M. Abramovitz and I. A. Stegun, Handbook of mathematical functions, National Bureau of Standards Applied Mathematics Series, 1972.

C. Acerbi and D. Tasche, On the coherence of expected shortfall, J. Banking & Finance, vol.26, pp.1487-1503, 2002.

P. Artzner, F. Delbaen, J. Eber, and D. Heath, Coherent measures of risk, Math. Finance, vol.9, pp.203-228, 1999.

, Fundamental review of the trading book: A revised market risk framework, Basel Committee on Banking Supervision, 2013.

J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of extremes: theory and applications, 2004.

F. Bellini, B. Klar, A. Müller, and E. R. Gianin, Generalized quantiles as risk measures, Insurance Math. Econom, vol.54, pp.41-48, 2014.

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, 1987.

I. S. Borisov and E. A. Baklanov, Probability inequalities for generalized L?statistics, Sib. Math. J, vol.42, pp.217-231, 2001.

V. Brazauskas, B. L. Jones, M. L. Puri, and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view, J. Statist. Plann. Inference, vol.138, pp.3590-3604, 2008.

L. Gardes and G. Stupfler, Estimating extreme quantiles under random truncation, TEST, vol.24, pp.207-227, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00942134

C. J. Geyer, On the asymptotics of convex stochastic optimization, 1996.

T. Gneiting, Making and evaluating point forecasts, J. Am. Statist. Assoc, vol.106, pp.746-762, 2011.

J. Gong, Y. Li, L. Peng, and Q. Yao, Estimation of extreme quantiles for functions of dependent random variables, J. Roy. Statist. Soc. Ser. B, vol.77, pp.1001-1024, 2015.

B. M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist, vol.3, pp.1163-1174, 1975.

J. B. Hill, Least tail-trimmed squares for infinite variance autoregressions, J. Time Series Anal, vol.34, pp.168-186, 2013.

J. B. Hill, Expected shortfall estimation and Gaussian inference for infinite variance time series, J. Financ. Econom, vol.13, pp.1-44, 2015.

L. Hua and H. Joe, Second order regular variation and conditional tail expectation of multiple risks, Insurance Math. Econom, vol.49, pp.537-546, 2011.

, Canada: financial sector assessment program-insurance core principles-detailed assessment of observance, 2014.

K. Knight, Limiting distributions for L 1 regression estimators under general conditions, Ann. Statist, vol.26, pp.755-770, 1998.

S. Kou and X. Peng, On the measurement of economic tail risk, Oper. Res, vol.64, pp.1056-1072, 2016.

S. Ling, Self-weighted least absolute deviation estimation for infinite variance autoregressive models, J. Roy. Statist. Soc. Ser. B, vol.67, pp.381-393, 2005.

W. K. Newey and J. L. Powell, Asymmetric least squares estimation and testing, Econometrica, vol.55, pp.819-847, 1987.

, Life annuity products and their guarantees, 2016.

S. Resnick, Heavy-tail phenomena: probabilistic and statistical modeling, 2007.

R. T. Rockafellar and S. Uryasev, Conditional Value-at-Risk for general loss distributions, J. Banking & Finance, vol.26, pp.1443-1471, 2002.

D. Tasche, Expected shortfall and beyond, J. Banking & Finance, vol.26, pp.1519-1533, 2002.

D. Tasche, Capital allocation to business units and sub-portfolios: the Euler principle, Pillar II in the new Basel accord: the challenge of economic capital, pp.423-453, 2008.

I. Weissman, Estimation of parameters and large quantiles based on the k largest observations, J. Am. Statist. Assoc, vol.73, pp.812-815, 1978.

M. Wüthrich and M. Merz, Financial modeling, actuarial valuation and solvency in insurance, 2013.

F. Yang, First-and second-order asymptotics for the tail distortion risk measure of extreme risks, Commun. Stat. Theory Methods, vol.44, pp.520-532, 2015.

L. Zhu and H. Li, Tail distortion risk and its asymptotic analysis, Insurance Math. Econom, vol.51, pp.115-121, 2012.

, Details of corresponding author: Gilles Stupfler School of Mathematical Sciences