCENE FLOW, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.3, issue.5, p.2015
DOI : 10.5194/isprsannals-II-3-W5-427-2015

N. Merkle, W. Luo, S. Auer, R. Mller, and R. Urtasun, Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images, Remote Sensing, vol.11, issue.12, p.2017
DOI : 10.14358/PERS.78.1.61

P. W. Michor, D. Mumford, J. Shah, and L. Younes, A metric on shape space with explicit geodesics, 2007.

K. Mikolajczyk and C. Schmid, Scale & Affine Invariant Interest Point Detectors, International Journal of Computer Vision, vol.60, issue.1, pp.63-86, 2004.
DOI : 10.1023/B:VISI.0000027790.02288.f2

URL : https://hal.archives-ouvertes.fr/inria-00548554

I. Rocco, R. Arandjelovic, and J. Sivic, Convolutional neural network architecture for geometric matching. CoRR, abs, 1703.
DOI : 10.1109/cvpr.2017.12

URL : https://hal.archives-ouvertes.fr/hal-01513001

J. A. Schnabel, D. Rueckert, M. Quist, J. M. Blackall, A. D. Castellano-smith et al., A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.573-581, 2001.
DOI : 10.1007/3-540-45468-3_69

P. Scovanner, S. Ali, and M. Shah, A 3-dimensional sift descriptor and its application to action recognition, Proceedings of the 15th international conference on Multimedia , MULTIMEDIA '07, pp.357-360, 2007.
DOI : 10.1145/1291233.1291311

A. Sotiras, C. Davatzikos, and N. Paragios, Deformable Medical Image Registration: A Survey, IEEE Transactions on Medical Imaging, vol.32, issue.7, pp.1153-1190, 2013.
DOI : 10.1109/TMI.2013.2265603

URL : https://hal.archives-ouvertes.fr/hal-00684715

G. Sundaramoorthi, A. Yezzi, and A. Mennucci, Coarse-to-Fine Segmentation and Tracking Using Sobolev Active Contours, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.5, pp.851-864, 2008.
DOI : 10.1109/TPAMI.2007.70751

Y. Verdie, F. Lafarge-]-t, A. Von-eicken, V. Basu, W. Buch et al., Efficient Monte Carlo sampler for detecting parametric objects in large scenes U-net: A user-level network interface for parallel and distributed computing, Proc. of the European Conference on Computer Vision (ECCV), pp.40-53, 1995.

S. Wang, S. Fidler, and R. Urtasun, Proximal deep structured models, Advances in Neural Information Processing Systems, pp.865-873, 2016.

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, DeepFlow: Large Displacement Optical Flow with Deep Matching, 2013 IEEE International Conference on Computer Vision, 2008.
DOI : 10.1109/ICCV.2013.175

URL : https://hal.archives-ouvertes.fr/hal-00873592

Y. Ye and J. Shan, A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences, ISPRS Journal of Photogrammetry and Remote Sensing, vol.90, issue.3, pp.83-95, 2014.
DOI : 10.1016/j.isprsjprs.2014.01.009

Y. Ye, J. Shan, L. Bruzzone, and L. Shen, Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.5, pp.2941-2958, 2017.
DOI : 10.1109/TGRS.2017.2656380

Y. Ye and L. Shen, Hopc: A novel similarity metric based on geometric structural properties for multi-modal remote sensing image matching, Proc. Ann. Photogram, pp.9-16, 2016.

L. Yu, D. Zhang, and E. Holden, A fast and fully automatic registration approach based on point features for multi-source remote-sensing images, Computers & Geosciences, vol.34, issue.7, pp.838-848, 2008.
DOI : 10.1016/j.cageo.2007.10.005

J. Zbontar and Y. Lecun, Stereo matching by training a convolutional neural network to compare image patches, 2015.