C. Acerbi and D. Tasche, On the coherence of expected shortfall, J. Banking & Finance, vol.26, pp.1487-1503, 2002.

P. Artzner, F. Delbaen, J. Eber, and D. Heath, Coherent measures of risk, Math. Finance, vol.9, pp.203-228, 1999.

, Fundamental review of the trading book: A revised market risk framework, Basel Committee on Banking Supervision, 2013.

J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics of extremes: theory and applications, 2004.

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, 1987.

I. S. Borisov and E. A. Baklanov, Probability inequalities for generalized L?statistics, Sib. Math. J, vol.42, pp.217-231, 2001.

V. Brazauskas, B. L. Jones, M. L. Puri, and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view, J. Statist. Plann. Inference, vol.138, pp.3590-3604, 2008.

J. Cai, J. H. Einmahl, L. De-haan, and C. Zhou, Estimation of the marginal expected shortfall: the mean when a related variable is extreme, J. Roy. Statist. Soc. Ser. B, vol.77, pp.417-442, 2015.

Z. Chen, Conditional L p ?quantiles and their application to testing of symmetry in nonparametric regression, Statist. Probab. Lett, vol.29, pp.107-115, 1996.

A. Daouia, S. Girard, and G. Stupfler, Estimation of tail risk based on extreme expectiles, J. Roy. Statist. Soc. Ser. B, vol.80, pp.263-292, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01311778

A. Daouia, S. Girard, and G. Stupfler, Extreme M-quantiles as risk measures: From L 1 to L p optimization, Bernoulli, vol.25, pp.264-309, 2019.

J. Daníelsson, B. N. Jorgensen, G. Samorodnitsky, M. Sarma, and C. G. De-vries, Fat tails, VaR and subadditivity, J. Econometrics, vol.172, pp.283-291, 2013.

L. De-haan and A. Ferreira, Extreme value theory: an introduction, 2006.

J. El-methni, L. Gardes, and S. Girard, Nonparametric estimation of extreme risks from conditional heavy-tailed distributions. Scand, J. Stat, vol.41, pp.988-1012, 2014.

J. El-methni, L. Gardes, and S. Girard, Kernel estimation of extreme regression risk measures, Electron. J. Stat, vol.12, pp.359-398, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01745322

J. El-methni and G. Stupfler, Extreme versions of Wang risk measures and their estimation for heavy-tailed distributions, Stat. Sinica, vol.27, pp.907-930, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01145417

J. El-methni and G. Stupfler, Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions, Econom. Stat, vol.6, pp.129-148, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01406342

P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling extremal events for insurance and finance, 1997.

P. Embrechts, D. P. Lambrigger, and M. V. Wüthrich, Multivariate extremes and the aggregation of dependent risks: examples and counter-examples, Extremes, vol.12, pp.107-127, 2009.

S. Emmer, M. Kratz, and D. Tasche, What is the best risk measure in practice? A comparison of standard measures, J. Risk, vol.18, pp.31-60, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00921283

L. Gardes and G. Stupfler, Estimating extreme quantiles under random truncation, TEST, vol.24, pp.207-227, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00942134

C. J. Geyer, On the asymptotics of convex stochastic optimization, 1996.

T. Gneiting, Making and evaluating point forecasts, J. Am. Statist. Assoc, vol.106, pp.746-762, 2011.

J. Gong, Y. Li, L. Peng, and Q. Yao, Estimation of extreme quantiles for functions of dependent random variables, J. Roy. Statist. Soc. Ser. B, vol.77, pp.1001-1024, 2015.

B. M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist, vol.3, pp.1163-1174, 1975.

J. B. Hill, Least tail-trimmed squares for infinite variance autoregressions, J. Time Series Anal, vol.34, pp.168-186, 2013.

J. B. Hill, Expected shortfall estimation and Gaussian inference for infinite variance time series, J. Financ. Econom, vol.13, pp.1-44, 2015.

L. Hua and H. Joe, Second order regular variation and conditional tail expectation of multiple risks, Insurance Math. Econom, vol.49, pp.537-546, 2011.

, Canada: financial sector assessment program-insurance core principles-detailed assessment of observance, 2014.

K. Knight, Limiting distributions for L 1 regression estimators under general conditions, Ann. Statist, vol.26, pp.755-770, 1998.

K. Knight, , 1999.

R. Koenker, Quantile regression, 2005.

R. Koenker and G. S. Bassett, Regression quantiles, Econometrica, vol.46, pp.33-50, 1978.

S. Kou, X. Peng, and C. C. Heyde, External risk measures and Basel accords, Math. Oper. Res, vol.38, pp.393-417, 2013.

S. Kou and X. Peng, On the measurement of economic tail risk, Oper. Res, vol.64, pp.1056-1072, 2016.

S. Ling, Self-weighted least absolute deviation estimation for infinite variance autoregressive models, J. Roy. Statist. Soc. Ser. B, vol.67, pp.381-393, 2005.

W. K. Newey and J. L. Powell, Asymmetric least squares estimation and testing, Econometrica, vol.55, pp.819-847, 1987.

, Life annuity products and their guarantees, 2016.

S. Resnick, Heavy-tail phenomena: probabilistic and statistical modeling, 2007.

R. T. Rockafellar and S. Uryasev, Conditional Value-at-Risk for general loss distributions, J. Banking & Finance, vol.26, pp.1443-1471, 2002.

D. Tasche, Expected shortfall and beyond, J. Banking & Finance, vol.26, pp.1519-1533, 2002.

D. Tasche, Capital allocation to business units and sub-portfolios: the Euler principle, Pillar II in the new Basel accord: the challenge of economic capital, pp.423-453, 2008.

I. Weissman, Estimation of parameters and large quantiles based on the k largest observations, J. Am. Statist. Assoc, vol.73, pp.812-815, 1978.

M. Wüthrich and M. Merz, Financial modeling, actuarial valuation and solvency in insurance, 2013.

F. Yang, First-and second-order asymptotics for the tail distortion risk measure of extreme risks, Commun. Stat. Theory Methods, vol.44, pp.520-532, 2015.

L. Zhu and H. Li, Tail distortion risk and its asymptotic analysis, Insurance Math. Econom, vol.51, pp.115-121, 2012.

, Details of corresponding author: Gilles Stupfler School of Mathematical Sciences