A. Mesquita, E. L. Rempel, and K. H. Kienitz, Bifurcation analysis of attitude control systems with switching-constrained actuators, Nonlinear Dynamics, vol.8, issue.2, pp.207-216, 2007.
DOI : 10.1007/s11071-007-9204-7

Y. C. Fung, An Introduction to the Theory of Aeroelasticity, 2002.

V. P. Zhuravlev and D. M. Klimov, Theory of the shimmy phenomenon, Mechanics of Solids, vol.428, issue.6, pp.324-330, 2010.
DOI : 10.3103/S0025654410030039

L. F. Turci, E. E. Macau, and T. Yoneyama, Efficient chaotic based satellite power supply subsystem, Chaos, Solitons & Fractals, vol.42, issue.1, pp.396-407, 2009.
DOI : 10.1016/j.chaos.2008.12.006

D. T. Schmitt and P. C. Ivanov, Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age: a new mechanistic picture of cardiac control in healthy elderly, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.293, issue.5, pp.1923-1937, 2007.
DOI : 10.1007/BF00797000

G. F. Fussmann, Crossing the Hopf Bifurcation in a Live Predator-Prey System, Science, vol.290, issue.5495, pp.1358-1360, 2000.
DOI : 10.1126/science.290.5495.1358

A. C. Chian, E. L. Rempel, and C. Rogers, Complex economic dynamics: Chaotic saddle, crisis and intermittency, Chaos, Solitons & Fractals, vol.29, issue.5, pp.1194-1218, 2006.
DOI : 10.1016/j.chaos.2005.08.218

R. L. Devaney, A First Course In Chaotic Dynamical Systems, 1992.

M. A. Sanjuán and C. Grebogi, Recent Progress in Controlling Chaos, 2010.
DOI : 10.1142/7563

P. Cvitanovi´ccvitanovi´c, Invariant Measurement of Strange Sets in Terms of Cycles, Physical Review Letters, vol.6, issue.24, pp.2729-2732, 1988.
DOI : 10.1209/0295-5075/6/5/012

V. Franceschini, C. Giberti, and Z. Zheng, Characterization of the Lorentz attractor by unstable periodic orbits, Nonlinearity, vol.6, issue.2, pp.251-258, 1993.
DOI : 10.1088/0951-7715/6/2/006

K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A, vol.170, issue.6, pp.421-428, 1992.
DOI : 10.1016/0375-9601(92)90745-8

T. Ushio, Limitation of delayed feedback control in nonlinear discrete-time systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.43, issue.9, pp.815-816, 1996.
DOI : 10.1109/81.536757

S. Yamamoto, T. Hino, and T. Ushio, Dynamic delayed feedback controllers for chaotic discrete-time systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.48, issue.6, pp.785-789, 2001.
DOI : 10.1109/81.928162

H. D. Zhu and Y. P. Tian, Necessary and sufficient conditions for stabilizability of discrete-time systems via delayed feedback control, Physics Letters A, vol.343, issue.1-3, pp.95-107, 2005.
DOI : 10.1016/j.physleta.2005.06.007

B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll, Refuting the Odd-Number Limitation of Time-Delayed Feedback Control, Physical Review Letters, vol.98, issue.11, 2007.
DOI : 10.1007/s11071-007-9217-2

W. Just, B. Fiedler, M. Georgi, V. Flunkert, P. Hoevel et al., Beyond the odd number limitation: A bifurcation analysis of time-delayed feedback control, Physical Review E, vol.7, issue.2, 2007.
DOI : 10.1007/BFb0082943

B. Fiedler, V. Flunkert, P. Hoevel, and E. Schoell, Beyond the odd number limitation of time-delayed feedback control of periodic orbits, The European Physical Journal Special Topics, vol.368, issue.1, pp.53-70, 2010.
DOI : 10.1098/rsta.2009.0232

T. Ushio and S. Yamamoto, Prediction-based control of chaos, Physics Letters A, vol.264, issue.1, pp.30-35, 1999.
DOI : 10.1016/S0375-9601(99)00782-3

T. P. Chagas, P. Bliman, and K. H. Kienitz, New feedback laws for stabilization of unstable periodic orbits, IFAC Proceedings Volumes 8th IFAC Symposium on Nonlinear Control Systems, pp.1005-1010, 2010.
DOI : 10.3182/20100901-3-IT-2016.00139

M. P. De-córdoba and E. Liz, Prediction-based control of chaos and a dynamic Parrondo??s paradox, Physics Letters A, vol.377, issue.10-11, pp.778-782, 2013.
DOI : 10.1016/j.physleta.2013.01.025

E. Braverman, C. Kelly, and A. Rodkina, Stabilisation of difference equations with noisy prediction-based control, Physica D: Nonlinear Phenomena, vol.326, pp.21-31, 2016.
DOI : 10.1016/j.physd.2016.02.004

A. Boukabou, A. Chebbah, and N. Mansouri, PREDICTIVE CONTROL OF CONTINUOUS CHAOTIC SYSTEMS, International Journal of Bifurcation and Chaos, vol.54, issue.02, pp.587-592, 2008.
DOI : 10.1016/S0375-9601(99)00782-3

E. Ott, C. Grebogi, and J. A. Yorke, Controlling chaos, Physical Review Letters, vol.34, issue.11, pp.1196-1199, 1990.
DOI : 10.1109/9.21099

M. A. Khelifa and A. Boukabou, Design of an intelligent prediction-based neural network controller for multi-scroll chaotic systems, Applied Intelligence, vol.39, issue.11, pp.793-807, 2016.
DOI : 10.1109/18.256500

T. P. Chagas, P. Bliman, and K. H. Kienitz, A new method for stabilizing unstable periodic orbits of continuous-time systems. Application to control of chaos, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012.
DOI : 10.1109/CDC.2012.6426456

URL : https://hal.archives-ouvertes.fr/hal-00761338

T. P. Chagas, B. A. Toledo, E. L. Rempel, A. C. Chian, and J. A. Valdivia, Optimal feedback control of the forced van der Pol system, Chaos, Solitons & Fractals, vol.45, issue.9-10, pp.9-10, 2012.
DOI : 10.1016/j.chaos.2012.06.004

A. B. Finlayson, The method of weighted residuals and variational principles, with application in fluid mechanics, heat and mass transfer

J. Viladsen and M. L. Michelsen, Solution of Differential Equation Models by Polynomial Approximation, 1978.

E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equation I: Nonstiff Problems, 2008.
DOI : 10.1007/978-3-662-12607-3

T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems, 1989.
DOI : 10.1007/978-1-4612-3486-9

S. P. Han, A globally convergent method for nonlinear programming, Journal of Optimization Theory and Applications, vol.5, issue.3, pp.297-309, 1977.
DOI : 10.1007/978-3-642-46216-0

M. Powell, A fast algorithm for nonlinearly constrained optimization calculations, ser, Lecture Notes in Mathematics, vol.630, 1978.
DOI : 10.1007/bfb0067703

F. Asenjo, B. A. Toledo, V. Muñoz, J. Rogan, and J. A. Valdivia, Optimal control in a noisy system, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.18, issue.3, p.33106, 2008.
DOI : 10.1103/PhysRevE.65.026204

E. F. Camacho and C. B. Alba, Model Predictive Control, ser. Advanced Textbooks in Control and Signal Processing, 2007.
DOI : 10.1002/oca.2167

URL : http://onlinelibrary.wiley.com/doi/10.1002/oca.2167/pdf