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Abstract. Formalizing analysis on a computer involves a lot of “epsilon-8

delta” reasoning, while informal reasoning may use some asymptotical9

hand-waving. Whether or not the arithmetic details are hidden using10

some abstraction like filters, a human user eventually has to break it11

down for the proof assistant anyway, and provide a witness for the ex-12

istential variable “delta”. We describe formalization techniques that take13

advantage of existential variables to delay the input of witnesses un-14

til a stage where the proof assistant can actually infer them. We use15

these techniques to prove theorems about classical analysis and to pro-16

vide equational Bachmann-Landau notations. This restores partially the17

simplicity of informal hand-waving without compromising the proof. As18

expected this also reduces the size of proof scripts and the time to write19

them, and it also makes proofs more stable.20

Keywords: Formal proofs. Coq. Classical Analysis. Bachmann-Landau21

Notations22

Introduction23

In classical analysis, formalization problems occur when we have “local” rea-24

soning, i.e. proof of facts that are only true in some neighborhood. One very25

early and trivial example when such reasoning occurs is to prove that the sum26

of two converging functions is converging. Indeed from27 {
∀ε > 0. ∃δf > 0. ∀x. |x− a| < δf ⇒ |f(x)− lf | < ε
∀ε > 0. ∃δg > 0. ∀x. |x− a| < δg ⇒ |g(x)− lg| < ε

,

28

we get ∀ε > 0. ∃δ > 0. ∀x. |x− a| < δ ⇒ |f(x) + g(x)− (lf + lg)| < ε.

Formally proving this requires to provide a δ, here the minimum of the two29

δf , δg we can get from the hypotheses applied to ε
2 . Giving explicitly δ makes the30

proof less stable and less readable than it would be with a “correct” informal rea-31

soning. By stable proof, we mean that changes in its statement, or in statements32

it depends on, will break only the parts of the proof where the changes actually33

matter. When we provide an existential witness way before using it, the distance34



between the place it is used (and breaks), and the place where it is introduced,1

makes it difficult to maintain the proof script. Indeed, the maintainer has to go2

back and forth in the proof script to understand how changing the existential3

leads to breakage.4

Using filters (see Sect. 1) improves slightly the situation by hiding the arith-5

metic, but the explicit existential quantifiers are replaced by forward reasoning6

with statements that depend on how the proof will be led. We solve this prob-7

lem by giving a set of tactics and lemmas to handle existential variables in a8

consistent way.9

Another common tool in informal classical analysis is asymptotical develop-10

ments, written using Bachmann-Landau notations, also known as little-o and big-11

O notations [5,16]. Indeed, one often writes f(x) = a0+a1x+. . .+anx
n+ o

x→0
(xn)12

and does arithmetic operations with such developments, and then uses laws like13

o
x→0

(xn) + o
x→0

(xn) = o
x→0

(xn), which, at first sight, seem to be impossible to14

represent in a formal logic. Another common example is the definition of differ-15

ential: it is the linear operator dfx such that f(x+ h) = f(x) + dfx(h) + o(h).16

We provide a set of notations and lemmas which make the user believe that17

she is doing arithmetic with little-o and big-O at the same time. To our knowl-18

edge, this is the first formalization that mixes big-O and little-o, and allows to19

handle them in a purely equational manner.20

We explain in Sect. 1 the concept of filter, successfully used in the Coqueli-21

cot library [7] and the Isabelle/HOL library [14], and we explain how we22

extend their ideas with a few structures and notations to make it look closer to23

mathematical practice. Then, in Sect. 2, we describe our methodology to make24

explicit existential quantifiers disappear from the proof flow; it can be seen as a25

method to delay proofs. We give a few examples of scripts that have been con-26

siderably shortened and made more stable using this methodology. Finally, in27

Sect. 3, we introduce our Bachmann-Landau notations and give a few examples28

of informal reasoning that can actually be done as such with them.29

The development discussed in this paper is available online as part of an30

on-going effort to provide Mathematical Components [12] with analysis [2].31

1 Abstracting Asymptotic Statements using Filters32

The use of filters in the Coquelicot library [7] and the Isabelle/HOL33

library [14] proved that they define a good abstraction for convergence proofs34

in analysis. We first recall in Sect. 1.1 the definition of filters and give a few35

examples. Then, in Sect. 1.2 we detail the structures and notations we use in36

order to make the use of filters more natural in Coq [20].37

1.1 Definition and Use of Filters38

Let us first start with the definition of filters. A filter F on T is a set of sets39

of elements of T that satisfies the following three laws:40

T ∈ F, ∀A,B ∈ F. A ∩B ∈ F and ∀A,B. A ⊆ B ⇒ A ∈ F ⇒ B ∈ F.
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The most important sort of filters used for analysis and local reasoning is1

the notion of neighborhood filter. The set of neighborhoods of a point x indeed2

defines a filter, called locally(x) in the Coquelicot library [7] and in our work.3

In Coquelicot, the notion of neighborhood is defined using balls in a uniform4

space. Thus, the neighborhood filter of x is5

locally(x) = {A | ∃ε > 0. ballε(x) ⊆ A} .

Balls can also be used to define another filter which is the set of entourages.6

An entourage is a set of pairs that is a “neighborhood” of the diagonal ∆ =7

{(x, x) | x ∈ T}, i.e. a set that contains all the pairs (x, y) such that y ∈ ballε(x)8

for some positive ε.9

An important point to notice here is the fact that the filter of entourages is de-10

fined as the set of supersets of a given family of sets (({(x, y) | y ∈ ballε(x)})ε>0).11

In fact, we often use this kind of construction in proofs about filters. Hence, we12

define a function filter_from that takes a family of sets and returns its set of13

supersets.14

Definition filter_from (D : set I) (B : I -> set T) :=15

[set P | exists2 i, D i & B i ‘<=‘ P].16

Here, D should be understood as the domain of indices and B defines the17

family. We also use notations for set comprehension and set inclusion that have18

been introduced in a previous work [9]. If the domain is not empty and if for any19

two indices i and j in the domain one can find a third index k in the domain20

such that Bk ⊆ Bi ∩Bj , then we say that the family defines a filter base and we21

prove that filter_from D B indeed defines a filter.22

The entourage filter is then easily defined using filter_from and the family23

of sets described above.24

Definition entourages {T : uniformType} : set (set (T * T)):=25

filter_from [set eps : R | eps > 0]26

(fun eps => [set xy | ball xy.1 eps xy.2]).27

Since we are using balls, this definition is valid in a uniform space, denoted28

by uniformType in our work. In fact, a more abstract definition of entourages,29

which does not rely on balls, could replace balls as primitive for the definition30

of the type representing uniform spaces. This would lead to an equivalent def-31

inition of uniform spaces where the pseudometric is abstracted, but we kept32

Coquelicot’s definition.33

We can also use the filter_from function to define the filter product:34

if F and G are respectively filters on spaces T and U , then the product of F35

and G is a filter on T ∗ U and is defined as the set of supersets of the family36

(P1 ∗ P2)P1∈F,P2∈G where A ∗B = {(a, b) | a ∈ A, b ∈ B}.37

Definition filter_prod (F : set (set T)) (P : set (set U)) :=38

filter_from (fun P => F P.1 /\ G P.2) (fun P => P.1 ‘*‘ P.2).39
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This is a simplification of the filter product from the Coquelicot library,1

which is defined using an inductive predicate. This can easily be generalized to2

the n-ary product, allowing us in particular to build the neighborhood filter of a3

vector in IRn as the n-ary product of the neighborhood filters of its components.4

A last construction which is of interest for analysis is the image of a filter by5

a function. Given a function f from T to U and a filter F on T , the image of F6

by f , defined by f(F ) =
{
B | f−1(B) ∈ F

}
, is a filter on U .7

All the filters or constructions we introduced have or preserve the property of8

being a proper filter. Proper filters satisfy the extra law that they do not contain9

the empty set, which implies classically that any element of a proper filter is non10

empty and that we can thus pick one element. Most often we are interested only11

in proper filters, hence they are sometimes simply called filters (as in [13]).12

The main benefit of filters for analysis is to rephrase ε−δ phrasing into more13

concise statements. For instance, f(locally(x)) ⊇ locally(y) stands for lim
x
f = y14

and ((x, y) 7→ (f(x), f(y)))(entourages) ⊇ entourages states that f is uni-15

formly continuous. Keeping this abstraction also shortens the proofs.16

1.2 Improving Coquelicot’s Hierarchy to get more Generic17

Notations18

In a previous work [9], we introduced notations in order to represent the19

convergence statement lim
x
f = y as f @ x --> y in Coq [20]. In fact, we provide20

the notation f @ F for the filter f(F ) and the notation F --> G for reverse filter21

inclusion (F ⊇ G). However, in the notation f @ x --> y, usually the variables22

x and y are not filters but points in a uniform space. Hence, we also have a23

mechanism based on canonical structures [17] to automatically infer the filter24

corresponding to the type of the point. For instance, if x is in a uniform space,25

then the neighborhood filter locally(x) is inferred, or if x is +∞, or +oo in Coq26

using our notations, then it is Coquelicot’s filter of “neighborhoods of +∞” [7]27

Rbar_locally +oo = {A | ∃M. ]M,+∞[ ⊆ A} .

In the particular case of functions, dedicated canonical structures are defined28

to match their source type. If it is nat, then the function is a sequence, hence we29

infer the filter u @ eventually, where eventually is Coquelicot’s equivalent30

of Rbar_locally +oo for sets of natural numbers, in order to be able to write31

u --> y for limu = y. If the source type is a function type, then we recognize in32

particular the case where x is a function of type (T -> Prop) -> Prop, hence33

a set of sets. The inferred filter is then x itself.34

For the present work, we use these canonical structures and notations in a35

slightly different way. Indeed, we extend Coquelicot’s hierarchy with a few36

structures, among which is one for types which define canonical filters on an-37

other type. Having uniform spaces at the bottom of the hierarchy as in the38

Coquelicot library makes some proofs harder or even impossible. In particu-39

lar, Tychonoff’s Theorem has a very concise proof in terms of filters where the40

topology induced by balls in a uniform space is not adapted [19].41
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Topological spaces come with their own notion of neighborhood: the set A is1

a neighborhood of p if A contains an open set B which contains p. Although the2

neighborhoods defined by balls (recall the definition of locally(x) in Sect. 1.1)3

are compatible with this notion of neighborhood for the uniform topology, some4

sets cannot be expressed as neighborhoods of a point in a topological space.5

Indeed, “neighborhoods of +∞” are for instance subsets of IR and +∞ is not a6

point of IR.7

In order to reconcile the different notions of neighborhoods, we put two struc-8

tures at the bottom of our copy of Coquelicot’s hierarchy: one for topological9

spaces (topologicalType) and, below it, a family of structures indexed by an10

arbitrary type U (filteredType U). A type T : filteredType U is such that11

elements t of T represent sets of sets on the type U, through the filtered space12

operator locally : T -> set (set U). This is just for sharing purposes, so we13

do not enforce that locally t is a filter yet. Moreover, having T different from U14

makes it possible to have locally +oo equal to Rbar_locally +oo, thanks to15

an instantiation of the filteredType R structure as the canonical filter on R16

associated to +oo : Rbar.17

In a topological space structure T : topologicalType, we enforce that the18

T and U in the operator locally are the same and that locally t is exactly19

the proper filter generated by the filter base of open neighborhoods of t.20

Finally, in a uniform space uniformType, we enforce that locally t also21

coincides with the filter generated by the filter base of uniform balls, which was22

not necessarily chosen the same as the basis for open sets.23

We also require that filtered, topological and uniform spaces are non empty.24

In combination with the classical axioms on top of which we work (the excluded25

middle and an extensional choice function), we can define a function get which26

takes a predicate P and outputs a point which satisfies P if there is one (and27

outputs a default point otherwise). This function makes it possible to define28

functions computing the limit of a function (see lim below) or the differential of29

a function (see Sect. 3.4). We remarked in previous work [9,19] that having such30

a function for the differential and using additional hypotheses that state which31

functions are differentiable makes proofs more natural and easier than using only32

a predicate stating that an expression is the differential of a function.33

Definition lim {U : Type} (T : filteredType U) :=34

fun F : set (set U) => get (fun l : T => F --> l).35

Here, the function lim takes as input a filter and outputs a limit of F if there36

is one and T defines canonical filters on U. We say then that l is a limit of F if37

the canonical filter associated to l is contained in F. In particular, if the filter F38

is of the form f @ x for some function f and some point x, then lim F is the39

limit of f at point x. The lim function also makes it possible to express the fact40

that a filter or function converges without using an existential quantifier: a filter41

or function converges if and only if it converges to its limit.42

Notation "[ ’cvg’ F ’in’ T ]" := (F --> [lim F in T]).43

44

5



Lemma cvg_ex {U : Type} (T : filteredType U) (F : set (set U)) :1

[cvg F in T] <-> (exists l : T, F --> l).2

The notation [lim F in T] allows to give explicitly the type defining the3

canonical filters on U. We also provide the notation cvg F, which triggers the4

inference of T in order to build the term [cvg F in T].5

2 Small-Scale Filter Elimination6

Although filters are a good way to hide “epsilon-delta” in statements, in order7

to prove F P for some ultimately true proposition P, one might be tempted to8

replace the filter F by its definition. This may result in a breakage of abstraction9

and lead to longer and less stable proof scripts (e.g. if the filter changes slightly).10

Libraries such as Coquelicot already provide tools to combine results on fil-11

ters without doing any unfolding. We copy and extend the same tools in Sect. 2.1.12

We then show how to go one step further in the transparency of filters in Sect. 2.2.13

Section 2.3 explains how to phrase Cauchy filters so as to make their definition14

usable more easily by our tools. Finally Sect. 2.4 illustrates our tools in action15

in a real proof.16

2.1 Combining Filters by Hand17

The axioms of filters entail the following facts.18

Lemma filter_app (T : Type) (F : set (set T)) : Filter F ->19

forall H G : set T, F (fun x => H x -> G x) -> F H -> F G.20

21

Lemma filterE {T : Type} {F : set (set T)} : Filter F ->22

forall G : set T, (forall x, G x) -> F G.23

The first lemma can be used to combine hypotheses of the form F Hi and a24

conclusion F G into F (fun x => H1 x -> . . . -> Hn x -> G x), and the sec-25

ond lemma removes the filter so that we shall prove forall x, H1 x -> . . . ->26

Hn x -> G x instead.27

However this forces forward reasoning, since the user has to anticipate every28

fact Hi x that will be used in the proof of G x beforehand. This means the29

statements Hi have to be written explicitly by the user, and they often depend30

on the choice of splitting of epsilons in the rest of the proof, which was also31

the main source of instability without using filters. This clearly appears in the32

proofs of the lemmas of the double limit theorem filterlim_switch_1 and33

filterlim_switch_2 in the Coquelicot library.34

We now show a novel method which absolves the user from providing explic-35

itly the statements Hi.36
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2.2 The Tactics near=>, near:, end_near and near have1

The basic principle of filter elimination is to make the user believe that2

instead of proving F G she should instead prove G x directly, where x can be in3

an arbitrarily precise set of F.4

The lemma filterP describes this formally:5

Lemma filterP T (F : set (set T)) {FF : Filter F} (G : set T) :6

(exists2 H : set T, F H & forall x : T, H x -> G x) <-> F G.7

From now on, we sometimes use the notation \forall x \near F, G x,8

which is a notation for F (fun x => G x). This should be read “for all x which9

is near F, G x holds”, and we will use this phrasing instead of the too specific10

“ultimately true” or “eventually true”.11

Using near=>, near: and end_near.12

1. The tactic near=> x starts by applying filterP, then provides an existential13

witness H, delays the membership F H for later, and tags the property H x14

with the variable x, to remember that it is H that should be progressively15

instantiated when we say that x is near F.16

Tactic Notation "near=>" ident(x) :=17

(apply/filterP; eexists=> [|x /(tag_nearI x) ?]; last first).18

2. Now the user thinks she is proving G x but may enrich the constraints on x as19

she goes. Indeed every time she encounters a goal of the shape Hi x, she can20

now call near: x. This adds Hi to the existential variable H by intersection,21

and closes the current goal: this goal has now been delayed in its “filter”22

form: \forall x \near F, Hi x must be proved in the third phase.23

3. Finally, when every main subgoal has been proved, the user is left to prove24

that an intersection of properties is in the filter:
⋂
i

Hi ∈ F, and the tactic25

end_near can be called to get many subgoals of the form:26

\forall x \near F, Hi x.27

Ideally, each one should be trivial: an hypothesis or an element from the28

filter base of F. Sometimes, however, one may rephrase the subgoal in terms29

of another filter, before solving it direclty, or calling near=> x again.30

Using near F have x, near: and end_near. Instead of acting on the goal, the31

tactic near F have x introduces a variable x, that will be near F. This means32

that, we may assume Hi x is true for any Hi in F. After using near F have x,33

one may use near: and end_near in exactly the same ways as before. The tactic34

near F have x requires the filter F to be proper, i.e. no set H in F is empty.35

Combining all Near Tactics. The tactics near=> x and near F have y may be36

combined any number of times, and in any order. Goals can be delayed by using37

near: z provided that the statement contains only variables introduced before38

z was. This limitation, guaranteed by Coq type checking, is legitimate as we39

must not be able to introduce circular dependencies in the existential variables.40
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2.3 Rephrasing Concepts1

Our methodology requires that some lemmas are phrased in a particular way.2

For example there are several equivalent ways to define a Cauchy filter. The most3

(ε− δ)-ish way is4

Definition cauchy_ex {T : uniformType} (F : set (set T)) :=5

forall eps : R, 0 < eps -> exists x, F (ball x eps).6

However it is easier to use the following equivalent definition:7

Definition cauchy {T : uniformType} (F : set (set T)) :=8

forall e, e > 0 -> \forall x & y \near F, ball x e y.9

Indeed, the existential quantification is then encapsulated in the \near F10

notation and can thus be treated in a systematic way in our proofs.11

Note that the point of view of uniformType in terms of entourages leads to12

an even more compact equivalent definition.13

Definition cauchy_entourage {T : uniformType} (F : set (set T)) :=14

(F, F) --> entourages.15

In the same vein, our definition of big-O in Sect. 3.1, which is equivalent to16

standard ones, encapsulates both existential quantifiers from the mathematical17

definition in the \forall \near notation to work better with the near tactics.18

2.4 Use-Case: a Short Completeness Proof19

We detail a proof that the type of functions from an arbitrary type to a com-20

plete type is again complete. This proof is particularly interesting, first because21

it uses all of our tactics and relies on two filters on two different types. Second, it22

shortens the original proof in Coquelicot (complete_cauchy_fct) from about23

40 lines to 8 lines and removes the three explicit witnesses. Finally, it makes the24

proof look like an informal one.25

26
Lemma fun_complete {U : completeType} (F : set (set (T -> U))) :27

ProperFilter F -> cauchy F -> cvg F.28

Proof.29
30

We start by proving that for all t : T, the filter Ft = {{f(t)|f ∈ A} |A ∈ F}31

is Cauchy in U and hence converges for each t. We made the statement shorter32

by noticing that Ft is in fact the image filter by the functional that applies a33

function to t: Ft = (fun f => f t) @ F, and using Mathematical Compo-34

nents, this is abbreviated to (@^~ t @ F). The proof is very simple since it is35

a direct consequence of Fc : cauchy F.36

37
move=> Fc; have /(_ _)/complete_cauchy Ft_cvg : cauchy (@^~_ @ F).38

by move=> t e ?; rewrite near_simpl; apply: filterS (Fc _ _).39
40

8



At this stage, we have to prove cvg F, knowing that Fc : cauchy F and1

Ft_cvg : forall t : T, cvg (@^~ t @ F). Hence the function fun t =>2

lim (@^~ t @ F) is the pointwise limit of the filter F. So we now try to prove3

that this limit is uniform.4

5
apply/cvg_ex; exists (fun t => lim (@^~ t @ F)).6

7

So under the same hypotheses as before, we now have to prove that8

F --> (fun t : T => lim (@^~ t @ F)).9

Since the right hand side is a point of T -> U, it is interpreted as the filter of10

neighborhoods of this point. So it suffices to prove for all e such that e > 011

we have \forall f \near F, ball (fun t : T => lim (@^~ t @ F)) e f.12

Now we use the near=> f tactic.13

14
apply/flim_ballP => _ /posnumP[e]; near=> f => [t|].15

16

and we are asked to prove for all t that ball (lim (@^~ t @ F)) e (f t) for17

all f which are near F. Now the informal proof goes by introducing a g, which18

is near F as well, using the near F have g tactic.19

20
near F have g => /=.21

22

We then split the ball around g and are left to prove two goals:23

– ball (lim (@^~ t @ F)) (e / 2) (g t) for all t24

– and ball f (e / 2) g25

which will both be true when g is near F, so we call the near: g tactic, in order26

to delay their proof to later.27

28
by apply: (@ball_splitl _ (g t)); last move: (t); near: g.29

30

We are now left to prove the two following “delayed” facts,31

– \forall g \near F, ball (lim (@^~ t @ F)) (e / 2) (g t)32

– and \forall g \near F, ball f (e / 2) g33

The first one can be proved by Ft_cvg and the second one can be proved when34

f is near F, so we call near: f.35

36
by end_near; [exact/Ft_cvg/locally_ball|near: f].37

38

Finally we have to prove39

\forall f \near F, \forall g \near F, ball f (e / 2) g40

which can be reduced to \forall f & g \near F, ball f (e / 2) g and we41

can conclude because F is Cauchy and e / 2 is obviously positive.42

43
by end_near; apply: nearP_dep; apply: filterS (Fc _ _).44

Qed.45
46
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3 Mechanization of Bachmann-Landau Notations1

When Donald Knuth addresses the editor of the Notices of the American2

Mathematical Society about teaching calculus, he insists on using the big-O no-3

tation such as it blends smoothly into equational reasoning [15]. “[I]t significantly4

simplifies calculations because it allows us to be sloppy but in a satisfactorily5

controlled way.” He goes as far as “dream[ing] of writing a calculus text entitled6

O Calculus”.7

This section synthesizes the key ideas that mechanize Knuth’s dream in a8

provably-correct fashion. We explain the basic intent of our mechanization in9

Sect. 3.1, show how we recover an equational view with modulo-like little-o and10

big-O notations in Sect. 3.2, describe a few aspects of the equational theory in11

Sect. 3.3, and provide concrete evidence of its usefulness in Sect. 3.4.12

3.1 The Notations f = o(e) and f = O(e)13

The little-o and big-O notations are traditionally defined by14

f = o0(e) or f(x) = o
x→0

(e(x))⇔ ∀ε>0.∃δ>0.∀x. |x|<δ ⇒ |f(x)| 6 ε|e(x)|,
f = O0(e) or f(x) = O

x→0
(e(x))⇔ ∃k>0.∃δ>0.∀x. |x|<δ ⇒ |f(x)| 6 k|e(x)|.

For the sake of readability we gave the definitions of these notions at a neigh-15

borhood of 0, but they are generalized to any filter in our library.16

The “equality” in the notation f = o(e) is a well-known abuse of notation.17

Indeed it is neither symmetric, since one cannot write o(e) = f , nor transitive,18

since f = o(e) and g = o(e) do not imply f = g and not even f ∼ g (cf Sect. 3.4).19

In fact, f = o(e) should be read as “f is a little-o of e”. It is not rare to see20

this reading enforced by the notation “f ∈ o(e)” in undergraduate-level teaching,21

allegedly to prevent students confusion (see for example in [3], a textbook from22

the eighties still popular in France). It is therefore no surprise to find o0(e)23

viewed as a set of functions even in recent formalizations [13].24

Our formalization still builds on the set-theoretic notation, using a type-25

theoretic variant, since we provide both a ternary predicate littleo for functions26

that are little-o of other functions at some filter (bigO for big-O), and a sigma-27

type littleo_type (and similarly for big-O).28

Definition littleo (F : set (set T)) (f : T -> V) (e : T -> W) :=29

forall eps : R, 0 < eps ->30

\forall x \near F, ‘|[f x]| <= eps * ‘|[e x]|.31

32

Definition bigO (F : set (set T)) (f : T -> V) (g : T -> W) :=33

\forall k \near +oo, \forall x \near F, ‘|[f x]| <= k * ‘|[g x]|.34

35

Structure littleo_type (F : set (set T)) (e : T -> W) := Littleo {36

littleo_fun :> T -> V;37

littleoP : littleo F littleo_fun e }.38
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This structure packs a function (the littleo_fun projection) with a proof that1

it is a little-o of e, providing us with the type of functions that are a little-o of2

another function. In particular, we can inhabit this type with the null function3

(and the trivial proof that it is a little-o). Let us call littleo0 this record with4

the null function.5

However, it can be argued that the set-theoretic notation is misplaced because6

today’s students use symbolic algebra systems like Maple and WolframAlpha7

where the big-O notation appears in power series calculations, and because it8

precludes the equational viewpoint that Knuth advocates [15], along with formal-9

proof practitioners.10

In this paper, we make a strong case for the equational viewpoint, and we11

explain in the next section how to recover it.12

3.2 The Notations f = g + o(e) and f = g + O(e)13

Indeed it is also in the folklore to write f = g+ o(e) to mean f − g = o(e) in14

the previous acceptation. This can be naturally seen as an equality modulo and it15

might seem like a good idea to formally define this equality modulo and denote16

it by a ternary notation. However, doing so carelessly might preclude routine17

mathematical practice, first because the bound e changes a lot from one equality18

to another, for example, if f(x) = g(x)+o(x) then xf(x) = xg(x)+o(x2). Second,19

mathematicians add little-o and big-O from various scales as in: “if f = g+ o(x)20

and g = O(x2) then f = o(x)”.21

In order to reflect this mathematical practice, we decided to stress that f =22

g + o(x) means “f = g + h where h is a little-o of e”, which is defined formally23

as follows.24

Definition 1. We define o(e)[h] to be h if h is a little-o of e, and 0 otherwise.25

In particular, the statement f = g+ o(e)[h] means f = g+ h if h is little-o of e,26

and f = g otherwise.27

In Coq, to define o(e)[h], we provide a function mklittleo3 to build a little-28

o from an arbitrary function h. When h is not a little-o, mklittleo returns the29

null little-o littleo0 (see Sect. 3.1):30

Definition mklittleo (F : filter_on T) f h :=31

littleo_fun (insubd (littleo0 F h) f).32

33

Notation "[o_ x e ’of’ h ]" := (mklittleo x h e)34

(at level 0, x, e at level 0, only parsing).35

In order to avoid stating witnesses explicitly, we notice that if f = g + h,36

then h = f − g hence h is a little-o of e if and only if f − g is. This leads us to37

define the sought ternary notation to be:38

3 For the sake of readability, we slightly simplified the definitions compared to the
source code: we removed phantom types and Prop to bool coercions.
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Notation "f = g ’+o_’ x e" := (f = g + [o_x e of f - g]).1

The ternary notation f = g +o_x e expands to f = g + [o_x e of f - g].2

Then, we deliberately hide the h in the printing of the notation so3

that [o_x e of h] prints back ’o_x e.4

However, if we try to prove f = g +o_x e in a purely arithmetical way, we5

might rewrite with equations for f and g and finally get a goal of the form6

o(e) = o(e). In a paper-and-pencil proof, this is considered as trivial, but in a7

formal proof, both little-o hide functions h and h′, and the statement to prove8

is in fact o(e)[h] = o(e)[h′]. In this situation there is very little chance that this9

unification succeeds, so our methodology consists in replacing h′ by an existential10

variable ?h′ as soon as possible. This is made possible because of the following11

observation:12

f = g + o (e) [f − g]⇔ ∃h. f = g + o (e) [h] , (1)

which allows to replace a goal f = g +o_x e by a goal f = g + [o_x e of ?h]13

(printed f = g + ’a_o_x e) where ?h is an existential variable.14

3.3 Equational Theory15

Our main concern is to preserve the benefits of the equational view of little-o16

and big-O. That means developing a small theory containing the main “equa-17

tions” one may need in order to combine them easily. Once sufficiently many18

equations are proved, that allows the user to prove facts about little-o and big-19

O using informal reasoning, without having to go back to the definition of little-o20

and big-O and to do explicit local reasoning, except in particular cases where21

the theory lacks an equation (see Sect. 3.4 for examples where the filter charac-22

terization of little-o is completely abstracted from the proof).23

We do not claim to have reached such a complete set of equations, but we24

proved a few equations that seemed important to us. Let us give examples. First,25

we have arithmetic rules for little-o and big-O. For instance, little-o absorbs26

addition and the product of a O(h1) and a O(h2) is a O(h1 ∗ h2).27

Lemma addo (F : filter_on T) (f g: T -> V) e :28

[o_F e of f] + [o_F e of g] =o_F e.29

30

Lemma mulO (F : filter_on T) (h1 h2 f g : T -> R) :31

[O_F h1 of f] * [O_F h2 of g] =O_F (h1 * h2).32

We also have a few rules combining little-o and big-O. For example, a o(e)33

is also a O(e) and a little-o of a O(g) is a o(g).34

Lemma littleo_eqO F (e : T -> W) (f : littleo_type F e) : f =O_F e.35

36

Lemma littleo_bigO_eqo F (g : T -> W) (f : T -> V) (h : T -> X) :37

f =O_F g -> [o_F f of h] =o_F g.38

12



Of course, in order to prove this set of equations, local reasoning is necessary1

at some point. This is where the near tactics from Sect. 2.2 come into use. For2

instance, let us have a look at the proof of Lemma littleo_bigO_eqo.3

The function f is a O(g) and the function [o_F f of h] is a o(f), either4

equal to h if it is a o(f), or to the null function (recall Sect. 3.2). Since the goal5

is to prove that the function [o_F f of h] is a o(g), the first step is to go back6

to the definition of little-o and introduce the universally quantified “epsilon”.7

8
move->; apply/eqoP => _/posnumP[eps] /=.9

10

We also replaced f in [o_F f of h] with [O_F g of f]. We will call this11

function k and, since it is by definition a O(g), unfolding the definition of big-O12

we get a constant c such that13

\forall x \near F, ‘|[k x]| <= c * ‘|[g x]|.14

15
set k := ’O g; have [/= _/posnumP[c]] := bigOP [bigO of k].16

17

At this point the goal is to prove18

\forall x \near F, ‘|[o_F k of h] x]| <= eps * ‘|[g x]|.19

In fact, if x is near F, the assumption on c is valid for x and is suffi-20

cient to prove this goal. So we give ourselves an x which is near F thanks21

to the near=> x tactic, and we prove that ‘|[k x]| <= c * ‘|[g x]| im-22

plies ‘|[o_F k of h] x]| <= eps * ‘|[g x]| by manipulating the inequal-23

ities until we reach the goal ‘|[[o_F k of h] x]| <= eps / c * ‘|[k x]|,24

which should be true for x which is near F since [o_F k of h] is a o(k) and25

eps / c is positive. As a consequence, we call the near: x tactic.26

27
apply: filter_app; near=> x.28

rewrite -!ler_pdivr_mull //; apply: ler_trans.29

by rewrite ler_pdivr_mull // mulrA; near: x.30
31

Since the main subgoal has been proved, we can call the end_near tactic and32

prove the remaining delayed goal33

\forall x \near F, ‘|[[o_F k of h] x]| <= eps / c * ‘|[k x]|34

by using the filter characterization of little-o.35

36
by end_near; rewrite /= !near_simpl; apply: littleoP.37

38

3.4 Applications39

Asymptotic Equivalence. Two functions f(x) and g(x) are equivalent as x goes40

to a (notation: f ∼a g) when f = g + oa(g). Thanks to the ideas explained41

in Sections 3.1 and 3.2 and to the equations already proved as mentioned in42

Sect. 3.3, the fact that ∼ is an equivalence relation can be established by short43
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proof scripts. For the sake of illustration, let us explain how we show that ∼ is1

symmetric and transitive.2

The symmetry of ∼ is mechanized as follows (f ~_F g is the Coq notation3

for f ∼F g):4

Lemma equiv_sym F (f g : T -> V) : f ~_F g -> g ~_F f.5

Proof.6

move=> fg; have /(canLR (addrK _))<- := fg.7

by apply:eqaddoE; rewrite oppo (equivoRL _ fg).8

Qed.9

The first line of the proof script is made of standard tactics that change the10

goal to f − o(g) ∼ f . Lemma eqaddoE implements the idea of (1): it introduces11

an existential variable ?h such that the goal becomes f − o(g) = f + o(f)[?h].12

Rewriting with Lemma oppo turns f − o(g) into f + o(g) and Lemma equivoRL13

turns o(g) into o(f) (it uses the hypothesis f ∼ g). The right and left hand-sides14

can now be unified and the proof is completed.15

The transitivity of ∼ is mechanized as follows:16

Lemma equiv_trans F (f g h : T -> V) :17

f ~_F g -> g ~_F h -> f ~_F h.18

Proof.19

by move=> -> ->; apply: eqaddoE; rewrite eqoaddo -addrA addo.20

Qed.21

After the application of Lemma eqaddoE, the goal is h + o(h) + o(h + o(h)) ∼22

h + o(h)[?e], where ?e is an existential variable. Lemma eqoaddo transforms23

o(h+ o(h)) into o(h) and Lemma addo transforms o(h) + o(h) into o(h). After24

rewriting, the goal is h + o(h) ∼ h + o(h)[?e], so that unification succeeds and25

completes the proof.26

Differential of a Function. We use these notations, in combination with the get27

function from Sect. 1.2, in order to define the differential of a function:28

Definition diff (F : filter_on V) (f : V -> W) :=29

(get (fun (df : {linear V -> W}) => forall x,30

f x = f (lim F) + df (x - lim F) +o_(x \near F) (x - lim F))).31

where the x of (x \near F) is used to find the function hidden by the little-o.32

Conclusion33

In this work, we provide a set of techniques and notations in order to make34

asymptotical reasoning as smooth as possible in Coq. We integrate a mechanism35

for filter inference into a hierarchy of mathematical structures [2], together with36

notations and definitions that make filter manipulation easier.37

We define tactics that make it possible to delay the instantiation of existen-38

tial witnesses in order to allow for “rigorous asymptotical hand-waving”. This is39

actually a generalization of the bigenough library from previous work [8], which40

only dealt with statements that are eventually true in IN.41
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We then take advantage of our new framework to design equational Bachman-1

Landau notations and to develop a small theory of little-o and big-O that removes2

all explicit local reasoning from some proofs.3

Our development strongly relies on an alternative formulation of Hilbert’s4

epsilon. Indeed, our implementation of Bachmann-Landau notations relies on a5

function that takes a function, finds out whether it is a little-o and outputs the6

proof when it is the case, and otherwise returns the null little-o. We do not know7

if there is a constructive alternative, like taking the minimum of two functions,8

in order to force it to be a little-o.9

However, it is likely that the near tactics still work without classical axioms,10

since their ancestor bigenough did work to prove facts about Cauchy reals [8].11

We plan to build a full classical analysis library, with convergence criteria12

for infinite sums or integrals based on asymptotic comparison, and also infinite13

sums and integrals of little-o, big-O and equivalences.14

Our strategy in this work is to provide a minimalistic set of tactics that makes15

it easier to build a small library in the tradition of the Mathematical Com-16

ponents library [12]: our tactics are “small scale” [18] (they perform elementary17

steps, hence proofs are more stable) and we focus on proving a collection of18

reusable lemmas that hides the most technical parts. Other strategies exist, see19

for example [10,13] in the Related Work section.20

Related Work21

Our work takes its starting point in the re-implementation of the Coqueli-22

cot library [7] to make it fully compatible with the Mathematical Compo-23

nents library [12], in order to be able to combine algebra and analysis in the24

same framework. We extend Coquelicot’s hierarchy with structures for topo-25

logical spaces and types that define canonical filters for another type and with26

notations that make formal statements closer to the mathematical ones. We re-27

formulate many definitions and theorems involving asymptotic reasoning using28

the near tactics, which makes proofs shorter. On the other hand, several parts29

of the Coquelicot library have not been adapted to this new context yet (e.g.30

integrals and series, theorems about derivatives and differentials).31

The Coquelicot library also contains ternary predicates defining little-o32

and asymptotic equivalence of functions. Our definitions are basically the same33

(in particular the ternary predicate littleo) but their theory is not quite de-34

velopped in Coquelicot. We provide a set of notations and a more substantial35

equational theory on top of our definitions, which make them easier to manipu-36

late. We also have notations and a theory for big-O.37

The Coquelicot library provides total functions to compute the limit and38

the derivative of a function. They are however restricted to functions from IR39

to IR. We define a limit function for any function whose domain and codomain are40

equipped with canonical filters and a differential function for any function whose41

domain and codomain are normed modules. The crucial difference is that we42

include the existence of choice functions in our hierarchy at the cost of additional43

axioms, which give us these functions for free, while in the Coquelicot library44

they are constructed from the limited principle of omniscience.45

15



Avigad and Donnelly’s formalization in Isabelle/HOL [4] views big-O as1

sets. They describe inclusion and equational reasoning on big-O at the set level,2

and they manage to prove the prime number theorem using it. Thirteen years3

later, Eberl improves and extends their work by providing, in addition to big-O,4

the little-o, Ω, ω, and Θ notations, in order to prove the complexity of “divide-5

and-conquer” algorithms [10]. Coupled with Isabelle/HOL’s “heavy automa-6

tion”, his Landau symbols halve the size of his proofs [10, Sect. 3.2.2]. However7

they rely on a decision procedure specialized for the logarithms one typically8

runs into when dealing with complexity. His Landau symbols are defined using9

the eventually construct of the standard library that applies a predicate to a10

filter. Formal proofs therefore enjoy the eventually_elim tactic that automates11

the combined application of filter-related lemmas together with other lemma col-12

lections (such as field_simps). However, in practice, intermediate goals whose13

proof is automated need to be explicitly stated, which lengthens proof scripts.14

Guéneau et al. [13] have developed in Coq a library to formalize the time-15

complexity of OCaml programs. To represent asymptotic bounds, they provide16

a formalization of the big-O notation. Similarly to us, their definition relies on17

filters, but only on finite products of the eventually filter (see Sect. 1.2) and18

its equivalent in ZZ. Furthermore, they define a type for types equipped with19

one filter, while we make it possible to have a different filter for each element20

of the type. Their proofs also use delayed production of witnesses of existential21

quantifiers in the particular case of the computation of cost functions. In their22

source code, they use a simplified bigenough [8], although they do not make23

explicitly reference to it in their paper. They also have more tactics, which24

are more complex, while we try to minimize them, following the Small-Scale25

Reflection strategy [18].26

However, in the face of the difficulties encountered to reproduce the (appar-27

ently sloppy) manipulation of the big-O notation, they give up on producing28

proofs “as simple [...] as their paper counterparts”, choose to formalize the big-O29

notation as a dominance relation, and deprive themselves of Coq equational30

reasoning capabilities. Their library would require extension with the little-o no-31

tation and to arbitrary filters for it to “have other applications in mathematics”.32

In comparison, our work already provides both notations, retains equational rea-33

soning, and already fits together with a hierarchy of mathematical structures [2]34

designed on the model of Mathematical Components [11,18].35

Finally, filters à la Hölzl, Immler and Huffman [14], are also used in an36

ongoing formalization of classical analysis in Lean [1].37
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