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Distributed optimal traffic lights design for
large-scale urban networks

Pietro Grandinetti, Carlos Canudas de Wit, Fellow, IEEE, and Federica Garin Member, IEEE

Abstract— In this paper we deal with the problem of dynam-
ical assignment of traffic lights schedules in large-scale urban
networks. We present a model for signalized traffic networks,
based on the Cell Transmission Model, and then a simplified
model based on averaging theory. The control objective is to
improve traffic, optimizing traffic indexes such as total travel
distance and density balancing. We design a scheme that decides
the duty cycles of traffic lights, by solving a convex program.
The optimization is done in real time, at each cycle of traffic
lights, so as to take into account variable traffic demands. The
scalability problem is tackled through the synthesis of a dis-
tributed optimization algorithm; this reduces the computational
load significantly, since the large optimization problem is broken
into small local subproblems, whose size does not grow with the
size of the network, together with iterative exchanges of messages
with few neighbor subproblems. The perfomance of the proposed
approach is evaluated via numerical simulations in two different
scenarios: a macroscopic (MatLab-based) Manhattan grid and a
microscopic scenario (based on Aimsun simulator) reproducing
a portion of the city of Grenoble, France.

I. INTRODUCTION

Traffic congestion has always been a crucial problem for
the design of efficient infrastructures, but it is particularly
in the second half of the last century that this phenomenon
has become predominant, due to the quickly increasing traf-
fic demand and the more frequent congestions. Congestions
appear when the amount of vehicles trying to use a common
transportation route exceeds the latter’s capacity. When they
arise, they may lead to queueing phenomena or, even worse,
to a severe degradation of the available infrastructure’s usage.
Hence, congestions result in reduced safety, increased pollu-
tion and excessive delays. Recent studies on the economic
implication of such scenarios are [1], [2].

To be effective, strategies to address the congestion problem
must have many important properties. They must be able to
improve traffic behavior, e.g., optimizing the fluidity of traffic
within cities. They must be adaptive, i.e., smartly reacting to
changes in the local traffic demand. The optimization must
be numerically tractable, to allow real-time implementation,
leading to a trade-off between quality of the solution and com-
putation time. A distributed implementation is also needed,
both to achieve scalability, with a computational load not
increasing with the network size, and to obtain resilience
against failures, avoiding to have a single crucial centralized
point.
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Control techniques for urban infrastructures fall into three
categories: control of signals offset (see, e.g., [3]) typically
aims at producing green-wave effects, even though those are
difficult to achieve in high load scenarios; routing policies, that
have been developed in both centralized [4] and distributed
[5] way, and that need technologies with high penetration rate
in order to have a real impact; green time control for traffic
lights, an intensively studied problem that is also the focus of
our work.

The original traffic light policies were fixed-time techniques,
the most famous example of which being [6]. Such techniques
use predefined stages and minimum green times, and use
hill climbing algorithms to find values of green times that
minimize the number of stops. The drawback is that they
heavily rely on historical rather than real time data. On the
contrary, responsive techniques try to adapt their decision
process to the current state. SCOOT [7] is a very popular
adaptive strategy, built on the TRANSYT method [6]. SCOOT
includes a central network model, fed with real measurements,
that is in charge of evaluating changes in traffic; when some
change turns out to be an improvement, it is sent to a local
controller. Recently, also algorithms based on optimal control
have been developed. In [8], [9] a quadratic program based on
the store-and-forward model is used to produce values of green
times that balance the queues at intersections. Also the max-
pressure approach (see, e.g., [10]) uses a store-and-forward
model where, however, queues at intersections have unlimited
queue-length; under this assumption, max-pressure is proven
to maximize the troughput by stabilizing the network. A more
recent version of max-pressure is given in [11], where the cycle
duration and the order of phases are imposed as constraints
and only the duration of phases is optimized.

The contribution of this paper is to synthesize an optimal
urban traffic lights control that satisfies the above-mentioned
requirements. Our study includes modeling, formulating an op-
timization problem, finding a scalable distributed solution, and
finally showing the potential impact with realistic simulations.

We start off with the Cell Transmission Model (CTM)
[12], a widely used model in traffic applications and control,
that is based on the demand-supply paradigm and therefore
avoids any possibility of unlimited queue length. The CTM
has been already employed in several works, both on modeling
and control, for example in [3], [13] for arterials control via
variable speed limits and ramp metering, in [4], [5], [14] to
study stabilization of road networks, in [15], [16], [17] for
freeway control via ramp metering, in [18], [19] as a model
from which to derive a further simplified model, and in [8],
[9], [20] for model predictive control.

In this work we formulate a variant of the CTM that
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represents urban traffic and includes traffic lights signals
by making use of the average theory ([21], [19]). We take
into account standard urban traffic measures [15], [16], that
are meant to improve traffic fluidity, and we consider the
corresponding multi-objective optimization problem. By con-
sidering a one-step-ahead horizon for the optimization, we
obtain a problem that we can turn into a convex program,
and hence can be solved efficiently. Furthermore, we extend
this result by developing a distributed control algorithm that in
addition satisfies the requirement of scalability, exploiting the
dual decomposition technique [22], [23]. We prove that, for
the selected traffic cost function which includes total travel
distance, density balancing and traffic lights regularization,
the proposed distributed algorithm converges to the global
optimum. Finally, we provide a large set of simulations, in
which we test our method not only in a macroscopic simulated
traffic network, but also in a commercial microscopic traffic
simulator (Aimsun [24]), with realistic scenarios of Grenoble
downtown traffic.

II. TRAFFIC NETWORKS MODEL

We start this section introducing the signalized cell trans-
mission model, i.e., a model for traffic evolution that is based
on the cell transmission model and incorporates traffic signals
at intersections. Then, we formulate an averaged version,
that we call averaged cell transmission model, which gives
a simplified description, useful for control purposes. We show
results on the numerical comparison between the two models,
and close the section with the discrete-time version used in
the remainder of the paper.

A. The signalized cell transmission model
To describe traffic evolution we use the description given by

a mass conservation law [25], [26] and by its representation
widely known as cell transmission model (CTM) [12]. In
particular, we consider the extension of the CTM for networks
with First In First Out (FIFO) policy at intersections that was
proposed by Daganzo in [27].

An urban network is a collection R of roads, among which
there are entering roads (Rin) and exiting roads (Rout). For
each road i, the out-going traffic is regulated by a traffic light
ui(t), alternating a green phase (ui(t) = 1) and a red phase
(ui(t) = 0) within a cycle time of length T . We refer to
intersections as the locations where two or more roads merge.
Such intersections have no capacity storage. When two roads
i and j are connected to the same intersection in such a way
that flow can exit i and enter j, we say that i belongs to the
set of upstream neighbors of j, a set indicated with N−j . The
set of downstream neighbors of j, N+

j , is defined accordingly.
Furthermore, to every pair of roads i, j is associated a value
βij ∈ [0, 1] (split ratio)1 that expresses the percentage of the
flow exiting i which wants to turn in j (βij = 0 if and only
if j /∈ N−i and βij = 1 if and only if N+

i = {j}).
1More precisely, βij ’s are average split ratios. In our model, we disregard

unknown random variations of the split ratios around their average. The further
assumption that average split ratios are constant is made since their variation
is slower than traffic dynamics, but time-varying βij(t) can be introduced in
our formalism, throughout the paper.
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Fig. 1: Illustration of the notation used in the traffic model.
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Fig. 2: Graphical representation of demand and supply functions (D
and S) and of the triangular fundamental diagram f = min(D,S).

In urban scenarios we consider every road i as a cell of
the CTM. The density of vehicles of a road i, ρi(t), depends
on the flows ϕin

i and ϕout
i , entering and exiting i, respectively

(see Figure 1 for an illustration). Inflow and outflow values
are given according to the demand and supply paradigm [28].
For a road i, its demand Di is the flow of vehicles that want
to exit i; its supply Si is the flow that i can receive according
to its storage capacity. We assume that Di and Si are the
piecewise affine functions depicted in Figure 2.

Every road i is characterized by given parameters: the
maximum speed in free flow vi, the speed in congestion phase
wi, the maximum density ρmax

i , the maximum flow ϕmax
i and

the length of the road Li.
Finally, external traffic demand for every road i entering the

network is indicated by Din
i , and external supply for every road

j exiting the network is indicated by Sout
j . Thus, summarizing,

the signalized traffic model is given by the following set of
equations:

ρ̇i(t) =
1

Li

(
ϕin
i (t)− ui(t)ϕout

i (t)

)
, (1a)

ϕout
i (t) =


min{Di(t), S

out
i (t)}, i ∈ Rout

min

{
Di(t),

{
Sj(t)
βij

}
j∈N+

i

}
, otherwise

(1b)

ϕin
i (t) =

{
min{Din

i (t), Si(t)}, i ∈ Rin∑
j∈N−i

uj(t)βjiϕ
out
j (t), otherwise

(1c)

Di(t) = min{viρi(t), ϕmax
i }, (1d)

Si(t) = min{ϕmax
i , wi(ρ

max
i − ρi(t))}. (1e)
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In model (1) every traffic light is naturally constrained to
be either 0 or 1. Moreover, in every intersection, a collision
avoidance constraint must hold, i.e., at every time instant at
most one traffic light can be green among the ones connected
to the same intersection; this contraint is expressed as follows:

∀ i ∈ R \ Rin, ∀ t ≥ 0,
∑
q∈N−i

uq(t) ≤ 1. (2)

B. The averaged cell transmission model

The main difficulty with the model given in the previous
section is due to its complexity: traffic lights are represented
by binary variables (i.e., differentiating the green from the
red). Therefore, working with this model is usually hard, for
example, algorithms meant to schedule optimal values for
traffic lights are in most cases mixed-integer programs (see,
e.g., [29], [30]), known to be intractable.

Our approach in [31] was to define an averaged model:
since the typical behavior of traffic lights is to alternate green
and red within a given cycle time, our model considers, as
controlled variables, the duty cycle of every traffic light, i.e.,
the percentage of green time in a cycle, formally defined as
ūi(t) = 1

T

∫ (k+1)T

kT
ui(t) dt, k ∈ N. Notice that, while u(t)

was a binary valued signal, ū(t) is a signal that takes a constant
(average) real value through an entire cycle.

The model we propose, with respect to other models based
on similar ideas, e.g., the store and forward [8], is more faithful
to the original CTM, in the sense that it relies on the concept
of demand and supply, and is able to reproduce congestion
spillbacks2 . Densities of the averaged model imitate densities
of the signalized CTM: their time evolution is described by
the same equation, except that the binary variables describing
traffic lights are replaced by the corresponding duty cycles, as
follows.

˙̄ρi(t) =
1

Li

(
ϕin
i (t)− ūi(t)ϕout

i (t)

)
, (3a)

ϕout
i (t) =


min{Di(t), S

out
i (t)}, i ∈ Rout

min

{
Di(t),

{
Sj(t)
βij

}
j∈N+

i

}
, otherwise

(3b)

ϕin
i (t) =

{
min{Din

i (t), Si(t)}, i ∈ Rin∑
j∈N−i

ūj(t)βjiϕ
out
j (t), otherwise

(3c)

Di(t) = min{viρ̄i(t), ϕmax
i (t)}, (3d)

Si(t) = min{ϕmax
i (t), wi(ρ

max
i − ρ̄i(t))}. (3e)

In the averaged system (3), duty cycles are constrained to
have real values between 0 and 1. Moreover, the collision
avoidance condition (2) now constrains the sum of the duty
cycles, i.e.,

∀ i ∈ R \ Rin, ∀ t ≥ 0
∑
q∈N−i

ūq(t) ≤ 1. (4)

2A different approach is proposed in [32], where the store-and-forward
model is enriched in such a way to reproduce congestion spillbacks.

The state variable ρ̄, solution of (3), as it turns out, is a
good approximation of the state variable ρ solving (1). This
property, while often used in model-based control approaches,
has received little theoretical attention. Relevant exceptions are
[18], [19]. We recall here the main result about the comparison
between the dynamical systems (3) and (1); it provides a
bound on the error |ρ̄− ρ|, which holds for a single road and
under suitable technical assumptions discussed in [19].

Proposition 1 ([19, Theorem 2]). Given ε = 1/L, there exists
a constant C(T ) (proportional to the cycle length T ), such
that

|ρ(t)− ρ̄(t)|≤ C(T ) ε,

for every t ≥ 0.

In Sect. II-C, we present simulations, illustrating the error
|ρ̄− ρ|.

C. Numerical comparison

For our software simulations, we consider a Manhattan-
like grid, namely a network of horizontal and vertical roads
connected by standard 4-ways intersections as depicted in
Figure 3a. We assume that all roads have the same parameters:
for all i, ϕmax

i = ϕmax = 2000 vehicles per hour (veh/h),
ρmax
i = ρmax = 200 vehicles per km (veh/km), vi = v = 50

km/h, wi = w = 12.5 km/h, Li = L = 0.5 km. Notice that
these values imply that the critical density is ρc = 40 veh/km.
Split ratios are chosen as follows. If a road i has two down-
stream neighbors, then the neighbor along the same (horizontal
or vertical) orientation as i is assigned a split ratio of 0.6 plus
a small random number, extracted uniformly in [−0.05, 0.05];
the split ratio for the second downstream road is then assigned
so that the two sum to one. If there is only one downstream
neighbor, then it gets split ratio 1. The simulations are run
for 720 time steps. Until the 550th step, an external demand
requires to enter the network: on all entering roads, at each
time instant, there is an incoming flow uniformly random in
the interval [ϕmax/2, ϕmax]. Then, the external demand is set
to zero. By doing so, we reproduce both the case where the
network is filling up and the one where it is emptying.

In this section, for ease of visualization of the results, we
consider a network size of 40 roads, i.e., our network is the
graph shown in Figure 3a.

We are interested in evaluating:

• how well the averaged system reproduces the distinction
between free-flow roads (i.e., with density lower than the
critical density) and congested roads that is given by the
signalized system;

• how close the averaged system (3) is to the signalized
CTM (1).

Regarding the second point, we compare the time trajecto-
ries of the two systems, and also of the formal integral average
of the signalized CTM trajectory, defined as [21]:

ρ̂(t) =
1

T

∫ t+T

t

ρ(τ) dτ. (5)
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Fig. 3: Results of numerical validation regarding the accuracy of
the averaged CTM. Figure 3a shows the idealized network of a
Manhattan-like grid. We compare the evolution of an average CTM
and a signalized CTM subject to the same external demands and
supply. Every road can have a status either free or congested: in
Figure 3b is depicted the percentage of status that are not correct (in
the sense that in the average CTM they differ from the signalized
CTM), as e(t) = #wrong status

#roads . In Figure 3c is depicted the time
evolution of densities for all roads in the network; the figure shows
that the averaged densities are very close to the signalized densities.

We remark that, due to the nonlinearity in the expression of
ρ(t) in (1), the value of ρ̄(t) is not exactly the same as ρ̂(t),
but it is a good approximation of the latter.

Representative examples of our results are reported in
Figure 3. Notice that the averaged system succeeds in dis-
criminating the status (free or congested) of a high percentage
of roads. The mean error is around 10%, as it results from
Figure 3b. Figure 3c compares the densities obtained with
signalized CTM and with the averaged model. We can see
that they are very similar. We also notice that the averaged
model smooths out the small rapid changes that appear with
the signalized model, as expected, since ρ̄(t) is rather meant
to approximate the integral average ρ̂(t), and not the instanta-
neous value ρ(t). This is illustrated in Figure 4, where we show
the density trajectory for a single selected road, comparing the
densities ρ(t), ρ̂(t) and ρ̄(t) obtained with (1), (5), and (3),
respectively.

More results about quantitative comparisons are given in
Table I. We run simulations with varying length of the traffic
lights cycle and we measure the errors |ρ̄i(t) − ρ̂i(t)| and
|ρ̄i(t)− ρi(t)|, where ρ̄i, ρ̂i and ρi are obtained from (3), (5),
and (1). Table I reports mean and worse-case errors, across
all time steps and all roads. Such values should be interpreted
recalling that densities vary in the interval [0, ρmax], and here
ρmax = 200 veh/h. We can see that the mean error is very low,
and the worse-case error remains acceptable.

0 100 200 300 400 500 600 700
0

ρc

ρmax

time step

Integral average ρ̂ (5)
Averaged CTM ρ̄ (3)
Signalized CTM ρ (1)

Fig. 4: Example of comparison: for one selected road i, evolution of
densities ρi, ρ̄i, and ρ̂i, obtained from (1), (3), and (5), respectively.

TABLE I: Validation with different cycle lengths.
T = 45 s T = 60 s T = 90 s T = 120 s

Error
(3) vs (5)
veh/km

Mean 1.9 2.03 1.69 1.8

Worst 12 12 10 11

Error
(3) vs (1)
veh/km

Mean 2.5 2.7 3 4.7

Worst 13 15 14 22

D. Discrete-time model

The purpose of having the model (3) is to ease the synthesis
of a control policy for the traffic lights by transforming binary
control signals into continuous ones. In addition, for practical
use of the model, a discrete-time version of (3) is needed. We
discretize the system using the Euler discretization method,
with sampling time Ts. The choice of the sampling time
must satisfy the requirement stressed in Daganzo’s seminal
work [12], i.e., viTs/Li < 1, for every road i, in order to have
a stable model (the eigenvalues of the discrete-time system
have the form of the left-hand side of the previous inequality).
A more in-depth discussion about such a choice is provided
in [33].

In conclusion, the model we will use for the optimal control
strategy is given by the following equations:

ρ̄i(t+ Ts) = ρ̄i(t) +
Ts
Li

(
ϕin
i (t)− ūi(t)ϕout

i (t)

)
, (6a)

ϕout
i (t) =


min{Di(t), S

out
i (t)}, i ∈ Rout

min

{
Di(t),

{
Sj(t)
βij

}
j∈N+

i

}
, otherwise

(6b)

ϕin
i (t) =

{
min{Din

i (t), Si(t)}, i ∈ Rin∑
j∈N−i

ūj(t)βjiϕ
out
j (t), otherwise

(6c)

Di(t) = min{viρ̄i(t), ϕmax
i }, (6d)

Si(t) = min{ϕmax
i , wi(ρ

max
i − ρ̄i(t))}. (6e)
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Fig. 5: Validation of the averaged model regarding total travel
distance. The data plotted are computed as |TTD(t)signalized−TTD(t)averaged|

TTD(t)signalized

III. ONE-STEP-AHEAD CENTRALIZED OPTIMAL TRAFFIC
CONTROL

In this section, we start by recalling the definition of a
well known urban traffic performance measure, the total travel
distance. We continue by showing that the average CTM
also succeds in approximating such an index reasonably well,
that is a further indication of the usefulness of this model
for control purposes. We then formulate the traffic control
problem, and proceed to show how this problem can be treated
in the framework of efficient optimization.

A. Urban traffic measures and problem formulation

1) Total travel distance: A standard metric in traffic sys-
tems is the Total Travel Distance (TTD) [15], a cumulative
index defined as

TTD(t) =

bt/Tsc∑
k=0

∑
i∈R

fi(kTs), (7)

where fi(τ) is the flow inside the road i at time τ , given by

fi(τ) = min
{
viρi(τ), wi(ρ

max
i − ρi(τ))

}
.

TTD is a measure that should be maximized, as it increases
the flow travelling the section.

It is worth mentioning that the averaged CTM offers good
approximation also for the TTD. While performing simulations
illustrated in Section II-C we also measure the TTD for the
averaged and the signalized systems. The result is reported in
Figure 5, and we notice that error is lower than 10%, and lower
than 4% almost always. This means that the averaged CTM
can consistently be used to predict values of TTD and density,
and therefore used in a model based optimization scheme.

2) Density balancing: Balancing was introduced in traffic
scenarios in [17]. The main idea is to try to evenly use the
infrastructure, avoiding to have some overly congested roads
and some underutilized others. Moreover, balanced density can
be regarded as an equal inter-distance between vehicles, which
makes travels smoother and safer, and reduces emissions [16].

A measure of densities balancing is given by

Bal(t) =

bt/Tsc∑
k=0

∑
i∈R

∑
j∈N+

i

(ρ̄i(kTs)− ρ̄j(kTs))2. (8)

Equation (8) can be expressed in a compact form as

Bal(t) =

bt/Tsc∑
k=0

ρ̄′(kTs)Lρ̄(kTs), (9)

where ′ denotes transpose, and L is a laplacian matrix of
the network, defined as

Lii = |N−i ∪N+
i |,

Lij =

{
−1 if j ∈ N−i ∪N+

i

0 elsewhere.

(10)

3) Traffic lights regularization: The structure of the CTM
with FIFO rule is such that numerical optimization can lead
to abrupt changes in the control dynamics, even for short-
term disturbances on the system input. This issue is commonly
addressed in optimization by adding a regularization term
to the cost function. Regularizing means penalizing abrupt
variations of the decision variables in order to obtain smoother
results across time. For the one-step-ahead traffic control this
translates into adding the following term to the cost function,

‖ū(t)− ū(t− T )‖22, (11)

where ū(t) is the duty cycle for the upcoming cycle, as defined
earlier, and ū(t−T ) is the duty cycle applied in the last cycle.

4) Problem formulation: A control policy intended to im-
prove urban traffic behavior according to above-discussed
criteria may be verbalized as: find duty cycles values to be
applied in the signalized intersections, such that they optimize
measures (7), (8) and (11), given the current state of the
network (density). Duty cycles are constrained to take values
lower than 1 and larger than assigned lower bounds li ≥ 0, and
to respect the collision avoidance constraint (4). Notice that the
inequality in the constraint permits some time instants where
all lights are red; for instance, if there is a strong congestion
downstream it may be useful to stop vehicles upstream. We
use positive constant values kbal and kttd to weigh the TTD
and the density balancing in the multi-objective optimization.

Our control scheme is the following: at time t, when a
traffic lights cycle begins, novel values for the duty cycles
are computed by solving the following optimization problem,
over a time horizon of K steps:

min
ū

K∑
k=1

(
kbalρ̄

′(t+ kTs)Lρ̄(t+ kTs)

− kttd

∑
i∈R

fi(t+ kTs)

)
+ ‖ū− ū(t− T )‖22

subject to (6) and to

li ≤ ūi ≤ 1,
∑
j∈N−i

ūj ≤ 1,∀ i,

(P1)

where densities ρ̄i(t) are the densities measured at time t.
Notice that the solution to program (P1) is one value for every
traffic light. Such values are then applied into the network for
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the entire upcoming cycle; then, this process is repeated at the
beginning of every cycle.

In the problem (P1) we aim at optimizing a cost function
given by the model-based predictions over some time hori-
zon and the entire network. However, in order to achieve
an opimization problem that is computationally tractable, a
trade-off is required. We will therefore limit the predictions
computed at time t to one step ahead only, choosing K = 1,
i.e., to values depending on ρ̄(t+ Ts).

B. A convex formulation of the control problem

We will now show that a convex program can be syn-
thesized, if the optimization is limited to one step ahead in
prediction.

First, it is worth noticing that every term ϕout
i (t) is a real

number, computed using the measured values ρ̄j(t)’s. Hence,
from (6), it is clear that the relation between the one-step-
ahead density ρ̄(t + Ts) and the duty cycles ū is affine. We
can write it as

ρ̄i(t+ Ts) = h′i(t)ū[i,v∈N−i ] + ρ̄i(t), (12)

where ū[i,v∈N−i ] indicates a vector containing duty cycles of
road i and roads v ∈ N−i , and hi(t) is a vector of real numbers
and consistent dimension. In matrix form, the whole vector
of one-step-ahead densities depends affinely from the whole
vector of duty cycles, as follows

ρ̄′(t+ Ts) = H(t)ū+ c(t),

where the rows of matrix H are the vectors h′i’s. With this, we
can consider the following portion of the cost function, with
the balancing and regularization terms,

kbalρ̄
′(t+ Ts)Lρ̄(t+ Ts) + ‖ū− ū(t− T )‖22,

and we can re-write it as the following quadratic function of
ū only

ū′Qū+ p′ū,

where
Q = kbalH

′(t)LH(t) + I, (13a)

p = 2kbalH
′(t)Lc(t)− 2ū(t− T ). (13b)

Next we look at the TTD. By substituting (3b) in (3c) and
then into (3a), every element of the cost function becomes a
nonlinear function of the duty cycles, expressed as

fi(ū) = min

{
vi

(
ρ̄i(t) +

Ts
Li

( ∑
j∈N−i

ūjβjiϕ
out
j − ūiϕout

i

))
,

wi

(
ρmax
i − ρ̄i(t)−

Ts
Li

( ∑
j∈N−i

ūjβjiϕ
out
j + ūiϕ

out
i

))}
.

(14)
Rewriting TTD = 1′f(ū), where f is the vector containing

all fi’s and 1 is the all-ones vector, we obtain the following
optimization problem:

min
ū≥0

ū′Qū+ p′ū− kttd1
′f(ū)

subject to, ∀i
li ≤ ūi ≤ 1,∑
j∈N−i

ūj ≤ 1.

(P2)

The nonlinearity in the objective function of (P2) can be
moved onto the constraints by defining a set of auxiliary
variables y, along with the constraints yi = fi(ū), ∀ i. Then
such constraints, given their special structure due to the piece-
wise linearity of every fi, can be relaxed, hence giving the
following convex program.

min
ū,y≥0

ū′Qū+ p′ū− kttd1
′y

subject to, ∀i
li ≤ ūi ≤ 1∑
j∈N−i

ūj ≤ 1

yi ≤ vi
(
ρ̄i(t) +

Ts
Li

( ∑
j∈N−i

ūjϕ
out
j − ūiϕout

i

))
,

yi ≤ wi
(
ρmax
i − ρ̄i(t)−

Ts
Li

( ∑
j∈N−i

ūjϕ
out
j + ūiϕ

out
i

))
.

(P3)
We notice that (P3) is an instance of quadratic program

with linear constraints, which belongs to the class of tractable
problems and can be efficiently solved with Newton-like (inte-
rior point) methods, see [34]. Moreover, and most importantly,
(P3) can be used to find an optimal solution of problem (P2),
because the two turn out to be equivalent, as the following
proposition shows.

Proposition 2. Let Q and D ∈ Rn×n, and p, b, g ∈ Rn, with
b ≥ 0. Let f : Rn → Rn be a concave positive function defined
as f(u) = min

(
H1u + c1, H2u + c2

)
, for given H1, H2 ∈

Rn×n and c1, c2 ∈ Rn.
Let (15) be the following optimization problem

min
u≥0

u′Qu+ p′u− b′f(u) (15a)

Du ≤ g, (15b)

and (16) be the following one

min
u,y≥0

u′Qu+ p′u− b′y (16a)

Du ≤ g (16b)

y ≤ H1u+ c1 (16c)

y ≤ H1u+ c2. (16d)

Then (15) is equivalent to (16).

Proof. The statement is true if, for all (u∗, y∗) optimal solu-
tions of (16), y∗ = f(u∗) holds. By contradiction, suppose
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(u∗, y∗) is an optimal solution for (16) and there exist ε > 0
and a natural i ≤ n such that

y∗i + ε = min(h1iu
∗ + c1i, h2iu

∗ + c2i),

where h1i (h2i) is the ith row of H1 (H2). Then, increasing
the ith component of y∗ by ε one obtains a new admissible
solution that provides a better value of the objective function
than (u∗, y∗), which, therefore, could not be optimal.

Proposition 2 is a well-known technique to deal with some
non convex constraint. In the context of traffic networks it has
been employed for variable speed limit control and vehicle
(split ratios) control, see [13], [14]. Here we use it in relation
with the triangular shape of the fundamental diagram, for the
synthesis of traffic lights duty cycles.

C. Remark on the cost function

In this paper we present a multiobjective optimization
mainly directed to two well known traffic measures, the total
travel distance and the density balancing, together with a
regularization term. Notice that if one decides to include in
the objective the TTD only, then it is possible to prove that
the one-step-ahead optimization problem is a linear program,
which on average is computationally even easier to solve than
a quadratic. We refer the reader to our previous work [31] for
more details.

The distributed algorithm presented in Section IV is suitable
for the multiobjective optimization (P3). Indeed the conver-
gence of the distributed scheme relies on the strict convexity
of the objective function. However it is possible to obtain
a distributed optimal algorithm for the linear program that
considers TTD only. This can be done by using different
algorithms, such as those proposed in [35], [36].

D. Remark on the computational details

In this section we clarify how the objective function of (P3)
can be constructed from the measured densities. According
to (12), ρ̄i(t+ Ts) depends only on decision variables ūv for
v ∈ N−i ∪{i}, and the dependency is affine. The computation
of the coefficients in the linear combination (i.e., the entries
of hi) requires only the knowledge of ϕout

v for v ∈ N−i ∪ {i}.
In turn, each ϕout

v is computed according to (6b), with the
knowledge of densities ρ̄w(t) only for w ∈ N+

v ∪{v}. Figure 6
illustrates in an example the roads involved in the computation
of hi.

IV. DISTRIBUTED CONTROL DESIGN

In this section we will develop a distributed version of the
one-step-ahead optimal traffic control. A distributed control
is a control technique in which a single central point of
computation is missing, and the operations are distributed
among several subproblems that can share information; in this
way, requirements about efficiency and scalability are more
likely to be satisfied. For the problem we are analyzing, the
capability to synthesize a distributed algorithm is very relevant,
since traffic networks often have very large dimension.

v1

v2

i

r j1

j2

Fig. 6: Illustration of the roads involved in hi(t) in (12). Here N−i =
{v1, v2} and N+

i = {j1, j2}. According to (12), the one-step-ahead
density of road i is an affine function of duty cycles ūi, ūv1 and
ūv2 . The real numbers that are the coefficients of such a relation (the
entries of hi(t)) can be computed from ϕout

i , ϕ
out
v1 , ϕ

out
v2 . In turn, ϕout

i is
obtained from ρ̄j1(t), ρ̄j2(t), and ρ̄i(t), while ϕout

v1 , ϕout
v2 are obtained

from ρ̄i(t) and ρ̄r(t), together with ρ̄v1(t) and ρ̄v2(t), respectively.

We address this by designing an algorithm based on decom-
posing the original centralized optimization in subproblems
of smaller dimension. In order to reconstruct the global opti-
mal solution, the subproblems follow an iterative convergent
scheme which includes some exchange of information. These
exchanges take place according to a scheme, established a-
priori, that is called communication graph. The advantage
is that we can obtain subproblems having a fixed size, not
growing with the network size, and solving them in parallel
gives a scalable scheme.

We will first introduce the communication graph. Then, we
will show how the centralized problem can be reformulated
to allow a distributed algorithm to exist and work properly.
Finally, we will present the distributed algorithm.

A. Communication graph

Our intent is to construct one subproblem for every road;
in this way, each road is in charge of selecting a value for
its own traffic light. However, subproblems are coupled, and
each road needs some information from neighbor roads. The
communication graph describes as neighbors the roads who
exchange messages about variables.

We define the set Si of roads that are allowed to share
information with road i as

Si = N−i ∪N+
i ∪ Ii,

where Ii = {q : N+
q ≡ N+

i }.
It is worth noticing that the set Si speficies connections

between roads that are geographically close to each other,
and therefore has some advantage also in view of a practical
implementation. See Figure 7 for a graphical illustration.

The definition of Si is instrumental to the distributed opti-
mization formulated in the remainder of this section. Indeed,
exchanged messages within neighborhood Si can contain all
the information needed for the formulation of the ith local
subproblem, as discussed in the end of Sect. IV-B, as well
as all the variables to be exchanged at each iteration of the
algorithm presented in Sect. IV-C.

Finally, notice that i ∈ Si, and that p ∈ Si implies
i ∈ Sp. Hence we can define the communication graph as
the undirected graph G whose vertices are roads and in which
an edge {i, j} exists whenever j ∈ Si. The natural assumption
that the directed road network is weakly connected implies that
G is connected.
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v1

v2

i

q j1

j2

Fig. 7: Illustration of the communication neighborhood Si defined
in Sect. IV-A. It involves upstream roads in N−i = {v1, v2},
downstream roads in N+

i = {j1, j2}, and roads in Ii = {i, q}. In the
distributed algorithm from Sect. IV-C, the i-th local subproblem (23)
has variables indexed by roads in Si only: primal variables ū(i)

[p∈Si]

and dual variables λ(i,p)
i , λ(i,p)

p for all p ∈ Si. For example, in
this intersection, ū(i)

[p∈Si]
= [ū

(i)
v1 , ū

(i)
v2 , ū

(i)
i , ū

(i)
q , ū

(i)
j1
, ū

(i)
j2

]. Along
iterations of the distributed algorithm, the i-th node exchanges
messages with neighbors in Si, sharing its primal variables, so
as to converge towards a solution satisfying the constraints (18c)-
(18d): all local variables (from different local problems) concerning
a same road converge to a same value; in this example, for road i,
ū
(i)
i = ū

(v1)
i = ū

(v2)
i = ū

(q)
i = ū

(j1)
i = ū

(j2)
i .

B. Problem formulation in the distributed set-up

A common set-up in distributed optimization ([23]) deals
with problems with a separable objective function and local
constraints. Regarding the optimization presented in the previ-
ous section, we will show that we can rewrite the (centralized)
problem (P3) as

min
ū

∑
i∈R

gi
(
ū[p∈Si]

)
s.t. ū[p∈Si] ∈ Xi, ∀ i ∈ R,

(17)

where each set Xi is compact and convex, and each function gi
is strictly convex. We recall that the notation ū[p∈Si] indicates
a vector containing duty cycles of road i and of roads p ∈ Si.

The reason why this re-formulation is convenient lies in the
existence of efficient algorithms to solve (17) in a distributed
manner. More specifically, the separation into subproblems
is naturally suggested by the structure of cost function and
constraints. However, one more step is needed to formulate
subproblems that do not have any variable in common. To this
aim, we replace each variable ūr with several variables ū(s)

r ,
one for each s ∈ Sr, representing the local version known by
node s of the variable ūr. With this, the constraint ū[p∈Si] ∈ Xi
can be replaced by the constraint ū(i)

[p∈Si] ∈ Xi, which only
involves local variables at node i. Then, additional constraints
are needed, to ensure that all local versions of a same ūr are
equal. This gives rise to the following problem:

min
[ū(i)]i∈R

∑
i∈R

gi
(
ū

(i)
[p∈Si]

)
(18a)

s.t. ū(i)
[p∈Si] ∈ Xi, ∀ i ∈ R, (18b)

ū
(i)
i = ū

(p)
i , ∀ i ∈ R, ∀ p ∈ Si \ i, (18c)

ū(i)
p = ū(p)

p , ∀ i ∈ R, ∀p ∈ Si \ i. (18d)

The equivalence between (17) and (18) is guaranteed by the
connectedness of the communication graph G.

We will now describe the specific form of gi and Xi that
makes the one-step-ahead traffic optimization separable. Let

gi be defined as

gi
(
ū[p∈Si]

)
=

− kttd min

{
vi

(
ρ̄i(t) +

Ts
Li

( ∑
j∈N−i

ūjβjiϕ
out
j − ūiϕout

i

))
,

wi

(
ρmax
i − ρ̄i(t)−

Ts
Li

( ∑
j∈N−i

ūjϕ
out
j + ūiϕ

out
i

))}

+ kbal

∑
j∈N+

i

(
hi(t)ū[i,v∈N−i ] + ρ̄i(t)

− hj(t)ū[j,v∈N−j ] − ρ̄j(t)
)2

+
∑
p∈Si

1

|Sp|
(ūp − ūp(t− T ))2,

(19)
and Xi be defined as the set of all ū[p∈Si] satisfying

ūp ≥ lp ∀ p ∈ Si
ūp ≤ 1 ∀ p ∈ Si∑

q∈Ii

ūq ≤ 1.
(20)

Based on the previous discussion, two remarks matter re-
garding definitions (19) and (20): first, every set Xi is compact
and convex, since it is given by linear inequalities; second,
every function gi is stricly convex in every variable up, p ∈ Si.
To see this, notice that each gi is given by the sum of three
terms: the first is convex because it is the composition of
convex functions (notice that the min operator is multiplied
by a negative constant); the second is convex because it is
a quadratic form; the third is stricly convex because it is a
quadratic form with a positive definite matrix (in particular,
it is the identity matrix). Hence their sum is a stricly convex
function.

Thanks to this definition of gi and Xi and to their properties
we have remarked, our problem is in the set-up specified by
[23] whose steps we will now adapt to the traffic optimization
problem.

It is important to notice that the function gi can be defined
by using only information from neighbors in Si. Indeed, as
pointed out in Sect. III-D, it can be constructed as follows.
First, each road i sends its density ρ̄i(t) to its upstream
neighbors in N−i . Then, using its own density and the ones
received from the downstream neighbors in N+

i , it computes
ϕout
i . Road i sends ϕout

i to its downstream neighbors. Based on
its own out-flow, and on the ones received from the upstream
neighbors in N−i , it can compute the TTD term of the cost
function, as well as hi(t). In a final communication round,
hi(t) is sent to upstream neighbors, and the balancing term
is computed from the received messages from downstream.
Finally, the regularization term involves ūp(t − T ) for all
p ∈ Si.

C. A distributed algorithm for the one-step-ahead traffic op-
timization

Following [23], we will now present a distributed algorithm
to solve problem (18) that uses the well known technique of
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dual decomposition. In (18), the objective function and the
constraints (18b) are already separable. Therefore, the dual
decomposition will consider the coupling constraints (18c) and
(18d) only. To this aim, lagrangian multipliers are introduced,
denoted λ

(i,p)
i and λ

(i,p)
p (for all i ∈ R and p ∈ Si \ i),

associated with constraints (18c) and (18d), respectively. With
some simple manipulations described in details in [23, Lemma
3.1], the partial lagrangian can be written as follows

L =
∑
i∈R

Li =
∑
i∈R

[
gi
(
ū

(i)
[p∈Si]

)
+ ū

(i)
i

∑
p∈Si\i

(
λ

(i,p)
i − λ(p,i)

i

)
+
∑
p∈Si\i

ū(i)
p

(
λ(i,p)
p − λ(p,i)

p

)]
.

(21)
The dual decomposition algorithm is based on the iteration

of two steps: the first is the minimization of the partial
lagrangian, and the second is the update of the lagrangian
multipliers λ via a gradient ascent update.

We now present the iterative algorithm, by illustrating the
scheme that has to be executed by every subproblem i:

Initialization. Create local variables ū
(i)
p for all p ∈ Si,

and λ
(i,p)
i , λ(i,p)

p for all p ∈ Si \ i, and initialize them
such that

λ(i,p)
p (0) = −λ(p,i)

p (0), for all i and all p ∈ Si\i. (22)

Set k = 0.
Primal update. Update primal variables ū(i)

p (k + 1) by
solving the local optimization problem:

min
ū
(i)

[p∈Si]

gi
(
ū

(i)
[p∈Si]

)
+ 2

∑
p∈Si\i

(
ū

(i)
i λ

(i,p)
i + ū(i)

p λ(i,p)
p

)
s.t. ū(i)

[p∈Si] ∈ Xi.
(23)

Transmission. Send primal local variables to requiring
neighbors p ∈ Si, and collect the most recent values of
ū

(p)
i , ū(p)

p from them.
Dual update. Update the lagrangian multipliers: for every
p ∈ Si \ i, set

λ
(i,p)
i (k + 1) = λ

(i,p)
i (k) + α

(
ū

(i)
i (k + 1)− ū(p)

i (k + 1)
)
,

λ(i,p)
p (k + 1) = λ(i,p)

p (k) + α
(
ū(i)
p (k + 1)− ū(p)

p (k + 1)
)
.

(24)
Stop condition. If the solution has numerically stabilized
stop, otherwise increment k and go to Primal update.

Notice that the primal update (23) is equivalent to mini-
mization of Li, the i-th term of the partial lagrangian given
in (21). Indeed, if the inizialization of the lagrange multipliers
satisfies (22), then the same property remains true along the
gradient ascent updates (24), namely λ

(i,p)
p (k) = −λ(p,i)

p (k).
As discussed in [23], the advantage of the expression of Li
used in (23), compared with the one in (21), is that the
former only uses lagrangian multipliers locally known by
node i, while the latter would require exchanging lagrangian
multipliers with neighbors.

The convergence property of this algorithm is stated in the
next proposition.

Proposition 3. Let ū∗ be the unique optimal solution of the
centralized optimization problem (P3). There exists α∗ > 0
such that, if 0 < α < α∗, then

lim
k→∞

ū
(i)
i = ū∗i ,

for all i ∈ R.

Proof. We have shown that Xi are compact and convex sets,
and that functions gi are stricly convex, thus satisfying the
assumptions of [23, Theorem 3.3].

D. Comments

We have three remarks about the algorithm above. First,
the initialization of local variables is subject to condition (22).
There are two simple ways to satisfy this requirement:
• A simple initialization to zero values, every time the

optimization starts;
• A zero initialization for the first optimization and a warm

start for the following ones. Since in our set-up the
optimization needs to be solved at the beginning of every
traffic light cycle, is it possible to use the optimal values
computed for previous cycle as initial condition for the
new problem. Such a warm start choice is guaranteed to
respect (22), because the update rule (24) preserves the
same property. This approach can give practical benefits
in terms of convergence speed.

In second place, it is important to notice that problems (23)
can be constructed from the measured densities by exchanging
messages within the neighborhood Si only, as we explained
in Sections III-D and IV-B.

Last, we would like to underline that the local optimization
program stated in (23) can be rewritten as a convex (quadratic)
program, using the same strategy outlined in Section III, with
the introduction of auxiliary variables yi (see Proposition 2).
Therefore every local primal update is a convex program with
a much smaller size than the centralized algorithm. The size
of such local problems will not increase with the dimension
of the network, only the number of subproblems will. This
makes the algorithm suitable for large networks, in particular
if an appropriate hardware infrastructure is available, i.e.,
every local problem can be solved in a different processing
unit, and those units can communicate as prescribed by the
communication graph G.

V. MACROSCOPIC NUMERICAL SIMULATIONS

Optimization algorithms from Sections III and IV have
been implemented and tested under various scenarios.

We recall that the goal of our algorithm is to decide about
the duty cycle (i.e., the green split) of every traffic light
in every intersection. The controller does not decide on the
sequence of execution of such duty cycles. In other words, the
order of the traffic lights within every cycle is given, and the
objective of the optimal control is to assign the green duration
of every traffic light.

In all our tests, since the cost function of the one-step-
ahead control includes terms with different magnitudes (i.e.,
flows in the TTD and densities in the balancing measure),
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we set the constant values kbal and kttd such that both terms
are normalized. In other words, every term contributing to
the TTD, that is yi, is normalized by the constant ϕmax

i , and
every term (ρ̄i− ρ̄j)2 is normalized by ρmax

i . Notice, also, that
this numerical choice is straightfoward to implement in the
distributed algorithm.

In this section, we report macroscopic simulations, run in
MatLab environment, using software [37], [38] to solve the op-
timization problems. In Section V-A we present results about
the convergence speed of the distributed implementation, while
in Section V-B we show the improvement that the control
strategy brings with respect to a best-practice policy for traffic
lights, defined therein. All simulations in this section consider
a Manhattan-like grid network, with same road parameters,
split ratios, and external demands, as described in Section II-C.

We would like to underline that the averaged model is used
only in the optimization algorithm, not in the simulations.
At the beginning of every cycle, the optimal duty cycles
(computed using the averaged model) are applied into the
signalized CTM model, and at the beginning of the next cycle
the density measurements are taken from this simulation. The
performance of the algorithm is therefore evaluated in the
signalized CTM system.

A. Convergence of the distributed traffic control

In order to estimate the speed of convergence of the
distributed one-step-ahead control, we run a test bench of 2700
simulations, with different network sizes and initial densities.
The network size varies among nine values, from 4 roads
up to 180 roads. For each of these dimensions, we run 100
simulations, with initial state of every road pseudo-randomly
generated every time. Such a test is repeated three times: first,
the initial state is free-flow for all roads (ρ(0) < ρc); second,
it is congested (ρ(0) > ρc); last, every road is initialized with
a value that can be either free or congested (0 < ρ(0) < ρmax).
The rationale is to test cases where roads have similar states
(either free or congested) and where they have not (intuition
would say that in the latter case a consensus requires more
iterations).

The results are reported in the histograms in Figure 8. We
declare that the distributed algorithm has converged when the
change in its solution from one iteration to the next one is less
(in absolute value) than 1e-3. The most important remark is
that the maximum number of iterations before convergence
is less than 30, in all our simulations. We were running
our simulations in a sequential way on a laptop, but this
algorithm is meant to be implemented in a parallel way in a
distributed infrastructure, where each subproblem corresponds
to a separate hardware (e.g., each traffic light is integrated with
a microprocessing unit). We can estimate the total computation
time over such a parallel infrastructure, by considering that
in our tests an iteration takes around 0.05 seconds for each
subproblem. This means that the total computation time for
the parallel infrastructure would be always less than 0.15 s,
much lower than the sampling time Ts = 15 s.

Time needed for communication should be taken into ac-
count too; however, in our algorithm communication exists

only between roads physically close, hence the time needed
for all iterations results to be comparable to the time needed
by the centralized algorithm, in which the solution, once it has
been computed, needs to be sent from the single computing
machine to roads that are also very far.

We also notice that the number of iterations before conver-
gence varies with the variability of the free-congested mode
over the network. If all cells have the same mode (all free or
all congested), then a smaller number of iterations is needed,
at most 18.

B. Comparison with a best-practice traffic lights control

Most cities apply a simple choice for green time of traffic
lights, i.e., selecting fixed duration based on the known turning
proportions and the statistical knowledge of external demands,
as it is implemented in the earlier traffic lights control policies,
e.g., [6]. In this paper, we compare our feedback strategy
with a fixed best-pratice policy based on the same concepts:
we collect data from the simulated network and we use it
to compute the mean density experienced within every road
during the simulation. Given this information, fixed duty
cycles are assigned proportionally to the mean densities.

Representative results are reported in Figure 9, where we
consider a network with 40 roads. We show, for every road
and for every time step, the distance between the road density
ρi(t) and the critical density ρc; recall that ρc maximizes the
local flow. Also, we show a graphical visualization of the
two optimized indexes (TTD and density balancing), from
which the improvement can be seen. Moreover, we show
how another well-known traffic index, the service of demand,
behaves during the system evolution. This index represents
the ability to cope with external demands, allowing vehicles
to enter the network; it is defined [31] as the sum of entering
flows

SoD(t) =

bt/Tsc∑
k=0

∑
i∈Rin

ϕin
i (kTs),

We remark that, even though this index was not included in
the optimization process, an improvement is also achieved in
its respect.

VI. MICROSCOPIC EXPERIMENTS

The algorithms illustrated in this paper have also been
tested in a commercial traffic microsimulator (Aimsun, [24]).
Such a software simulates traffic behavior within roads by
implementing a microscopic model for each and every vehicle.
This allows us to see how our algorithm behaves when applied
to a model very different from the macroscopic model used
for the optimization, thus showing its potential for application
on real world.

For our microscopic experiments, we run simulations in
which, while Aimsun software keeps running, the one-step
ahead optimal control is computed and is then injected into
Aimsun, that will continue the simulation with the new values
for the green times. More precisely, we use the method
proposed in this paper, but relaxing the assumption that all
traffic lights have the same cycle length. Indeed, in our realistic
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Fig. 8: Results of the test bench on convergence speed of the
distributed algorithm.
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Fig. 9: Comparison between the best-practice control and the feed-
back strategy proposed in this paper. Figures 9a and 9b show the
distance |ρ − ρc| for the two cases; the critical density ρc can
be interpreted as the ideal working point, maximizing flow. The
improvement achieved in terms of TTD is shown in Figure 9c, and
the improvement in terms of balancing in Figure 9d. In Figure 9e
we show the improvement over another traffic index, the service of
demand (SoD), that the algorithm obtains even though such an index
is not explicitly part of the cost function of the optimization problem.

scenario, cycle length depends on the size of the intersection,
and we have four groups of traffic lights, corresponding to
cycle lengths of 45, 60, 90, and 120 seconds; traffic lights in
a same group have a common starting time. At a time t when
one group begins a cycle, the optimization problem is solved
across all the network, but the resulting optimal green times
are applied only in this group, while all other traffic lights keep
applying their previously-computed solution, until the end of
their cycles.

For comparison, other simulations are run, where traffic
lights are instead controlled by a best practice rule. This
is a commonly adopted policy, where duty cycles are time-
invariant, and are assigned according to the split ratios and to
the historical demands [6]. To implement this policy in our
simulations, we have collected ‘historical’ data, running the
simulator without traffic lights, and then assigned duty cycles
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proportionally to the mean densities.
To generate the scenarios, we used a Aimsun model that

reflects the downtown portion of Grenoble, France, in every
major aspect (see Figure 10). The computation of the optimal
control was done in the Python language, as Aimsun supports
Python scripting through its API. The solver [38] has been
used, the same as in the MatLab simulations in Section V.

We used real flows measurements (obtained from the loop
detectors installed in the city) in order to improve the Aimsun
model, as it follows.

Some of these loop detectors are placed near the boundary
of the town, and from them we measured the external input
values, that are also injected into the Aimsun model (in terms
of vehicles per hour). In Figure 11 we report some examples
of these data profiles.

The other detectors, placed more towards the center of the
city, have been used to reproduce realistic values of split ratios
into Aimsun: by measuring the flow in a road from a detector,
and the input flows in the downstream neighbors of the same
road, we could compute the split ratios for almost all pairs of
roads. In the few cases where this was not possible (due to the
absence of a detector) we assigned the splits proportionally to
the size of the downstream roads (i.e., to the number of lanes):
for example, in an intersection with three exiting roads with 1,
2 and 3 lanes respectively, they would be assigned split ratios
equal to 0.166, 0.332 and 0.502, respectively, from each of the
roads entering the same intersection. Such a rule is meant to
reproduce the fact that larger streets are used by more vehicles.

Finally, we extracted the CTM parameters from the Aimsun
user interface, after we imported the (open street) map of the
model.

We have selected a typical day and set up the simulation
as to represent the stream of vehicles corresponding to the
morning peak-hours, from 7 a.m. to 10 a.m. Each simulation
is then run for three (simulated) hours.

We report about experiments conducted in two different
scenarios. In both, the entering flows are the same, but in
the second scenario we force the software to create incidents
which give increasing congestions in some areas. At the end
of every simulation, Aimsun computes microscopic traffic
measures that we used to evaluate the performance of the
proposed strategy. Such results are shown in Table II. We
remark that every microscopic index is improved by using the
presented control algorithm: travelled distance is increased, in
average, of around 13%; travel time is reduced by more than
17% in the first scenario, and almost 20% in the second; the
mean queue length (summed over all roads in the network) is
reduced by 10%; last, the stop time (computed as the time the
vehicles were stopped, per kilometer) is reduced by 21% in
the first scenario, and by 19% in the second.

A demo of these experiments is available online [39].

VII. CONCLUSIONS

In this work we have proposed a distributed algorithm for
optimal assignment of traffic lights in urban networks. The
proposed approach is based on the decomposition of a convex
centralized optimization, based on a one-step-ahead prediction,

TABLE II: Evaluation of the one-step-ahead optimal control (OSA-
OC) against the best-practice policy (BP), via microscopic exper-
iments and resulting traffic indexes computed by the microscopic
simulator Aimsun.

Index Scenario 1 Scenario 2

BP OSA-OC BP OSA-OC

Travelled distance [km] 23396 26471 19772 17003
Travel time [h] 1775 1462 1955 1583

Mean queue [veh] 496 441 627 564
Stop time [sec/km] 123 97 172 139

A
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F G H I

L

M

N

Fig. 10: From top left, clockwise: a map of Grenoble downtown; the
corresponding Aimsun model used in the microscopic experiments,
with markers for the detector positions that correspond to the inflows
of the model (see also Figure 11); the directed graph describing this
road network. A demo of our experiments is available online [39].
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Fig. 11: Some of the real flow profiles that we used as input for the
Aimsun model. The plots correspond to flows from loop detectors in
positions A, B, C, D in Figure 10.
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that achieves optimal performance with respect to the total
travel distance and the density balancing, two well-known
traffic indexes. We formally prove that the distributed scheme
converges to the optimal solution of the centralized problem.
The designed control scheme is adaptive to fast changes in
the enviroment. Moreover, thanks to the distributed set-up,
the algorithm satisfies the scalability requirement needed for
large-scale networks, since the problem is split in several
subproblems whose sizes do not increase with the network
size.

We have validated the work also through numerical simu-
lations, both in macroscopic and in microscopic environment.
The results of these numerical tests show that the distributed
procedure converges efficiently to the optimal solution. We
also measured the improvement that it offers over a best-
practice policy for traffic lights, not only with respect to the
the considered objectives, but also to other traffic indexes such
as travel time, mean queue length and stop time, that are
consistently improved.
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