Skip to Main content Skip to Navigation

Co-scheduling HPC workloads on cache-partitioned CMP platforms

Abstract : With the recent advent of many-core architectures such as chip multiprocessors (CMP), the number of processing units accessing a global shared memory is constantly increasing. Co-scheduling techniques are used to improve application throughput on such architectures, but sharing resources often generates critical interferences. In this paper, we focus on the interferences in the last level of cache (LLC) and use the Cache Allocation Technology (CAT) recently provided by Intel to partition the LLC and give eachco-scheduled application their own cache area. We consider m iterative HPC applications running concurrently and answer to the following questions: (i) how to precisely model the behavior of these applications on the cache partitioned platform? and (ii) how many cores and cache fractions should be assigned to each application to maximize the platform efficiency? Here, platform efficiency is defined as maximizing the performance either globally, or as guaranteeing a fixed ratio of iterations per second for each application. Through extensive experiments using CAT, we demonstrate the impact of cache partitioning when multiple HPC application are co-scheduled onto CMP platforms.
Document type :
Complete list of metadata

Cited literature [30 references]  Display  Hide  Download
Contributor : Equipe Roma Connect in order to contact the contributor
Submitted on : Wednesday, February 28, 2018 - 2:01:36 PM
Last modification on : Friday, January 21, 2022 - 3:11:09 AM
Long-term archiving on: : Monday, May 28, 2018 - 2:36:29 PM


Files produced by the author(s)


  • HAL Id : hal-01719728, version 1


Guillaume Aupy, Anne Benoit, Brice Goglin, Loïc Pottier, Yves Robert. Co-scheduling HPC workloads on cache-partitioned CMP platforms. [Research Report] RR-9154, Inria. 2018. ⟨hal-01719728⟩



Les métriques sont temporairement indisponibles